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[1] We used the approach of conditional nonlinear optimal perturbation (CNOP) to
investigate optimal precursors for El Nino–Southern Oscillation (ENSO) events with a
theoretical coupled ocean-atmosphere model. The CNOPs of the annual cycle of the
coupled system were computed for different time periods, and the derived CNOPs were
compared with the linear singular vectors (LSVs). The results show the existence of
the CNOPs of annual cycle and local CNOPs. These CNOPs have the robust optimal
patterns, which have opposite polarities in sea surface temperature and thermocline depth
anomalies in the eastern equatorial Pacific. We demonstrate that the CNOP (local CNOP),
rather than LSVs, has the highest likelihood to develop into an El Nino (La Nina) event;
thus the CNOPs (local CNOPs) can be regarded as the optimal precursors for El Nino
(La Nina) events. These optimal precursors agrees qualitatively well with the observations
of period of 1980–2002. On the basis of the nonlinear oscillation described by the model,
the physical mechanism of the optimal precursors for ENSO is discussed. INDEX TERMS:
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1. Introduction

[2] Numerous models have been developed to simulate
and to predict the El Nino–Southern Oscillation (ENSO).
These models range from simple analytical [Wang and
Fang, 1996; Jin, 1997a, 1997b; Wang et al., 1999] and
intermediate coupled numerical models [Cane et al., 1986;
Zebiak and Cane, 1987; Kleeman, 1993; Kleeman et al.,
1995] to sophisticated coupled general circulation models
(GCMs), which have simulated ENSO with varying degrees
of success, but notable discrepancies between models and
reality remain [Latif et al., 1994; Xue et al., 1997a]. Recent
works have shown that it is of great significance for
improving ENSO predictability to find out the precursors
for ENSO events [Palmer et al., 1994; Moore and Kleeman,
1996; Xue et al., 1997a, 1997b; Thompson, 1998; Samelson
and Tziperman, 2001].
[3] Theoretical studies have been devoted to searching for

ENSO precursors. It is realized that the eigenmodes could
not be the fastest growing perturbation in non-self-adjoint
system. Xue et al. [1994], using a series of linear Markov
models as an approximation to the Zebiak and Cane [1987]
model, computed linear singular vectors (LSVs) and found

that the fastest growing singular vector evolved into an
ENSO event. Palmer et al. [1994] presented the fastest
growing singular vector that evolves into a structure resem-
bling ENSO with fast growth rate during April. Moore and
Kleeman [1996] further investigated nonlinear evolution of
singular vectors by use of the intermediate coupled model of
Kleeman [1993]. It is demonstrated that their singular vectors
have the potential to develop into ENSO events. Their SVs
have the same structures as those described by Xue et al.
[1994] and Palmer et al. [1994]. Recently, Thompson [1998]
also used LSV to study the characteristic precursor to an
ENSO warm event and found a number of interesting
characteristics of the precursors lead to ENSO events.
[4] The aforementioned studies have attempted using the

fastest growing perturbation to identify optimal growing
initial patterns, which will be entitled the optimal precursors
for ENSO in this paper. Note that the linear theory of SV
assumes that the evolution of the initial perturbation can be
described approximately by the tangent linear model
(TLM). Owing to the absent of nonlinearity, TLM cannot
always describe the maximum growth of the initial pertur-
bation in nonlinear models [Oortwijin and Barkmeijier,
1995; Mu, 2000; Mu and Wang, 2001; Mu et al., 2003].
Thus it remains questionable as to whether the LSV can be
regarded as the optimal precursors when nonlinearity
appears in the ENSO model.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, D23105, doi:10.1029/2004JD004756, 2004

Copyright 2004 by the American Geophysical Union.
0148-0227/04/2004JD004756

D23105 1 of 12



[5] To reveal nonlinear characteristics of the coupled
atmosphere and ocean system, Mu et al. [2003] proposed
a novel concept, the conditional nonlinear optimal pertur-
bation (CNOP). Their results suggest that CNOP is
potentially more suitable than LSV in studying ENSO
predictability. This paper reports a primary study on
searching for ENSO precursor using CNOP. We will
briefly review the ideas about CNOP in the next section
and introduce the conceptual model for ENSO in
section 3, then use them to investigate the optimal
precursors for ENSO.

2. Conditional Nonlinear Optimal Perturbation

[6] We write the evolution equations for the state vector
w, which may include surface current, thermocline depth,
and sea surface temperature, etc., into an initial value
problem:

@w

@t
þ F wð Þ ¼ 0;

wjt¼0¼ w0;

8><
>: in W� 0; T½ � ð1Þ

where w(x, t) = (w1(x, t), w2(x, t), . . ., wn(x, t)), F a
nonlinear operator, and w0 the initial state, (x, t) 2 W � [0,
T], W a domain in Rn, and T < +1, x = (x1, x2, . . ., xn), t the
time. Assume that the dynamical system equations and the
initial state are known exactly, the future state can be
determined by integrating equation (1) with the appropriate
initial condition. The solution to equation (1) for the state
vector w at time t is given by

w x; tð Þ ¼ Mt w0ð Þ: ð2Þ

Here, Mt is the propagator, which, as described by (2),
‘‘propagates’’ the initial value to the time t in the future. Let
U(x, t) and U(x, t) + u(x, t) be the solutions of problem (1)
with initial value U0 and U0 + u0 respectively, where u0 is
the initial perturbation. We have

U tð Þ ¼ Mt U0ð Þ; U tð Þ þ u tð Þ ¼ Mt U0 þ u0ð Þ: ð3Þ

So u(t) describes the evolution of the initial perturbation u0.
[7] For a chosen norm k � k, an initial perturbation u0d is

called CNOP under the constraint ku0k 
 d, if and only if

J u0dð Þ ¼ max
ku0k
d

J u0ð Þ;

where

J u0ð Þ ¼ G Mt U0 þ u0ð Þ �Mt U0ð Þð Þ; ð4Þ

where G(�) measures the evolution of the perturbation.
Particularly it can be a norm (k � k) of the state variable or
the module of a variable (j � j). We emphasize that CNOP
u0d is the global maximum of J(u0) in the ball ku0k 
 d. In
case that there exists local maximum u0d

l of J(u0), we call u0d
l

a local CNOP.
[8] CNOP can be computed by using sequential quadratic

programming (SQP) solver, which is used to solve the
nonlinear minimization problems with equality or/and in-
equality constraint condition [Powell, 1982]. A brief de-
scription of the algorithms is given in Appendix A.

[9] CNOP is characterized by maximum nonlinear
growth of initial perturbations satisfying a constraint con-
dition [Mu et al., 2003; Mu and Duan, 2003]. Mu and Wang
[2001] and Mu et al. [2003] demonstrated that the initial
perturbation of maximum nonlinear evolution at time t
played a more important role than other initial perturbations
including LSV. Since then, these ideas have been applied to
the studies of ENSO predictability, in an attempt to explore
the effect of nonlinearity on error growth for ENSO [Mu
and Duan, 2003]. These ideas have also been used to
investigate the nonlinear growth of instability of thermoha-
line circulation of ocean by Mu et al. [2004].

3. ENSO Model

[10] The model we used in this paper is the theoretical
coupled ocean-atmosphere model of Wang and Fang [1996]
(hereinafter referred to as WF96), which has been used to
investigate the predictability of ENSO by Mu and Duan
[2003]. The ocean component of this coupled model is
distilled from the ocean component of Zebiak and Cane
[1987] model. The ocean model consists of two time-
dependent equations that describe variations of thermocline
depth anomaly and SST anomaly, respectively. The equation
for thermocline depth anomaly was derived from linear
shallow water dynamics of the upper ocean under long
wave approximation; it describes adjustment of the thermo-
cline by oceanic Kelvin and Rossby wave propagations
and by local wind stress forcing. The SST equation was
derived from the thermodynamic equation of surface layer,
which describes how the thermocline fluction affects SST
through nonlinear vertical advection of temperature by
wind-induced upwelling. The atmosphere component is a
steady version of the Lindzen and Nigam [1987] model, in
which SST gradients drive the surface wind variations.
Anomalies in SST cause anomalous winds, which not only
generate oceanic waves to alter thermocline depth but also
drive anomalous currents and upwelling, both in turn affect-
ing SST. Of note is that the winds affect SST in nonlinear
fashion through changing both the thermocline depth (thus
the vertical gradient of temperature) and the strength of the
upwelling. The steady atmosphere acts as a medium to
connect SST and thermocline variations, enabling the SST
and thermocline depth equations forming a closed set of
governing equations for the coupled tropical ocean and
atmosphere, the ENSO system as termed in WF96.
[11] To the lowest order approximation, the spatial struc-

ture of ENSO is characterized by an equatorial symmetric,
east-west standing oscillation. Such a seesaw-like structure
has been observed in SST, sea level pressure [Trenberth and
Shea, 1987], and thermocline fields [Wang et al., 1999].
This basin-scale spatial structure provides a physical basis
for further simplifying the ENSO system. By assuming
equatorial trapped meridional structure and east-west see-
saw structure, application of Lorenz’s [1963] method of
spectral truncation yields a nonlinear dynamic system
model which consists of two ordinary differential equations
that describe temporal variations of the SST and thermocline
anomalies in the equatorial eastern Pacific. This dynamic
system model captures the essence of the nonlinear coupling
between the surface layer thermodynamics and the upper
ocean dynamics. The two dimensionless equations describ-
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ing, respectively, the evolutions of the anomalous SST T
and the anomalous thermocline depth h in the equatorial
eastern Pacific are:

dT

dt
¼ a1T � a2hþ

ffiffiffi
2

3

r
T T � a3hð Þ;

dh

dt
¼ b 2h� Tð Þ;

8>><
>>:

ð5Þ

where

a1 ¼ �T 0
z þ �T 0

x � �u01 � a0
s

�� 		
xE
;

a2 ¼ mþ d1ð Þ�T 0
x

		
xE
;

a3 ¼ mþ d1

b ¼ 2a
p 1� 3a2ð Þ :

The linear terms in the T-Eq describe the vertical advection
by the anomalous upwelling of the mean SST (�T 0

zT) and the
vertical advection by the mean upwelling of the anomalous
SST (�T 0

x(T � mh)), and the linear damping (�a0
sT). The

linear coefficients are determined by the basic state. The
coefficients a1 and a2 involve basic state parameters �T 0

x and
�T 0
z, which characterize, respectively, the mean temperature

difference between the eastern and western basins and
between the surface and subsurface water. Note that, these
basic state parameters can be time-dependent, reflecting the
climatological annual cycle of the basic state. The quadratic
term in T-Eq comes from the nonlinear temperature
advection by anomalous upwelling of the anomalous
temperature. This term represents the nonlinear coupling
between surface layer thermodynamics and upper ocean
dynamics (thermocline depth fluctuations). The linear terms
in h-Eq depict respectively, the effect of equatorial waves on
thermocline adjustment (2b(1)h) and the effect of the wind
forcing (�b(1)T). Two nondimensional coupling parameters
are presented in this model. One is the air-sea coupling
coefficient, a = (L0

Ly
)2, where L0 is the oceanic Rossby radius

of deformation and Ly is the characteristic meridional length
scale of the coupled ENSO mode. For L0 = 300 km, when
Ly varies from 1000 km to 400 km, a increases from 0.09 to
0.5625. Another coupling parameter is m =

m�H1

q , which
measures the degree of coupling between thermocline
fluctuation and SST. The meanings and typical values of
the other parameters are listed in Table 1 of WF96 and
Wang et al. [1999].
[12] The steady solution O(0, 0) represents the climato-

logical mean equilibrium state or an ENSO ‘‘transitional’’
state (including annul cycle) in which both SST and the
depth of thermocline are normal. In this paper, the model is
integrated by fourth-order Runge-Kutta scheme with dt =
0.01, which represents one day.

4. Optimal Precursors for ENSO Events:
Conditional Nonlinear Optimal Perturbations of
Annual Cycle

[13] WF96 model is an anomalous model about the
annual cycle. Let u0 be an initial anomaly. To describe the

maximum evolution of SSTA at prediction time t, follow-
ing (4) in section 2, we define the nonlinear optimization
problem:

J u0dð Þ ¼ max
ku0k
d

T tð Þj j; ð6Þ

where T(t) is the evolution of model SSTA and obtained by
integrating WF96 model from 0 to t. By solving this
optimization problem, the optimal initial perturbation
satisfying the constraint condition ku0k 
 d, u0d, can be
found.
[14] In this paper, the norm ku0k =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2
0 þ h20

p
is

employed to define the constraint condition, where T0 and
h0 represent the nondimensional initial SST and thermocline
depth anomalies in the eastern tropical Pacific, respectively.
[15] For the time interval [0, t] with t ranging from 1 to

12 months, we respectively take January, February, � � �,
December as the initial time and calculate the CNOPs of
annual cycle O with constraint condition ku0k 
 d, d 2
[0.06, 0.30]. It is shown that for the annual cycle, regardless
of what the initial time is, there exist CNOP, u0d

g , and local
CNOP, u0d

l , at which the objective function J(u0) attains
local maximums in the phase space. These CNOPs and local
CNOPs are all on the boundary of the corresponding disc
ku0k 
 d, d 2 [0.06, 0.30]. For d = 0.24, the CNOP and local
CNOP with initial time being January and t = 12 are
respectively (�0.1373, 0.1968) and (0.1511, �0.1865),
for d = 0.30, they are (�0.0908, 0.2859) and (0.1821,
�0.2384). In addition, with t increasing from 1 to 12, the
CNOPs (local CNOPs) are always located in the II (IV)-
quadrant and have the robust pattern of negative (positive)
SST and positive (negative) thermocline depth anomalies
qualitatively. For example, for initial time being January
with t = 3, 6, 9, 12, the CNOPs with d = 0.24 are
respectively (�0.0099, 0.2398), (�0.03732, 0.2370),
(�0.0909, 0.2221), and (�0.1373, 0.1968), the
corresponding local CNOPs are (0.0190, �0.2392),
(0.0805, �0.2261), (0.1334, �0.1995), and (0.1511,
�0.1865).
[16] To compare CNOP (local CNOP) with LSV, we

investigate the distribution of CNOP (local CNOP) and
LSV in phase space. u0L = (�0.0218, 0.0206) is a LSV for
initial time being January and t = 12 and located in II-
quadrant, which is the fastest growing perturbation of the
TLM of WF96 model. To facilitate the discussion, we
define two scaled LSVs,

u
g
0L ¼

k u
g
0d k

k u0L k u0L; ul0L ¼ � k ul0d k
k u0L k u0L;

thus

k u
g
0L k¼k u

g
0d k¼ d; k ul0L k¼k ul0d k¼ d:

Figure 1 shows the u0d
g (u0d

l ) and u0L
g (u0L

l ) with initial time
being January for t = 12, where A and A0 correspond to the
u0d
g and u0L

g with d = 0.30, B and B0 to the u0d
l and u0L

l with
d = 0.30 respectively. It is easily demonstrated that for the
same value of d, when it is large, for instance, d = 0.24 or
0.30, u0d

g and u0d
l are respectively quite different from the

scaled LSVs, u0L
g and u0L

l . The LSVs, with d increasing from
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0.06 to 0.30, show themselves a beeline, while the CNOPs
and local CNOPs shape into a curve respectively. Conse-
quently the differences between CNOP (local CNOP) and
LSV become more and more considerable with the
increasing d.
[17] We further investigate the evolutions of CNOP and

LSV. Integrating the nonlinear model and TLM with
initial conditions u0d

g (u0L
g ) with the different values of

d, we respectively obtain the T components of the linear
and nonlinear evolutions of u0d

g (u0L
g ), denoted by udN

g and
udL
g (uLN

g and uLL
g ) respectively. The results demonstrate

that for the short time intervals, no matter what the initial
time is, there are only trivial differences between the linear
and nonlinear evolutions of the T component of CNOP,
and between those of LSVs respectively. However, for the
long time intervals and large values of d, they have
considerable differences respectively. Figure 2 plots udN

g

(udL
g ) and uLN

g (uLL
g ) with d = 0.24 and t = 12 for initial

time being January. It is shown that for udN
g , when the time

exceeds July (t � 7), its nonlinear evolution begins to
depart from the linear counterpart, and with the increasing
time this departure becomes more and more serious. The
investigation of the difference between the linear and
nonlinear evolutions of u0L

g also demonstrates the similar
results.
[18] Now we compare CNOP with LSV from another

perspective, that is, the nonlinear evolutions of LSVs and
CNOPs. For the CNOP of annual cycle, u0d

g and u0L
g with

initial time being January and t = 12, their nonlinear
evolutions of T component, udN

g and uLN
g with d = 0.24, are

also plotted in Figure 2. It is shown that, the udN
g is

significantly larger than uLN
g , which indicates that for the

initial perturbations in disk ku0k 
 d, CNOP is optimal
compared to the LSV under the condition that they are of
the same amplitude of norm. All these indicate that for the
long time intervals and large initial perturbations, the TLM
cannot be used to approximate nonlinear model to study
ENSO predictability. Correspondingly the linearity limits

the application of LSV theory to ENSO predictability
studies.
[19] For the model variable h, we also investigate the

evolutions (Figure 3). It is illustrated that at the end of the
optimization time interval, the nonlinear evolution of h of
the CNOP is not at maximum, which is even smaller than
that of the corresponding LSV. In fact, the derived CNOP
from (6) corresponds to the maximum of the objective
function J(u0d), which, however, only depicts the maximum
evolution of the model SSTA. Therefore it is reasonable that
the nonlinear evolution of h of the CNOP may not attain the
maximum.

Figure 1. The distribution of the CNOPs (local CNOPs)
and the corresponding LSVs with an annual cycle in phase
space, which are respectively denoted by u0d

g (u0d
l ) and

u0L
g (u0L

l ).

Figure 2. Nonlinear and linear evolutions of the model
variable T (SSTA) corresponding to CNOP and LSV of
annual cycle, respectively. udN

g
(uLN

g
) and udL

g
(uLL

g
): the

nonlinear and linear evolutions of SSTA of the CNOP (the
LSV), u0d

g
(u0L

g
).

Figure 3. Nonlinear and linear evolutions of the model
variable h (thermocline depth anomaly) corresponding to
CNOP and LSV of annual cycle, respectively. udN

g � h
(uLN

g � h) and udL
g � h (uLL

g � h): the h nonlinear and linear
evolutions of the CNOP (the LSV) in Figure 2.
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[20] Now we turn to investigate the local CNOP of annual
cycle, u0d

l . Let udN
l and udL

l be the nonlinear and linear
evolutions of the SSTA of u0d

l , uLN
l and uLL

l be those of the
corresponding scaled LSV, u0L

l . For the different initial time
and t, we explore the differences between the evolutions of
the local CNOP and the scaled LSVwith different values of d
and find that there exist small differences between udN

l and
uLN
l , and between udL

l and uLL
l . However, for the linear and

nonlinear evolutions of local CNOP, and those of the scaled
LSV, when the time intervals are long and the initial
perturbations are large, they have considerable differences.
Figure 4 describe the differences of the SSTA evolutions of
u0d
l and u0L

l with d = 0.24 and t = 12 for initial time being
January. It is illustrated that when t � 7, the linear evolution
of u0d

l (u0L
l ) gradually departs from its nonlinear one with the

increasing time. In addition, at the end of time interval, the
difference become aggressively considerable. For the SSTA
nonlinear evolutions of u0d

l and u0L
l , they have not obvious

difference at t = 12. The nonlinear evolution of SSTA
corresponding to local CNOP is only a little larger than that
of the scaled LSV, which can be easily understood by the
local optimality of local CNOP. We also investigate the
evolutions of the component h of local CNOP (Figure 5).
The results demonstrate that the local CNOP derived from
(6) only results in the locally maximum nonlinear evolution
of SSTA of the initial perturbations, not in that of h.
[21] To further verify the optimality of CNOP for all the

initial perturbations in the corresponding disk ku0k 
 d, we
perform the following numerical experiments for u0d

g with
d = 0.24. A large samples of initial perturbations in the disk
ku0k 
 0.24, are chosen to find out the optimal initial
pattern. We consider the circumscribed square of the disk
and take square mesh of side 0.1. For any mesh points
outside the disk, we connect this point with the center of the
disk, and take the intersection point of this line with the
bound of the disk, then integrate the model from each of
these intersection points and the mesh points inside the disk.

In calculation, we have tried several different meshes, and
have found that there are similar results. So we use 0.1 in
the calculation to show the results (Figure 6). It is demon-
strated that the evolutions of model SSTA with other initial
perturbations in the disk ku0k 
 0.24 (including LSV with
the same amplitude of norm) are always less than that of
SSTA with CNOP, which indicates that CNOP, rather than
LSV, is indeed the nonlinear optimal initial perturbation
with constraint condition ku0k 
 d. For u0d

l , Figure 6

Figure 4. Nonlinear and linear evolutions of the model
variable T corresponding to local CNOP and LSVof annual
cycle, respectively. udN

l and udL
l (uLN

l and uLL
l ): the SSTA

nonlinear and linear evolutions of the local CNOP (the
LSV), u0d

l (u0L
l ).

Figure 5. Nonlinear and linear evolutions of the model
variable h corresponding to local CNOP and LSVof annual
cycle, respectively. udN

l � h and udL
l � h (uLN

l � h and uLL
l �

h): the accompanying h nonlinear and linear evolutions of
the local CNOP (the LSV) in Figure 4.

Figure 6. Nonlinear evolutions of the initial perturbations
satisfying the constraint condition ku0k 
 0.24. The dotted
lines represent the nonlinear evolutions of the initial
perturbations in disk ku0k 
 0.24; udN

g
and uLN

g
signifies

the nonlinear evolutions of the CNOP, u0d
g

with d = 0.24,
and the corresponding scaled LSV, u0L

g
with d = 0.24; and

udN
l and uLN

l denote those of the local CNOP, u0d
l , and the

corresponding scaled LSV, u0L
l , respectively.
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demonstrates that its SSTA evolution has the opposite
tendency and is reliably the local nonlinear optimal initial
perturbation for the constraint condition.
[22] The other values of d, d 2 [0.06, 0.30], are also

chosen to perform the above experiments, which also
verified the optimality of CNOPs obtained by nonlinear
optimization algorithm. For simplicity, only the case of d =
0.24 with initial time January and t = 12 is shown.
[23] In the following, we examine the physical character-

istics CNOP and local CNOP bear in ENSO model. From
Figure 2, we note that the CNOP of annual cycle, u0d

g with
d = 0.24, evolves into the positive SSTA nonlinearly, which
takes a striking resemblance to the development of El Nino.
In fact, it acts as a precursors for El Nino event in WF96
model. Although the corresponding scaled LSV, u0L

g with d =
0.24, also develops into an El Nino (Figure 2), the ampli-
tude is considerably smaller than that of u0d

g . The results
have shown that LSV is not the fastest growing perturbation
in nonlinear WF96 model and cannot be considered to be
the optimal precursor for ENSO. The CNOP of annual
cycle, u0d

g , due to its maximum evolution of model SSTA
at prediction time t, acts as the conditional optimal initial
perturbation of the nonlinear model. In addition, conse-
quently it becomes the initial pattern that evolve into El
Nino event most potentially. The intensity of the El Nino
events caused by CNOPs depends on the amplitude of
initial perturbations. The extensive numerical experiments
demonstrate that the larger the CNOP, the stronger the
El Nino event. It is readily derived that the sufficiently
small CNOP cannot evolve into an El Nino. Therefore the
optimal precursor of El Nino is the CNOP of annual cycle
with reasonably large amplitude. For the local CNOP of
annual cycle, the analysis demonstrates that u0d

l with mod-
erately large value of d is the optimal precursor of La Nina
(Figure 4).
[24] In numerical experiments, we also investigate the

cases of the initial time being April, July, October. The

results also support the above conclusion. For simplicity, the
details are not illustrated here.
[25] From the above discussion it is easily demonstrated

that the CNOPs, u0d
g , and the local CNOPs, u0d

l , are the
initial patterns that evolve into El Nino and La Nina events
most probably, respectively. However, it is noticed that due
to the property of the initial perturbations u0d

g and u0d
l being

optimal and locally optimal respectively, the corresponding
El Nino event could be stronger than La Nina event under
the condition that the two initial perturbations are of the
same amplitude of the norm, which is easily derived from
the definition of the objective function. To compare them
with the situation of LSVs, we perform the following
numerical experiments.
[26] Taking the CNOP, u0d

g , and the local CNOP, u0d
l , with

d = 0.24 as initial values, integrating the nonlinear model
starting from January respectively, we obtain the evolutions
of SSTA corresponding to CNOP and local CNOP, where
SSTA evolution of CNOP, udN

g , is shown in Figure 7. For the
T evolution of u0d

l , we multiply it by �1 and obtain the
evolution of (�T), vdN

l , which is also shown in Figure 7.
Comparisons between udN

g and vdN
l demonstrate that El Nino

is obviously stronger than La Nina on the condition that
their initial patterns are of same amplitude, which supports
the above view and is quite consistent with the fact of the
ocean data analysis. However, when we use the two scaled
LSVs, u0L

g and u0L
l , to explore the intensity of El Nino and

La Nina, since they correspond to the same singular value,
the corresponding El Nino and La Nina events in TLM are
of the equal amplitude, or say that the El Nino and La Nina
are symmetry about the normal state of SSTA. That is to
say, if we denote vLL

l as the linear evolution of �T of u0L
l ,

uLL
g = vLL

l holds. Besides, the accompanying h evolutions are
shown in Figure 8. The results also demonstrate the non-
linear asymmetry of El Nino and La Nina events, and the
linear symmetry of them. Therefore the linear theory of
singular vector cannot reveal the asymmetry of El Nino and

Figure 7. Comparisons between El Nino and La Nina
events. udN

g
(uLL

g
): the SSTA nonlinear (linear) evolutions of

the CNOP (the corresponding LSV), and vdN
l (vLL

l ): the
SSTA nonlinear (linear) evolutions of �T of the local
CNOP (the corresponding LSV).

Figure 8. The h nonlinear (linear) evolutions of the
corresponding initial perturbations in Figure 7, which
are respectively denoted as udN

g � h (uLL
g � h) and vdN

l �
h (vLL

l � h).
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La Nina. The reason is that the El Nino-La Nina asymmetry
is caused by a nonlinear feedback of WF96 model.

5. Data Analysis

[27] The theoretical results obtained in section 4 suggest
that initially negative (positive) SST and positive (negative)
thermocline depth anomalies over the eastern tropical
Pacific will most likely evolve into an El Nino (a La Nina)
event. To verify these theoretical results, in the following
we analyze available ocean data over the equatorial eastern
Pacific (5�S–5�N, 150�–90�W) region to examine the
initial patterns of realistic ENSO events.
[28] According to the theoretical model, in the present

study we primarily focuses on investigating the evolutions of
monthly mean SSTA, and thermocline depth anomaly, which
is estimated by using the equatorial 20�C isotherm depth
anomaly (h20A) as a surrogate. In this paper, SSTA over
Nino-3 region are obtained by the observed SST, and h20A
are derived from NCEP reanalysis equatorial h20 data.
[29] During the period of 1980–2002, four major El Niño

and three La Niña events occurred, which are illustrated in
Figures 9 and 10 respectively. By examining each ENSO
event, it is found that before the occurrence of El Nino (La
Niña) event, the preferred transition of thermocline depth is
about 4 months ahead of SST transition (see the time period
marked by rectangles plotted in Figures 9 and 10), that is to
say, the positive (negative) h20A always appear earlier than
positive (negative) SSTA before the onset of El Nino (La
Nino), which agrees qualitatively with the optimal El Nino
(La Nina) precursor obtained in this paper, the pattern with
negative (positive) SSTA and positive (negative) h20A.

6. Physical Mechanism Responsible for the
Growth of the Optimal Precursory Disturbances

[30] It has been shown that for the long time interval and
large amplitudes of initial perturbations (value of d is large),
the nonlinear evolutions of SSTA of CNOPs (local CNOPs)
are larger (smaller) than their linear counterparts. For the
same magnitude of the given norm, the SSTA nonlinear
evolutions of CNOPs with large magnitude of norm are
substantially larger than those of the scaled LSVs. For the
local CNOPs, since they are locally optimal for the constraint
condition, their nonlinear evolutions of model SSTA are very
close to those of the corresponding scaled LSVs. Conse-
quently, CNOP of annual cycle acts as the optimal precursor
of El Nino, and local CNOP serves as that of La Nina event.
Further investigation demonstrates that the optimal precursor
of El Nino (La Nina), for different initial times, is charac-
terized by negative (positive) SSTA and positive (negative)
thermocline depth anomaly. In the following, we will discuss
the physical mechanism, which is responsible for the growth
of the optimal precursory disturbance.
[31] The ENSO model (5) has two characteristic lines

given by dT/dt = 0 and dh/dt = 0, which are, respectively,

h ¼
a1 �

ffiffi
2
3

q
T

� 

T

a2 þ a3

ffiffi
2
3

q
T

¼ f Tð Þ; or; T ¼ f�1 hð Þ

h ¼ 1

2
T :

The two characteristic lines partition the phase plane or the
SST-h oscillation cycle into four phases (Figure 11) [Wang
and Fang, 1996]. Figure 11 sketches an ENSO cycle in the
phase plane. We rewrite the first equation of (5),

dT

dt
¼ a1T � a2hþ h T ; hð Þ; ð7Þ

where h(T, h) =
ffiffi
2
3

q
T(T � a3h). h(T, h) represents the

nonlinear term of the model and emphasizes the nonlinear
effect of the temperature advection to SST-h oscillation.
Let h(T, h) = 0, and we obtain the straight line T � a3h =
0. To facilitate the discussion, it is also plotted in
Figure 11.
[32] It follows from the above sections that the nonlinear

evolution of the model SSTA of CNOP, for the long time
interval and large amplitude of initial perturbations, is
significantly larger than the corresponding linear counter-
part. This suggests that the nonlinearity plays an important
role in model ENSO. The explanation is as follows. For the
nonlinear evolution of CNOP with annual cycle, when the
component T approaches to be positive and gradually
becomes large, the model SSTA, T, will satisfy a3h < T <
f �1(h) (h > 0) during the period of a in Figure 11, and
further makes the nonlinear term h(T, h) > 0. From (7), it is
readily derived that the larger the nonlinear term, the larger
the positive SSTA. This is a positive feedback between
positive SSTA and the nonlinear term. If the nonlinear term
is omitted in (7), the dT

dt
is dominated by the linear part. The

positive SSTA will become smaller than that with positive
nonlinear term. Therefore the nonlinear term increases the
instability of El Nino event, which therefore results in the
aggressively large nonlinear evolution of CNOP compared
to the linear one. As for the nonlinear evolution of local
CNOP, which evolves into a La Nina when the amplitude of
perturbation is large, the developing negative T and h will
make f �1(h) < T < a3h (h < 0) during the period of b in
Figure 11. At this time the nonlinear term h(T, h) is still
larger than zero. It can be shown that the positive nonlinear
term suppresses the negative SSTA being more negative,
which forms a negative feedback between positive nonlin-
ear term and SSTA during La Nina event. As a result, the
nonlinear evolution of local CNOP is considerably smaller
than its linear evolution, where the nonlinear term h(T, h),
increases the stability of La Nina event. Hence if the TLM
is used to investigate El Nino (La Nina), it cannot capture
the effect of nonlinearity to its evolution. That is to say, the
linearized model of WF96 model does not reflect
the nonlinear effect of the temperature advection to SST-
h oscillation.
[33] The above discussion illustrates that h(T, h) enhances

the instability of El Nino events, and suppresses that of La
Nina events. This indicates that for the same amplitude of
initial perturbations, an El Nino is stronger than a La Nina
event. Thus this explains the asymmetry of El Nino and La
Nina in WF96 model. This also shed lights on the fact why
the two scaled LSVs, u0L

g and u0L
l , in the absence of

nonlinearity, evolve respectively into an El Nino and a La
Nina event with the same amplitude in the TLM. Therefore
CNOP unravel the effect of nonlinearity to its evolutions
and is superior over to the LSVs in exploring the optimal
precursor for ENSO.
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Figure 9. Evolution of anomalous SST (SSTA) and the depth of the equatorial 20�C isotherm (h20A)
during four ENSO warm events: (a) 1982/1983; (b) 1986/1987; (c) 1991/1992; (d) 1997/1998. The
SSTA, monthly mean averaged over the Nino-3 region (5S–5N, 90–160W), is obtained by the
observational SST, and equatorial h20A is derived from NCEP ocean reanalysis data, which is monthly
mean averaged along equatorial eastern Pacific (90–160W). The rectangles mark the time period when
the pattern with negative SSTA and positive h20A emerges.
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Figure 10. Evolution of anomalous SST (SSTA) and the depth of the equatorial 20�C isotherm (h20A)
during three ENSO cold events: (a) 1984/1985, (b) 1988/1989, and (c) 1999/2000. The SSTA and
equatorial h20A are obtained as in Figure 9. The rectangles mark the time periods when the pattern with
positive SSTA and negative h20A arises.
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[34] The robust optimal precursors of ENSO have
simple physical interpretation. In the model ENSO cycle
(Figure 11), T and h evolve into the phase II (IV), in which
the variation in h and SST have an opposite tendency. The
phase leading of the thermocline displacement to SST
variation provides an negative feedback that turns the
coupled system from warming to cooling or vice versa.
When an ENSO phase turns from warming (cooling) to
cooling (warming), the pattern of the positive (negative)
SSTA and negative (positive) thermocline depth anomaly
emerges robustly, which acts as an optimal precursor of
ENSO.
[35] How do the optimal precursors obtained in this study

evolve into ENSO events? To answer this question, we take
El Niño event as an example to explain the growth mech-
anism of the optimal precursors. During the period of a cold
event, when the cooling in the eastern tropical Pacific is
sufficiently strong, two negative feedback processes act
against the cooling. First, the cooling decreases anomalous
vertical temperature difference across the mixed layer base,
which offsets the contribution of anomalous upwelling to
SST cooling. Second, when the cooling is sufficiently strong
so that T < 2h (nondimensional) and dh

dt
> 0 (b > 0) (see

equation (1)), the thermocline depth in the equatorial eastern
Pacific will increase and take the lead in transiting to
positive anomaly. Then the sinking thermocline would
amplify the temperature of the water upwelled into the
mixed layer and suppress cooling, so that the SST over
the eastern tropical Pacific region increases gradually.
Consequently a positive SST anomaly occur in the eastern
equatorial Pacific. This will reduce the zonal SST gradient
along the equator and weaken the climatological mean
easterlies to the west of the SST anomaly. The weakening
of the easterlies reduces equatorward Ekman convergence in
the surface layer and suppresses the mean equatorial up-
welling, leading to further warming in the eastern Pacific.
This positive feedback was first visualized by Bjerknes
[1969] and demonstrated by previous coupled stability
analysis [Philander et al., 1984; Hirst, 1986; Neelin,
1991]. This instability causes the rapid warming of SST

in eastern tropical Pacific, then further results in an El Niño
event.

7. Summary and Discussion

[36] The properties of the optimal growth for a theoretical
coupled model for ENSO with an annual cycle were
explored by the approach of conditional nonlinear optimal
perturbation (CNOP). The results demonstrate that the
CNOPs of annual cycle are quite different from the linear
singular vectors (LSVs) in phase space for the long optimi-
zation time intervals and large amplitude of perturbations.
In addition, their nonlinear and linear evolutions also remain
significant differences. Owing to the presence of nonline-
arity of WF96 model, the nonlinear evolutions of CNOPs
(local CNOPs) are notably larger (smaller) than their linear
counterparts for the large initial perturbations. Further
studies find out that the CNOPs (local CNOPs) of annual
cycle are of the robust pattern with negative (positive) SST
and positive (negative) thermocline depth anomalies qual-
itatively. These patterns tend to evolve into El Nino (La
Nina) event most potentially, which can therefore be
regarded as the optimal precursor of El Nino (La Nina).
This theoretical result is verified against the 22-year NCEP
reanalysis data qualitatively.
[37] The robust optimal precursors of ENSO are

explained physically. It is shown that the optimal precursors
occur in the ENSO transition phase variation robustly, in
which the thermocline depth displacement takes a phase
lead to SST variation and provides a negative feedback that
turns the coupled system from one state to another state. In
addition, the nonlinear behaviors of them reveal the non-
linear effect of temperature advection to ENSO oscillation.
Practically, the nonlinear temperature advection enhances
the instability of El Nino, and suppresses that of La Nina,
which results in the asymmetry of them about the SSTA
normal state.
[38] Li and Mu [2002] also explored the precursor of

ENSO by the method of data analysis. Their attentions were
mainly paid to the western equatorial Pacific (warm pool).
The results of them argued that before the onset of El Nino,
the initial positive ocean temperature anomaly First arose in
the subsurface layer of warm pool about one year in
advance. In this paper, due to the limitation of the model
adopted, the interest has to be confined to the equatorial
eastern Pacific. As a result, the situation of the warm pool
before ENSO event cannot be investigated theoretically. To
further understand the ENSO cycle, the more complicated
model should be adopted to disclose theoretically the ENSO
precursor from the equatorial western Pacific.
[39] In view of the simplicity of the model, the results of

this study are qualitatively indicative. The numerical experi-
ments performed here are of exploratory nature. However,
we are greatly encouraged by these results. It is expected
that for a more realistic model, there will be more signif-
icant findings by using the approach of CNOP, which are
the works in the future.

Appendix A

[40] The constrained nonlinear optimization problem con-
sidered in this paper, after discretization and proper trans-

Figure 11. Schematic diagram showing the mechanism of
the nonlinear oscillation of WF96 model.
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formation of the objective function, can be written in the
form

min
x2Rn

F xð Þ; ðA1Þ

subject to

h xð Þ 
 0;

where h ¼ h1; h2; � � � ; hnð Þ> is a vector of nonlinear
functions. It is assumed that at any point x the gradient
rF(x) of the objective function and the Jacobian J(x) =
@ h1;h2;���;hnð Þ
@ x1;x2;���;xnð Þ

of constraint function can be computed. Then the

CNOP can be obtained by the following steps.
[41] Step 0. Set iteration i = 0, a solution guess x0, a

Hessian Lagrangian estimate H0 = I, which is the identity
matrix, and an initial given value of Lagrange multiplier, l0.
[42] Step 1. Compute di by the following quadratic

programme (QP) subproblem,

min
d

rF xi
� �� �>

di
�

þ 1

2
di>Hidi
� �

;

subject to

h xi
� �

þ rh xi
� �� �>

di 
 0;

where di is a direction of descent for the objective function.
Then using di, we determine the Lagrange multiplier li+1

corresponding to the QP subproblem [Barclay et al., 1997].
[43] Step 2. Check convergence. If xi, li+1 satisfy krL(xi,

li+1)k 
 �, whererL =rF +rhl, and � is a given positive
number to guarantee the convergence, then xi is the point at
which the objective F(x) is minimal. Otherwise, let xi+1 =
xi + adi, a 
 1, and then go to step 3.
[44] Step 3. Update Hessian Lagrangian. Let si = xi+1 �

xi, and yi = rL(xi+1, li+1) � rL(xi, li). The new Hessian
Lagrangian, Hi+1, can be obtained by calculating

Hiþ1 ¼ Hi � Hisisi>Hi>

si>Hisi
þ yiyi>

yi>si
:

Then go to step 1.
[45] In SQP algorithm, the definition of the QP Hessian

Lagrangian Hk is crucial to the success of an SQP solver. In
the work of Gill et al. [1997], Hk is a limited-memory quasi-
Newton approximation to G = r2L, the Hessian of the
modified Lagarangian. Another possibility is to define Hk as
a positive-definite matrix related to a finite difference
approximation to G [Barclay et al., 1997]. In this paper,
we adopt the former one.
[46] The SQP algorithms have proved reliable and effi-

cient for constraint nonlinear optimization problems. Many
ready-made solvers, for example, NLPQL [Schittkowski,
1985], NPSOL [Gill et al., 1986], etc., have been developed
to solve the general purpose constraint nonlinear optimiza-
tion problems. Therefore, in this paper, we directly use the
above solvers to compute their minima.
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