Vol. 19 Ne. 2 Advances in Atmospheric Sciences March 2002

The Predictability Problems in Numerical
Weather and Climate Prediction™

MuMu (B )9, Duan Wansuo (Et#f4) and Wang Jiacheng (EFRIN)
LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

(Received March 15, 2001; revised July 19, 2001)

ABSTRACT

The uncertainties caused by the errors of the initial states and the parameters in the numerical model
are investigated. Three problems of predictability in numerical weather and climate prediction are proposed,
which are related to the maximum predictable time, the maximum prediction error, and the maximum ad-
missible errors of the initial values and the parameters in the model respectively. The three problems are
then formulated into nonlinear optimization problems. Effective approaches to deal with these nonlinear
optimization problems are provided. The Lorenz’ model is employed to demonstrate how to use these ideas

in dealing with these three problems.
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1. Introduction

The predictability problem in numerical weather and climate prediction is concerned
with the uncertainties of the forecast, which is usually classified into two types. The first kind
of predictability is related to the initial errors, and the second kind of predictability is to the
model errors. At present, it is generally accepted in the society of the atmospheric sciences
that the first kind of predictability is a main problem in numerical weather prediction, al-
though the model errors in some models, e.g. the mesoscale model, have not been successfully
solved yet. For short—term numerical climate prediction, the second kind of predictability is
considered to be the main problem. We should also point out that for the prediction problem
of interannual climate variability such as ENSO (El Nifio and Southern Oscillation), the first
kind of predictability has also been receiving increasingly attention (Thompson 1998; Xue et
al. 1997; Yuan et al. 2000).

The definition of the model error varies with the authors, in this paper, we adopt the fol-
lowing definition (see Talagrand 1997): If the initial value of the model is the true state, then
the difference between the values of the forecast and the true state at the prediction time is cal-
led the model error,

From the above definition of the model error, it is easily seen that there are many factors
causing model errors, for example, ignoring some physical processes, the errors in the
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parameters of the model which includes the formulation of the forcing, discretization error of
the model, and even the round—off error (Li et al. 2000), etc.

Practically it is difficult to distinguish the first kind of predictability from the second kind
of predictability. And it is almost impossible to study the model error completely. The main
purpose of this paper is to consider the uncertainty of the prediction caused by the initial er-
ror and the parameter error in the model, which is generally considered to be the main prob-
lem in the model error. The explicit meaning of this is explained as follows. Denote M, the
propagator which propagates the state from the initial time to time ¢, w, is the initial value, u
is the parameter, u, = M, (u,, u). uy and u, are the true values of the state at initial time

and time ¢ respectively, u' is the true value of parameter, throughout this paper we assume
u;: ul=Ml(u6,/,tl), (1.1)

that is to say, the prediction error is only caused by the initial error and parameter error, In
this paper, we will first classify three problems of the predictability in the numerical weather
and climate prediction and reduce them into nonlinear optimization problems respectively.
Then how to deal with these problems by using the information on the errors of the initial
value and the parameter are investigated. Finally, we use Lorenz’ model (Lorenz 1965a, b) to
show how to realize the above idea in the research of predictability.

2. Three problems of predictability

On the basis of pratical demands the study of the predictability of numerical weather and
climate prediction can be classified into three problems.
Problem 1. Assume that the initial observation ul” and the first given value of the

parameter u® are known. At prediction time T, the maximum allowing prediction error in
terms of the norm || + || , measuring u is

M@, u8)—url < e, 2.1

where u}. is the true value of the state at time 7. It is our purpose to find out the maximum
predictable time 7', under the above conditions, This problem can be reduced to a nonlinear
optimization problem:

T,= max{t| | M, @, u®)— ul] ,<¢ 0< 1<t} . (2.2)

&

Since the true value u; cannot be obtained exactly, so it is impossible to obtain the exact val-
ue of T, by solving this nonlinear optimization problem. However, if we know more informa-
tion about the errors of initial value and the parameters, useful estimation on 7', can be de-
rived by using some methods. For example, assume that the errors of the initial value and the
first given value of the parameter are known as follows

|Iu6_u8bs”A<51 s ”Au’_,ug”3<52 , (2.3)

where || | ; is a norm of u measuring the parameters in the model. Then we can investigate
the following nonlinear optimization problem
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T,= min {T, T, ,= maxt,
ugEB; . jEBy,

I M, (uy, )— M, @™, uB) <6 0< <7}, (2.4)

obs

where B, , B;, are the balls with centers at uy ", u* and radius d,, 6, respectively.

It is not difficult to prove that

T,<T (2.5)

g .

From (2.4), we have the lower bound of the maximum predictable time. It is also clear

that the more accurate the initial observation ugbs and the parameter u, the more accurate

this lower bound.

Remark: In the operational numerical weather and climate prediction, the observational
data are seldom used as the initial values to the numerical model. Instead, the analysis fields, .
which are yielded by the initialization and data assimilation processes, are adopted as the ini-
tial values. To make this paper more readable, we use the term “ observation” rather than
“analysis” in this paper.

obs

Problem 2. Suppose that the initial observation u, and the first given values of the
parameter u® are known, for a given prediction time T, look for the prediction error, i, e.,

find out

E= ”MT(quS, #g )_ u;*” 4 - (26)

Similar to the above problem, since the true value u; cannot be obtained exactly, it is also
impossible to get the exact value of E. But if some information on errors of the initial value
and the parameter are available | e.g. (2.3) holds, then we can consider the nonlinear
optimization problem

E,= max | My, w— M@, 1), . 2.7)

U
ug EB”“ LHEB,,

Without much difficulty, we can prove that
E<E, . (2.8)

In this way we establish the upper bounds on the prediction error, the accuracy of these esti-

mations depends on those of the initial value and the parameters in the model too.

Problem 3. Assume that the initial observation ug‘”, the first given value of the paramet-

er u® are available. At the prediction time T, the allowing maximum prediction error is (2.1).
Our purpose is to determine the allowing maximum initial error and the parameter error.
More precisely, look for the maximum &, such that if (2.3) holds with = §, + J,, then (2.1)
holds.

This problem can also be reduced to an optimization problem as follows:

obs

3 max{d| |ug— ug”l (<&, Ip'—p¥lz<o, ,
]

if  8,+8,=0, then |M,@d® u®)—ull, <¢l . 2.9)

Following the above idea, we can estimate ., Investigating the problem
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< . b .
O = Maxiol 1M, (g™ 18)= M, (u, 0l , < ¢,
0

u()EBo‘l s ,UEB”»: . 0, F+0,= 3} . (2.10)

we can conclude that

0 mitx <0 (2] l)

max -

Remark: In the above problems, if the errors in the parameter can be ignored, and
furthermore the model can be assumed to be perfect, the problems are the three ones of the
first kind of predictability; on the other hand, if there exists no initial error, the problems be-
come those of the second kind of predictability concerning the parameter error,

3. An example—three problems with the first kind of predictability of Lorenz system
In this section, we study the three problems of predictability of Lorenz system as an ex-

ample. For simplicity, we assume that the model is perfect.
The Lorenz system consists of a set of three ordinary differential equations:

dx

= — —+ ’

7 ox+ oy |

dy

G-zt rx—y

dt rEm e 3.1
dz _

a7 bz,

* (-\’»}’~Z)|1=0: (Xg.b0.20) .

where ¢, r and b are the parameters. Here we adopt the Lorenz’ original choice of parameter
values: 6= 10, r= 28, b= 8 /3 (Lorenz 1965).
It is easy to find out that Lorenz system has three stationary points:

(0: (x,y.2)= (0,0,0)

C: (xy.2)=(—Nb(r— 1), = Nb(r—1),r— 1) (3.2)
CCy: (ey,n)= (Vbr— 1) Nb(r— 1), r— 1) .

We choose these three stationary points as initial observations to study the three problems
with the first kind of predictability of the system. It should be pointed out that other points
could be adopted as the initial observations too. The system is integrated by middle point
scheme with time step dz= 0.01.

3.1 The first predictability problem of Lorenz system
Let M be the propagator of system (3.1), O " the initial observation, X= (x,.v,,2,),

anduy,= 0" + X Assume that the initial observational error in terms of a chosen norm || = ||

is not larger than 0. With these notations, u, € B, (see section 2) is equivalent to || X|] < . The
lower bound of the maximum predictable time given by (2.4) under the above conditions is
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T,= min{Tx|Ty=maxt , [M, (0" +X)— M, 0" N<e, 0<:<1). (3.3)

1X<é

In this paper, two norms || X}, = y xi+ yo+ z¢ and || X],, = max{|x,|, |y,
employed to measure the errors. For different initial observational error bounds || X||, < 6
and || X]| .. < 3, we adopt the following algorithms to obtain the lower bound of maximum
predictable time T, . Firstly for the domain || X, < J, we take cube mesh of side 0.01, then
integrate the model from each mesh—point and obtain the maximum predictable time Ty for
this point. The minimum of all these is what we require. Of course the result depends on the
mesh we utilized. In the calculation, we have tried several different meshes, and find that there
is no essential difference if the side of the mesh is not larger than 0.01. So we use 0.01 in the
calculation,

Secondly for the ball | X]| , < J, we consider its circumscribed cube. For any mesh points
outside the ball, we connect this point with the center of the ball, and take the intersection
point of this line with the surface of the ball, then integrate the model from each of these in-
tersection points and the mesh points inside the ball, Similar to the case of | X]| ,, < 4, the re-
sults are obtained.

The details of the results for initial observation O are shown in Tables 1 and 2, where § is
the initial observational error bound and T, is the lower bound of the maximum predictable
time with the maximum allowing prediction error ¢, Here T, is the number of the time steps
of the numerical integration.

,|zo |} are

Table 1. T, for initial observation O with | X] ,, < ¢

. T ° 0.005 0.01 0.05 0.1 0.15 0.2
0.6 76 64 36 26 17 13
1.0 85 73 45 33 26 21
1.4 91 79 51 39 32 27
1.8 96 84 56 43 36 31
2.2 99 87 59 47 40 35

Table 2. 7, for initial observation O with || X]|, < ¢

) T ° 0.005 0.01 0.05 0.1 0.15 0.2
0.6 81 69 41 29 22 17
1.0 90 78 50 38 .30 25
1.4 95 83 55 43 36 31
1.8 100 88 60 48 4] 36
2.2 103 91 63 51 44 39

Obviously if (x(r), y(£),z(z)) is a solution to Lorenz system, (— x(z), — y(z), z(¢)) is a so-
lution to that too. Due to this symmetric property, it is easy to know that the lower bounds of
the maximum predictable time of the initial observation C; and C, are equivalent, For sim-
plicity, we only show the results of C; in Tables 3 and 4.
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Table 3. T, for initial observation C, with| X, <9

8
T 0.005 0.01 0.05 0.1 0.15 0.2
&
0.4 2204 1812 909 516 290 145
0.8 2614 2244 1318 907 701 516
1.2 2861 2431 1527 1133 907 762
1.6 2982 2614 1527 1317 1072 907
2.0 3112 2738 1812 1442 1195 1035
Table 4. T, for initial observation C| with|[[ X}, <
8
) T 0.005 0.01 0.05 0.1 0.15 0.2
0.4 2367 1991 1069 694 450 271
0.8 2745 2366 1445 1068 826 693
1.2 2985 2609 1687 1312 1068 889
1.6 3164 2743 1867 1444 1249 1068
2.0 3288 2867 1991 1568 1373 1192

It is clear from Tables 1—4 that the lower bound of maximum predictable time of the ini-
tial observation C, is much longer than the corresponding one of the initial observation O,
This indicate that there exists stronger predictability around C, .
Fig. 1 is T, for initial observation O with | X]|, < J. Fig. 2is T, for initial observation

C, with|X],< 5.

3.2. The second predictability problem of Lorenz system

Denote M,0" and X as above, if the initial observational error in terms of a chosen
norm | « | is hot larger than 3, the upper bound of prediction error of the initial observation

0" attimeT is

110
]A
100 \
L]
%0 —a— =06
80_.\- e p=14
A =
o1l =22
= 601 ‘\
— 1 a_
53 \'\\‘\\
40 — ——a
30 \. I
—
20 —
10 : , , .
0.00 0.05 0.10 0.15 020
0
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E,= max| M, (0" +X)— M. (0" ) . (3.4)

u
X<

If the initial perturbation X; = (xg;, Vo3, Z0; ) SUperposed on O * satisfies

E,=IM; 0" +X;)- M, 0", 3.5)
it is called conditional optimally growing perturbation of O * . The value
E,

represents the maximum rate of the evolution of the initial perturbations superposed on the
observation,

In the following numerical experiments, the optimization algorithms adopted are limited
memory BFGS method (Liu and Nocedal 1989) for norm || « || ., , which is an extension of the
conjugate gradient method. And for norm || « ||,, the optimization algorithm is the trust re-
gion method (Yuan 1990),

3.2.1 The prediction error of the initial observation O

For two different norms | X|,= « xi+ yo+ z2 and | X], = max{|x, |, [¥o], |20 |}

and T= 20, 30 time steps, we obtained the upper bounds of the prediction error of the initial
observation O, the conditional nonlinear optimally growing perturbations (CNOGPs) and the
maximum evolution rates of CNOGPs numerically. It is found that for initial observational
error bound | X, < é and | X|| . < 3, 6€[0.08,4.0], there are two CNOGPs for T= 20 time
steps respectively, which are only differ by the signs of the x and y components and corre-
spond to the same maximum growing rate 4, . It is clear from the symmetry of Lorenz model
that if (x, y, z) is a CNOGP, (— x, — y, z) is also a CNOGP. Our numerical results do verify
this, The results for 7= 20 with error bound || X|, < 6 and || X] ., < J are shown in Tables 5

and 6, where E, is the upper bound of prediction error, X; = (x4, Vo5, Zos ) i one of the two
CNOGPs respectively. For simplicity, the results of another CNOGP is not shown here,

B

Table5. E,, 4, and X; for T= 20 with||X|,<

B 0.08 0.8 1.6 2.4 3.2 4.0
E, 0.2828 2.8272 5.6501 8.4644 11.2658 14.0502
I 3.5349 3.5340 35313 35268 3.5206 35126
X 6.2549 x 1072 0.6254 1.2503 1.8743 2.4967 31171
Yos 4.9876 X107 0.4986 0.9967 1.4936 1.9887 2.4812
Zgs ~1.2695x 107 | —1.4073x 107 | =5.6623 x 10 -0.1277 —0.2274 -0.3561

Table6. E,, A, and X; for T= 20 with | X} , < §

o 0.08 0.8 1.6 2.4 3.2 4.0
E, 0.3607 3.6833 7.4995 11.3888 15.2860 19.1216
As 4.5097 4.6041 4.6871 47453 47769 4.7804
Xo5 ~0.0800 —0.800 -1.6000 —2.4000 —3.2000 —-4.0000
Yo —0.0800 —0.800 —1.6000 —2.4000 —-3.2000 —4.0000
Zgy -0.0800 —0.800 —1.6000 —2.4000 —3.2000 —4.0000
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Similar to the case of T= 20, there exist two symmetrical CNOGPs for T= 30 with
| X, < 0 and || X|,, < & respectively. Tables 7 and 8 show the results of one of the two
CNOGPs for initial observational error bounds || X|| , < § and | X|| ,, < § respectively.

Table7. E,, 4; and X; for T= 30 with || X|, < é

F; 0.08 0.8 1.6 2.4 3.2 4.0
E, 0.5048 5.0408 10.0394 14.9548 19,7485 24,3850
As 6.3097 6.3010 6.2746 6.2312 6.1714 6.0963
Xos 6.3015 x 1072 0.6300 1.2587 1.8851 2.5078 3.1251
Vos 49286 x 107 0.4927 0.9843 1.4736 1.9595 2.4406
Zos —2.0179x107* | —2.0518 x 1072 | —8.2388 x 10° ~0.1863 —0.3338 —0.5265
Table8. E,, A; and X; for T= 30 with | X], <

B 0.08 0.8 1.6 2.4 3.2 4.0
E, 0.6458 6.5926 13.2358 19.5124 25.0001 29.3198
As 8.0735 8.2407 8.2724 8.1302 7.8126 7.3299
Xos —0.0800 —0.800 -1.6000 —2.4000 —3.2000 —4.0000
Vs —0.0800 -0.800 -1.6000 —2.4000 -3.2000 —4.0000
Zow —0.0800 -0.800 -1.6000 —2.4000 —3.2000 —4,0000

Fig. 3 is X, for T= 30 with || X|, < J. Fig. 4is 4; for T= 30 with || X| , < 6 and || X| ,,
< 4. Fig.5is E, forT=30 with | X|,< é and [ X]| , < J.

3.2.2 The prediction error of the initial observations C| and C,

We have pointed out that if (x(z), y(¢), z(¢)) is a solution of (3.1), (— x(¢), — y(1), z(¢)) is
a solution of (3.1) too. Since C, and C, only differ by the signs of their x and y components,
we derived that the CNOGPs of the initial observations C, and C, only differ by the signs of
their x and y components for the same prediction error bound. For simplicity, in the follow-
ing we only consider the case of initial observation C ,

It is different from the case of initial observation O for initial observation C, there ex-
ists a CNOGP for T=50, 80 time steps respectively. Table 9 is the upper bounds of the
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Fig. 3. X; for 7= 30 withnorm|| fl, incaseofini- Fig. 4, A; for T= 30 withnorm| ||, and| [, in

tial observation O. case of initial observation O.
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Fig. 5. E, forT= 30 withnorm{ ||, and| |, incase of initial observation O.

prediction error £, , the CNOGP X,; and the maximum evolution rate of the CNOGP 4; for
time steps 7= 50 with initial observational error bound || X]| , < . Table 10 is for 7= 80’s.

Table9. £, , 1; and X, for T= 50 with | X|, < ¢

é 0.08 0.8 1.6 24 3.2 4.0
E, 0.09983 1.1043 2.0669 3.1625 43057 5.5012
As 1.2478 1.2697 1.2918 1.3177 1.3455 1.3753
Xg5 —0.00121 0.0038 0.0445 0.1241 0.2439 0.4044
Vos 0.0605 0.6229 1.2838 1.9815 27133 3.4755
Zgs 0.0523 0.5023 0.9538 1.3484 1.6789 1.9384

For initial observational error bound || X} ,, < &, §€[0.08,4.0], there is also a CNOGP for
T= 50,80 time steps respectively. The details are shown in Tables 11 and 12,

Fig. 6 is X;z for T= 80 with || X],< 5. Fig. 7 is A; for T= 80 with || X],<J
and | X| , < 4. Fig. 8 is E, for T= 80 with || X|,< d and | X] ,, < 4.

Table10. E,, A, and X; for T= 80 with[|X|,< §

[ 0.08 0.8 1.6 24 3.2 4.0
E, 0.1105 1.1125 2.2402 3.3824 4.5390 5.7098
As 1.3817 1.3906 1.4001 1.4093 1.4184 1.4275
X(;,- —0.02809 —0.2786 —0.5552 —0.8347 -1.1219 —1.4275
Vos -0.07489 —0.7492 —1.4978 —2.3441° —2.9869 —3.7252
Z(;; -0.00179 —0.03292 -0.09157 —0.1652 —0.2445 -0.3214

Table11. E,, 1; and X; for T= 50 with|| X , < &

I 0.08 0.8 1.6 24 32 4.0
E, 0.1170 1.1619 2.3048 3.4334 4.5565 5.6836
As 1.4627 1.4523 1.4404 1.4306 1.4239 1.4208
x(;- —0.0800 —0.8000 —1.6000 —2.4000 —3.,2000 —4.0000
y 0; —0.0800 —0.8000 —1.6000 —2.4000 —3.2000 —4.0000
Z(;; 0.0800 0.8000 1.6000 2.4000 3.2000 4.0000
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Table12. E,, 1; and X; for 7= 80 with|/ X] , < §

4 0.08 0.8 1.6 2.4 3.2 4.0

E, 0.1157 1.1548 2.2939 3.4109 4.5083 5.5916

As 1.4468 1.4435 1.4337 1.4252 1.4088 1.3979

Xos 0.0800 0.8000 1.6000 2.4000 3.2000 4.0000

Vos —0.0800 —0.8000 -1.6000 —2.4000 -3.2000 —4.0000

z(;s —0.0800 —0.8000 —1.6000 —2.4000 —-3.2000 —4.0000

3.3 The third predictability problem of Lorenz system

Suppose that the parameters in the system are accurate, M, O~ and X are the same as
above. For given allowing prediction error ¢, at prediction time 7T, it follows from (2.10) that
the lower bound of the allowing maximum initial error is

Brax = max{d] | M, (0" + X)— M (0" )< elXI<d) .

(3.6)
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For different prediction time 7 and allowing maximum prediction errors ¢, we adopt the
following algorithms to obtain the corresponding allowing maximum initial error bound &
For a first guess 6, we have its corresponding cube in case of
norm || + |, (the circumscribed cube in case of | « |, ). Similar to the algorithms in section
3.1, we use cube mesh of side 0.01, and integrate the model from each grid point. If this J sat-

isfies | M, (0 " + X)— M, (0 ")l < ¢ we try another § larger than this one. Step by step, we

for norms || « ||, and { * ||, .

finally find the maximum one d . .

The details of the result for initial observation O * are shown in Tables 13—16,

Table 13. Em“‘ for initial observation O with norm |l « |,

B\ 20 40 60 80
0.6 0.1719 0.0597 0.0209 0.0066
1.0 0.2846 0.0901 0.0348 0.0099
1.4 0.3963 0.1270 0.0487 0.0154
1.8 0.5092 0.1638 0.0575 0.0198
22 0.6225 0.1977 0.0665 0.0242
Table 14. Emax for initial observation O with norm}} « ||
o 20 40 60 30
0.6 0.1328 0.0418 0.0132 0.0042
1.0 0.2207 0.0695 0.0221 0.0071
1.4 0.3081 0.0973 0.0312 0.0098
1.8 0.3953 0.1250 0.0397 0.0126
2.2 0.4819 0.1528 0.0486 0.0154
Table 15. §_,, for initial observation €, with norm| « ||,
V. 60 460 860 1260
0.4 0.3483 0.1418 0.0830 0.0421
0.8 0.6889 0.2832 0.1652 0.0794
1.2 1.0240 0.4239 0.2460 0.1090
1.6 1.3527 0.5641 0.3254 0.1401
2.0 1.6739 0.7036 0.4017 0.1794
Table 16. Emax for initial observation C; with norm| « ||,
O 60 460 860 1260
0.4 0.2501 0.1499 0.0611 0.0469
0.8 0.499% 0.2259 0.1201 0.0806
1.2 0.7499 0.3493 0.1768 0.0999
1.6 0.9499 0.4499 0.2314 0.1398
20 1.1999 0.5499 0.2951 0.149%
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Tables 13—16 show that for given prediction error, the lower bound of the allowing max-
imum initial error decreases with the prediction time 7. On the other hand, for given predic-
tion time T, the lower bound of the allowing maximum initial error increases with the predic-
tion error.

Fig. 9 is 8,,, for the initial observation O with norm || + ||,. Fig. 10 is 3 ,,,, for initial
observation C, withnorm| « | ,.

In this section we only use Lorenz model as an example to show how to deal with these
three predictability problems formulated in this paper. For much complicated models em-
ployed in the numerical weather and climate prediction, the involved numerical optimization
problems are challenging, we will discuss this in detail in the following section.

4. Discussion and conclusion

In this paper, we classified the study of predictability of numerical weather and climate
prediction into three problems related to maximum prediction time, the maximum prediction
error, and the maximum admissible errors of the initial values and of the parameters in the
model. All of these problems can be reduced to nonlinear optimization problems, Because the
true values of the state of the atmosphere and of the parameters in the model cannot be ob-
tained, so it is impossible to obtain the exact information of the predictability. By utilizing the
information about the errors of the initial state and the parameters, we proved that the effec-
tive estimation of the predictability can be obtained by solving the corresponding nonlinear
optimization problems, As an example, we employed the well-known Lorenz model to inves-
tigate these three problems.

Although almost forty years has passed since the pioneer work of Lorenz on the
predictability problem (Lorenz 1965a, b), the above three problems for the numerical weather
and climate prediction have not been well—studied yet. The main reason could be as follows.

Firstly, the operational numerical weather prediction models at present are of high di-
mensions, e.g. the dimension of the model used in ECMWF in 1998 is 3 X 10", To solve the
above nonlinear optimization problems with such high dimension, the capacity of the existing
computers (memory, speed, etc.) could not serve our purpose.

Secondly, the models governing the motions of the atmosphere are nonlinear ones, the
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parameterization of the physical processes, the formulation of the external forcing, and the
constraint conditions related to the errors of the observations and the parameters in the mod-
el are complicated too. All these make the suggested three problems become nonlinear,
optimization problems with complex constraint conditions. In some cases, the problems are
non—smooth one too. At present, computational mathematicians are still attacking them in
order to give effective and ripe algorithms,

Thirdly, facing the above—mentioned difficulties, the scientists in atmospheric sciences
considered that these problems could only be investigated in the future. Consequently there
are little theoretical research on them. For example, the problems such as how to obtain the
information on the errors of the observations and the parameters in the models, how to
choose proper norms to measure the errors, and how to determine the maximum admissible
errors, etc., have not been wellstudied yet.

With the development of the economy and society, meteorologists are required to pro-
vide the numerical weather and climate prediction with higher accuracy. Quantifying
predictability will be one of the main subjects in the study of the uncertainties of the forecast,
Although the above three problems of the predictability concerning the estimations of the
uncertainties are reduced to nonlinear optimization problems with high dimensions, it is ex-
pected that the rapid development of computers will serve our purpose in the future not too
far, and it is time to devote our energies to this study.
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