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Abstract  Conditional nonlinear optimal perturbation 
(CNOP) is the initial perturbation that has the largest 
nonlinear evolution at prediction time for initial perturba-
tions satisfying certain physical constraint condition. It does 
not only represent the optimal precursor of certain weather 
or climate event, but also stand for the initial error which has 
largest effect on the prediction uncertainties at the prediction 
time. In sensitivity and stability analyses of fluid motion, 
CNOP also describes the most unstable (or most sensitive) 
mode. CNOP has been used to estimate the upper bound of 
the prediction error. These physical characteristics of CNOP 
are examined by applying respectively them to ENSO pre-
dictability studies and ocean’s thermohaline circulation 
(THC) sensitivity analysis. In ENSO predictability studies, 
CNOP, rather than linear singular vector (LSV), represents 
the initial patterns that evolve into ENSO events most poten-
tially, i.e. the optimal precursors for ENSO events. When 
initial perturbation is considered to be the initial error of 
ENSO, CNOP plays the role of the initial error that has larg-
est effect on the prediction of ENSO. CNOP also derives the 
upper bound of prediction error of ENSO events. In the THC 
sensitivity and stability studies, by calculating the CNOP 
(most unstable perturbation) of THC, it is found that there is 
an asymmetric nonlinear response of ocean’s THC to the 
finite amplitude perturbations. Finally, attention is paid to 
the feasibility of CNOP in more complicated model. It is 
shown that in a model with higher dimensions, CNOP can be 
computed successfully. The corresponding optimization algo-
rithm is also shown to be efficient. 
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One of the key problems in the studies of weather and 
climate predictability is the determination of the fast-
est-growing perturbation. To serve this purpose, Lorenz[1] 
introduced the concepts of linear singular vector (LSV) 
and linear singular value (LSVA), which were then widely 
used to find the fastest-growing perturbations of atmos-
pheric flows. Recently, its applications have been ex-
tended to explore climate variability and predictability. 

Thompson[2] investigated the nonlinear dynamic behavior 
of LSVs of a coupled ENSO model and regarded them as 
the precursors of ENSO events. Ref. [3] employed LSV to 
study the error growth of a coupled ENSO model, in an 
attempt to explore the predictability of ENSO. Also 
Tziperman and Ioannou[4] applied this approach to finding 
a possible physical mechanism of transient amplification 
of initial perturbations to the thermohaline circulation. 
Obviously, LSV has become a widely used tool in the 
studies of weather and climate predictability. 

Note that the linear theory of singular vector (SV) is 
established on the basis that the evolution of initial per-
turbation can be described approximately by the tangent 
linear model (TLM), which, due to the absence of nonlin-
earity, cannot describe the nonlinear evolution of the finite 
amplitude initial perturbations. Consequently LSV may 
not represent the fastest-growing perturbation of the 
nonlinear system. The motions of atmospheric and oce-
anic flows are generally nonlinear. Especially, El 
Niño-South- ern Oscillation (ENSO) shows itself highly 
irregularity and nonlinearity. The thermohaline circulation 
of ocean which has multiple equilibriums and internal 
oscillatory modes responds nonlinearly to the finite am-
plitude perturbation on a particular steady state. Even the 
simple two-dimensional quasi-geotropic model is also a 
nonlinear model. The nonlinearity limits the applications 
of LSV to these weather and climate systems. 

Realizing the limitations of LSV, refs. [5, 6] modified 
the iterative procedure of the LSVs and LSVAs to con-
struct the fastest-growing initial perturbations for the 
nonlinear regime. Recently, to study the effect of nonlin-
earity, Mu[7] employed nonlinear model directly and pro-
posed a novel concept of nonlinear singular vector (NSV) 
and nonlinear singular value (NSVA). With a 
two-dimensional quasi-geotropic model, Mu and Wang[8] 
further studied the NSV and NSVA of the different basic 
flows. The results demonstrate that some types of basic 
flows have local fastest-growing perturbations, at which 
the objective function attains the local maximum. This 
phenomenon does not occur in LSV approach. The local 
fastest growing perturbations are usually of larger norms 
than the first NSV (nonlinear optimal perturbation). Al-
though the growth rates of the local fastest growing per-
turbations are smaller than the first NSVA, their nonlinear 
evolution at the end of the time interval is considerably 
greater than that of the first NSV. In this case, the local 
fastest growing perturbations could play a more important 
role than the global fastest growing perturbation (first 
NSV) in the study of the predictability. Obviously, to 
study the predictability problem, we should first find out 
all local fastest growing perturbations, then investigate 
their impacts on the predictability. But this is inconvenient 
in application. Besides, the local fastest-growing perturba-
tions with large amplitude of norm could be physically 
unreasonable.  
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To overcome the limitation of NSV and NSVA and to 
describe the initial perturbation that has the largest 
nonlinear evolution, ref. [9] introduced the concept of 
conditional nonlinear optimal perturbation (CNOP). 
CNOP is characterized by maximum nonlinear evolution 
of initial perturbations satisfying constraint conditions[9,10]. 
If the evolution of CNOP is measured by the growth rate 
of initial perturbation, CNOP may not be the fastest 
growing perturbation. But its nonlinear evolution de-
scribes the maximum evolution of initial perturbations at 
prediction time. Thus CNOP may play a more important 
role in the studies of predictability. In this sense, the au-
thors regard this kind of initial perturbation as the con-
straint optimal perturbation of nonlinear system, i.e. 
CNOP. Mu and Duan[10,11] used CNOP to study the opti-
mal precursor for ENSO and the effect of nonlinearity on 
error growth for ENSO. The CNOP was also used to in-
vestigate the nonlinear growth of instability of ocean’s 
thermohaline circulation[12]. For a more realistic 
two-dimensional barotropic model, the CNOP was ex-
plored by Mu and Zhang1). All these contributions to 
CNOP suggest that CNOP is a useful tool in predictability 
and stability or sensitivity studies. It is expected that 
CNOP can be widely applied in the studies of weather and 
climate predictability. 

1  Conditional nonlinear optimal perturbation 

We put the evolution equations for the state vector w  
into an initial value problem: 

0 0

( ) 0,

,t

w
F w

t
w w=

∂ + = ∂
 =

  [ ]in    0, ,TΩ×         (1) 

where w(x, t)=(w1(x, t), w2(x, t), , wn(x, t)), x=(x1, x2 , 
xn), t is time, and (x, t)∈Ω [0, T], Ω a domain in Rn, T< 
+ . The operator F in eq. (1) is a nonlinear differential 
operator, and w0 is the initial state. Assume that the dy-
namical system equations and the initial state are known 
exactly, and the future state can be determined by inte-
grating eq. (2) with the appropriate initial condition. The 
solution to eq. (1) for the state vector w at time τ is given 
by 

w(x, τ)=Mτ(w0),                (2) 
where, Mτ is the discrete propagator and stands for the 
numerical model. Let U(x, t) and U(x, t)+u(x, t) be the 
solutions of eq. (1) with initial value U0 and U0+u0, re-
spectively, where u0 is an initial perturbation. We have  

U(τ)=Mτ(U0), U(τ)+u(τ)=Mτ(U0+u0).      (3) 
So u(τ) describes the evolution of the initial perturbation 
u0. 

For a chosen norm || ||, an initial perturbation u0δ is 
called CNOP under the constraint ||u0|| δ, if and only if 

0
0 0( ) max ( ),

u
J u J uδ

δ
=  

where 
J(u0)=G(Mτ(U0+u0)−Mτ(U0)),          (4) 

where G( ) measures the evolution of the perturbation. 
Particularly it can be a norm (|| ||)of the state variables or 
the module (| |) of a variable. For the constraint condition, 
in this paper, it is simply expressed as belonging to a ball 
with the chosen norm. Obviously, we can also investigate 
the situation that the initial perturbations belong to another 
kind of functional set. Furthermore, the constraint condi-
tion could be some physical laws that initial perturbation 
should satisfy. 

We emphasize that CNOP 0u δ  is the global maximum 

of J(u0) in the ball ||u0|| δ. It should be pointed out that 
the maximum value of J(u0) could be attained at several 
points in phase space. That is to say, the objective function 
may have several maximum. Another possibility is that 

there exists local maximum 0
lu δ  of J(u0). In this case, we 

call 0
lu δ a local CNOP. CNOP and local CNOP can be 

computed by using sequential quadratic programming 
(SQP) solver[13], which is used to solve the nonlinear 
minimization problems with equality or/and inequality 
constraint condition. The detailed description of the algo-
rithm is referred to ref. [14]. 

Now we turn to the physical meanings of CNOP. Firstly, 
if initial perturbations are expressed as initial anomalies of 
an anomaly model for climate, the corresponding CNOP, 
due to its optimality, plays the role of the optimal precur-
sor of certain climate or weather event, which is most 
likely to develop into this weather or climate event[9,11]. 
Secondly, when CNOP is considered to be an initial per-
turbation superposed on a weather or climate event, for 
example, a realistic El Niño event, it acts as the initial 
error which has the largest effect on the uncertainty at the 
prediction time[9,10]. Thirdly, in the studies of sensitivity 
and stability analysis, since CNOP characterizes the 
maximum nonlinear evolution at prediction time for the 
initial perturbations satisfying the given constraint, it de-
scribes the most unstable (or most sensitive) initial per-
turbation of the nonlinear model with the given finite time 
period[12]. Finally, CNOP can also be used to estimate the 
upper bound of the prediction error. Assuming U0 is an 

initial observation, and t
TU  is the true value of the state, 

then the prediction error is 

( )0
t
TE M U Uτ= − , 

where Mτ represents the propagator of a forecast model. If 
the propagator Mτ is considered to be exact, the prediction 
error E at prediction time T is only caused by the initial 

                     
 1) Mu Mu, Zhang Zhiyue, Conditional nonlinear optimal perturbation of a barotropic model, submitted to J. Atmos. Sci. 
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observational error. Since the true value of the state cannot 
be obtained exactly, it is impossible to get the exact value 
of E (prediction error). But if we know some information 
on the errors of the initial observation, e.g., the initial ob-
servation error in terms of a norm is less than δ, we can 
estimate the prediction error, 

( ) ( )
0

0 0 0max ,u
u

E M U u M Uτ τ
δ

= + −  

where u0 is the initial perturbation superposed on initial 
observation U0 and satisfies the constraint condition ||u0||

δ. Obviously, the inequality E Eu holds. Eu gives the 
upper bound of the prediction error[15], whose expression 
is the same as J(u0δ) in eq. (4) with U0 being initial obser-
vation. Thus, CNOP gives the upper bound of the predic-
tion error caused by initial uncertainties satisfying the 
constraint condition. 

To explore these physical meanings CNOP bears, sci-
entists have applied CNOP to the studies of ENSO pre-
dictability and THC sensitivity and stability analyses, at-
tempting to show them in the concrete climate predictabil-
ity studies. 

2  Applications of CNOP to ENSO predictability 

Recent studies have shown that it is of great signifi-
cance for improving ENSO predictability to find out the 
precursors for ENSO events and to explore the mechanism 
of the initial error growth[2,12,16―18]. 

Some studies have attempted using the fastest growing 
perturbation to identify optimal growing initial patterns 
for ENSO, that is, the optimal precursors[2,19], and to study  

the initial error evolution of ENSO[3]. However, LSV is 
always associated with the sufficiently small initial per-
turbations. And its corresponding TLM cannot always 
describe the maximum growth of the initial perturbation in  
nonlinear models. Thus, it remains questionable as to 
whether the LSV can be used to investigate the predict-
ability of ENSO when nonlinearity plays a large effect in 
ENSO model. 

Considering this point, ref. [11] employed CNOP to 
study the optimal precursors for ENSO events, attempting 
to reveal the effect of nonlinearity on the optimal ENSO 
initial patterns. In the study, a simple coupled 
ocean-atmosphere model of ref. [20] (hereafter called 
WF96 model) is adopted. To describe the maximum evo-
lution of SSTA at prediction time, the authors took the 
maximum value of the SSTA module as the objective 
function, which is used to yield CNOP. The authors first 
computed the CNOPs of annual cycle. The results demon-
strate that for the annual cycle, regardless of what the ini-
tial time is, there exist CNOP and local CNOP. These 
CNOPs (local CNOPs) are all on the boundary of the con-
straint disc and have robustly the patterns of negative 
(positive) SSTA and positive (negative) thermocline depth 
anomaly qualitatively. Fig.1 illustrates the distribution of 
them. It is shown that for the same amplitude initial per-
turbation, when it is large, CNOP and local CNOP are 
respectively quite different from the LSVs under the con-
dition that they are of the same amplitude of norm. And 
the LSVs, with the amplitude increasing, show themselves

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  The distribution of CNOPs (local CNOPs) and corresponding LSVs with an annual cycle in phase space, denoted by 0( )g l

Lu uδ δ  and 

0 0( )g l
L Lu u . 
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a beeline, while the CNOPs and local CNOPs shape into a 
curve respectively. Then the differences between CNOP 
(local CNOP) and LSV become more and more consider-
able with the increasing initial perturbation. 

In ref. [11], the authors also investigated the evolution 
of CNOP (local CNOP) and LSV of annual cycle. The 
results show that for the short optimization time interval, 
no matter what the initial time is, there are only trivial 
differences between the linear and nonlinear evolution of 
the SSTA component of the CNOP (local CNOP), and 
between those of LSVs respectively. For the long time 
interval and large amplitude of initial perturbations, they 
have considerable differences respectively. Fig. 2 illus-
trates the differences between the linear and nonlinear 
evolution of CNOP (local CNOP). Besides, the differ-
ences of the nonlinear evolution of LSVs and CNOPs (lo-
cal CNOP) were explored. For the same and large ampli-
tude initial perturbation, the nonlinear SSTA evolution of 
CNOP is significantly larger than that of LSV (Fig. 2), 
which indicates that CNOP is optimal compared to LSV 
under the condition that they are of the same amplitude of 
norm. Further analysis demonstrates that the CNOP of 
annual cycle evolves into the positive sea surface tem-
perature anomaly (SSTA) nonlinearly, which takes a 
striking resemblance to the development of El Ni�o (Fig. 
2). In fact, it acts as a precursor for El Niño event in 
WF96 model. Although the corresponding LSV also de-
velops into an El Niño, the intensity is considerably 
weaker than that of CNOP (see Fig. 2). In this sense, they 
regarded CNOP as the optimal precursor for El Niño. For 
the local CNOP of annual cycle, its nonlinear SSTA evo-
lution is only a little larger than that of the corresponding 
scaled LSV. This phenomenon can be explained by the 
locality of the local CNOP. As to the physical characteris-
tic local CNOP bears, by investigating the nonlinear evo-  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  Nonlinear and linear evolutions of the nondimensional model 
variable T(SSTA) corresponding to CNOP and LSV of annual cycle, 

respectively. ( )g g
N LNu uδ  and ( )g g

L LLu uδ : the nonlinear and linear evolu-

tions of SSTA of the CNOP (the LSV). 
 

lution, it is found that local CNOP acts as the optimal 
precursor of La Nina event in WF96 model. 

Finally, the authors compared the intensity of El Niño 
with that of La Nina (Fig. 3). They found that when they 
used LSV to study the intensity of ENSO events, the cor-
responding El Niño and La Nina events in TLM are of the 
equal amplitude, or say, the El Niño and La Nina events 
are symmetric about climatological mean state. While in 
CNOP approach, the El Niño event is obviously stronger 
than the La Nina event under the condition that the initial 
CNOP and local CNOP are of the same amplitude, which 
is quite consistent with the fact of the ocean data analysis. 
Clearly, the linear theory of singular vector cannot reveal 
the nonlinear asymmetry of El Niño and La Nina. The 
reason is that the El Niño-La Nina asymmetry is caused 
by a nonlinear feedback of WF96 model. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Comparisons between El Niño and La Nina events. ( ) :g l
N LLu uδ  

SSTA nonlinear (linear) evolution of CNOP (corresponding LSV), 

( )l l
N LLv vδ : SSTA nonlinear (linear) evolution of −T (negative anomaly of 

SST) of local CNOP (corresponding LSV). 
 

The above theoretical results are quite consistent with 
the 22-year NCEP reanalysis data qualitatively[11]. 

In the estimation of error growth, refs. [9, 10] used 
CNOP to investigate the error growth of ENSO events, 
especially to investigate the “spring predictability barrier 
(SPB)” problem of ENSO, where the SPB refers to the 
significant drop off in prediction skills for most of the 
ENSO models during the Northern Hemisphere spring-
time[21]. By computing the CNOPs of El Niño and La Nina 
events of the WF96 model, it is found that the error 
growth is enhanced for El Niño events and suppressed for 
La Nina events in spring. To further investigate what 
causes the SPB for ENSO in the model, the CNOPs of El 
Niño and La Nina events with strong and weak coupled 
ocean-atmosphere instability were also computed. The 
results suggest that the strong-coupled ocean-atmosphere 
instability during spring of the year is one of the causes of 
the SPB. Sensitivity experiments show that the SPB of 
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ENSO events has the tendency for phase-locking to the 
spring of the annual cycle. 

In the application of CNOP to establishing the upper 
bound of prediction error, the authors chose the CNOP of 
annual cycle in WF96 model as the initial observation, 
which evolves into an ENSO event, to compute the CNOP 
(the optimal initial observation error). By investigating the 
evolution of the CNOP of the initial observation, the au-
thors derived the upper bound of the prediction error of 
ENSO event. The results demonstrate that El Niño is less 
predictable than La Nina in the model. This result sup-
ports the one of ref. [19] and further emphasizes the effect 
of nonlinearity.  

The above studies demonstrate the three physical char-
acteristics of CNOP in predictability studies, i.e. the opti-
mal precursor of certain climate event, the initial error 
which has largest effect on the predictability, and the one 
that establishes the upper bound of prediction error. All 
these emphasize that CNOP is superior to LSV in the 
study of predictability, and also more physically applica-
ble than LSV. 

3 The sensitivity and stability of the ocean’s circulation 
to finite amplitude perturbations 

The sensitivity of the ocean’s THC is one of the fun-
damental issues on climate variability. Knutti and 
Stocker[22] investigated the sensitivity of the THC to per-
turbations. It is found that this sensitivity severely limits 
the predictability of the future THC when approaching the 
bifurcation point. Although LSV can be used to investi-
gate the stability and sensitivity of the flow, in the sensi-
tivity studies of THC, it cannot provide critical boundaries 
on finite amplitude stability of the thermohaline ocean 
circulation[12]. Furthermore, for a THC system with multi-
ple equilibriums and internal oscillatory modes, as the 
introduction has mentioned, its response to a finite ampli-
tude perturbation is a difficult nonlinear problem.  

To reveal the effect of nonlinearity on the sensitivity of 
THC, ref. [12] employed CNOP to determine the nonlin-
ear stability boundaries of linearly stable thermohaline 
flow states. With a simple two-box model of the thermo-
haline circulation[23], they also extended the results on 
linear optimal growth properties of perturbations on both 
thermal-and salinity-dominated thermohaline flows to the 
nonlinear case. It is shown that there is an asymmetric 
nonlinear response of these flows with respect to the sign 
of the finite amplitude freshwater perturbation. 

In ref. [12], the authors computed the CNOPs of a 
two-box model of the thermohaline circulation respec-
tively with thermal-dominated stable steady states (TH 
states) and salinity-dominated stable steady states (SA 
states), and studied the nonlinear developments of the fi-
nite amplitude perturbations of these two stable steady 
states for fixed model parameters. 

In the case of TH states, the extensive numerical results 

were performed. It is demonstrated that the initial saline 
and freshwater perturbations of ocean’s THC behave 
symmetrically with respect to the sign of steady flow rate 
in the corresponding TLM (Fig. 4). In the nonlinear 
two-box model adopted in ref. [12], due to the effect of 
nonlinearity, the nonlinear evolution of the freshwater 
(saline) perturbations leads to a larger (smaller) amplitude 
than their linear counterparts (Fig. 4). This indicates that 
the perturbations which move the system towards a bifur-
cation point will be more amplified through nonlinear 
mechanisms than perturbations that move the system away 
from a bifurcation point. The authors also demonstrate 
that for the CNOPs with small amplitude, the flow rate 
recovers to the steady climate state rapidly. For the 
CNOPs with large initial amplitude, it takes much longer 
for the thermohaline circulation to recover to steady state. 
This is different from the results of a linear analysis, 
which demonstrates that CNOP can reveal the effect of 
nonlinearity on THC. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The asymmetric nonlinear response of THC to initial freshwater 
perturbation. The solid line (dash line) represents the nonlinear (linear) 
evolution J of the initial perturbation. The nonlinearity makes the evolu-
tion of the freshwater perturbation much faster. 

 
In the case of SA states, there are similar results to TH 

state, that is, the CNOP always moves the system towards 
the bifurcation point. The SA states have an asymmetry in 
the nonlinear amplification of disturbances, with larger 
amplitude for initial salinity perturbation. 

In ref. [12], the authors also paid attention to the sensi-
tivity of THC along the bifurcation diagram. The authors 
firstly calculated the CNOPs of the model along the TH 
branch for the continuous changing model parameters. 
The results demonstrate that with the parameter changing, 
the linearly stable TH state gradually transits from 
nonlinearly stable state to nonlinearly unstable state (Fig. 
5). It is easily derived that for each value of the model 
parameter, a critical value of initial perturbation amplitude 
must exist such that the TH state is nonlinearly unstable, 
which induces a transition of the system from the TH state 

  万方数据



 
 
 
 

REVIEWS 

2406 Chinese Science Bulletin  Vol. 50  No. 21  November  2005 

to the SA state (Fig. 6). This critical value acts as the 
nonlinearly stability threshold of the thermohaline flows. 
For the SA branch, there are similar results. For simplicity, 
the detailed description is not shown. 

This work extends the CNOP approach to the field of 
sensitivity and nonlinear stability analyses. The results 
suggest that CNOP approach is a quite useful tool in sen-
sitivity and nonlinear stability analyses and can be used to 
explore the effect of nonlinearity on the sensitivity and 
stability of perturbation. In the above THC sensitivity and 
stability studies, the CNOP represents the most unstable or 
the most sensitive initial perturbation of THC. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The nonlinear evolutions J of CNOPs with different values of 
freshwater parameter η2. When η2=1.046, the finite amplitude perturba-
tion causes the transition of climate equilibrium. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6.  The critical value δc (of initial perturbation amplitude) for 
nonlinear stability versus the parameter controlling the thermally-driven 
state near the saddle-node bifurcation at η2=1.05. 
                      

1) See footnote 1) on page 2402. 
 

4  Conditional nonlinear optimal perturbation of a 
barotropic model 

Sections 3 and 4 have clarified the differences between 
CNOP and LSV by introducing the applications of CNOP 
to ENSO predictability and THC sensitivity analyses. All 
the work is for simple models of ordinary differential 
equations with two variables. It is necessary to investigate 
the feasibility of CNOP to a more general model of partial 
differential equations. Mu and Zhang1) have conducted 
extensive numerical experiments to study CNOP of a two 
dimensional quasi-geotropic model with dimensions 512  
by using SQP algorithm. The results demonstrate the dif-
ferences between CNOP and LSV from the two aspects of 
initial pattern and the evolutions. These two aspects em-
phasize that the significant differences between CNOP 
and LSV are aimed at the large initial perturbations and 
the long optimization time interval. Practically, these 
differences characterize the nonlinearity of the 
two-dimensional quasi-geotropic model, that is to say, 
CNOP reveals the effect of nonlinearity on perturbation 
growth. 

All these above results suggest that CNOP approach is 
feasible in a realistic two dimensional barotropic model 
with dimensions 512. The SQP method is also shown to 
be successful. This encourages the application of CNOP to 
much higher dimensional problems. 

5  Discussion 

In this paper, CNOP and its applications are reviewed. 
Attention is firstly paid to the discussion of the physical 
meaning CNOP bears, then to the applications of CNOP 
to simple models and further to a higher-dimension model. 
The results demonstrate that CNOP can reveal the effect 
of nonlinearity on the predictability, sensitivity, and stabil-
ity of weather and climate and shows itself the potential 
applicability in the predictability studies. 

It is clear from these studies that in the applications of 
CNOP, the corresponding cost function and the constraint 
condition are of central importance, whose constructions 
should be capable of attacking the core of the physical 
problems that will be addressed. In this paper, to describe 
the evolution of the initial anomaly or the initial error, we 
choose the nonlinear evolution of the perturbation meas-
ured by the norm of the state variables or the module of a 
state variable as the cost function. The results show its 
effectiveness. As to the constraint condition, the authors 
simply express it as belonging to a ball with the chosen 
norm. Obviously, we can also investigate the situation that 
initial perturbations belong to another kind of functional 
set. Furthermore, the constraint condition could be some 
physical law that initial perturbations should satisfy. 

Besides, in calculating CNOP numerically, an efficient 
nonlinear optimization algorithm is also essential, which
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guarantees the success of gaining CNOP. In this paper, for 
the low- and higher- dimensional model (maximal dimen-
sions is 512), the sequential quadratic programme (SQP) 
algorithm has been shown to be successful for the 
nonlinearly constraint optimization problem. For the real-
istic forecast models, since they describe the intricate 
nonlinear atmospheric or oceanic flow motions and often 
have quite high dimensions, the involved nonlinear opti-
mization problems could be difficult. Even in some cases, 
the problems are non-smooth. Nevertheless, encouraged 
by the work and the successful implemental of 
4-dimensional variational data assimilations, it is expected 
that CNOP can be applied to more realistic models with 
quite high dimensions. Inspired by the applications of lin-
ear singular vectors (LSVs) to the ensemble forecast at 
European Center for Medium-Range Weather Forecasts 
(ECMWF), it is also worthwhile to investigate the appli-
cability of CNOP in the ensemble forecast and to see if 
CNOP can serve the purpose of constructing the initial 
fields of ensemble forecast. 
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