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Abstract

The nonlinear optimization methods are applied to quantify the predictability of a numerical model for El Nino-Southern

Oscillation (ENSO). We establish a lower bound of maximum predictability time for the model ENSO events (i.e. ENSO events in the

numerical model), an upper bound of maximum prediction error, and a lower bound of maximum allowable initial error, all of which po-

tentially quantify the predictability of model ENSO. Numerical results reveal the phenomenon of “spring predictability barrier” (SPB) for

ENSO event and support the previous views on SPB. Additionally, we also explore the differences between the linear evolution of predic-

tion error and its nonlinear counterpart. The results demonstrate the limitation of linear estimation of prediction error. All these above re-

sults suggest that the nonlinear optimization method is one of the useful tools of quantifying the predictability of the numerical model for

ENSO.
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Since Loren/ ! suggested that chaotic dynamics

may set bounds on the predictability of weather and
climate, assessing the predictability of various pro-
cesses in the atmosphere-ocean system has been the
objective of numerous studies. These studies are gen-
erally classified as the first kind and the second kind
of predictability studies'?). The former addresses how
the initial uncertainties affect the prediction results,
and the latter discusses mainly the effect of model er-
ror on the prediction uncertainties.

These two types of predictability studies play a
dominant role in improving the forecast skill of nu-
merical weather and climate prediction[3 1. However,
with the development of human society and economy
people require to know the answers to questions such
as how long we can predict the weather and climate
with a predetermined accuracy, and with a given pre-
diction time, how large the prediction error is,» and so
on"*). With this in mind» Mu et al.t, considering
the collective effects of initial error and model error on
prediction results, classified the predictability of nu-
merical weather and climate prediction into three pre-
dictability problems, which were then applied to
quantify the predictability of Lorenz’ model''). The
results suggest that this classification of predictability
problems provides a useful tool for estimating quanti-

tatively the maximum predictable time of a model,
the maximum prediction error and the maximum al-
lowable initial errors.

El Nino-Southern Oscillation ( ENSO) shows
chaotic behaviors, the irregularity of which seriously
limits the predictability of ENSO®). To improve the
predictability of ENSO, during the last 20 years or
so» scientists performed many researches”” 1. How-
ever; the question of how to quantify ENSO pre-
dictability remains the subject of debatel 3107, Many
scientists adopted linear singular vector (LSV) to
quantify ENSO predictabilityB], while it holds only
under the condition that the initial perturbations are
sufficiently small and the prediction time intervals are
very short. Therefore, LSV cannot describe the ef-
fect of nonlinearity on ENSO predictabilityhl*13 1

Three types of predictability problems proposed
by Mu et al. b3
ear model itself without any linear approximation,

are established on the basis of nonlin-

which can therefore reveal the effect of nonlinearity of
predictability. In this paper, we investigate the appli-
cations of these three types of predictability problems
to quantifying ENSO predictability. With a theoreti-
cal model, we derive the nonlinear optimization prob-
lems of estimating the lower bounds of the maximum
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predictable time and the maximum allowable initial
errors for ENSO events, and the upper bound of the
maximum prediction error. By solving these prob-
lems, it is expected that we can reveal the law of er-
ror evolution for ENSO events, and explore the dif-
ference between the linear and nonlinear estimations
of the prediction error.

1 Model equations

With a number of simplifications, Wang and
Fangt® Chereafter referred to as WF96) distilled an
intermediate coupled ocean-atmosphere model'”! to a
theoretical model. This theoretical model consists of
only two time-dependent equations, i.e. sea surface
temperature anomaly ( SSTA) T and thermocline

depth anomaly & equations.
(

J% =a; T — axh +A/%T(T*a3h),

Ldfh:b(Zh*T),
de¢
3.1
where a1 =(T, + T, —uy—a)s ar=Cu+6T, |,
2a )
= =+ , = ———5. ’ -
ay=p+ 8, and b 21320 Here, the coeffi

cients a; and a, involve the basic state parameters T,
and T., which characterize respectively the mean
temperature difference between the eastern and west-
ern Pacific and between the surface and subsurface
water. Note that these basic state parameters vary
with time, reflecting the annual cycle of the basic
state. Two dimensionless coupling parameters are
presented in this model. One is the air-sea coupling

.. Ly : .
coefficient, a = <fv) » where L is the oceanic
Rossby radius of deformation and L, is the character-
istic meridional length scale of the coupled ENSO
mode. For Ly, = 300 km, when L, varies from

1000 km to 400 kms «

increases from 0.09 to

pH

0.5625. Another coupling parameter is p = 0

which measures the degree of coupling between ther-
mocline fluctuation and SST. The meanings and typi-
cal values of the other parameters are listed in Table 1

of Ref. [6].

Wang and Fang[(’] demonstrated that the WF96
model described the interannual variation of SSTA
and the thermocline depth anomaly in the Nino-3 re-
gion, which highlights the cyclic; chaotic; and sea-
son-dependent evolution of ENSO. Duan et al. b4
used this model to study the initial pattern that e-

volves into ENSO most potentially, i.e. the optimal
precursors for ENSO. The theoretical results discover
a general law of oceanic motions: the negative (posi-
tive) SSTA and positive (negative) thermocline depth
anomalies averaged over the whole Nino-3 region al-
ways persist for about 34 months before the onset
of El Nino (La Nina). That is to say, the negative
(positive) SSTA and positive (negative) thermocline
depth anomalies averaged over equatorial east Pacific
act as the optimal precursor for ENSO qualitatively.

In this paper, we will use this model to investi-
gate the applications of nonlinear optimization meth-
ods to quantifying the predictability of ENSO event.
It should be pointed out that the ENSO event consid-
ered in this paper is a model ENSO event, which is
based on a particular model. Model ENSO event is
obtained by running the model with an initial anoma-
ly. In the rest of the paper, to facilitate the discus-
sion, we simply call it ENSO event and does not em-
phasize the “model” ENSO. The ENSO model is
solved numerically by using a fourth-order Runge-
Kutta scheme, where the time step d¢ =0.01 repre-
sents one day.

2  The lower bound of the maximum pre-
dictable time for ENSO event

In this paper, WEF96 model is assumed to be per-
fect, and the predictability limitation is therefore con-
sidered to be set only by the uncertainty of the initial
condition.

Let M, be the propagator of WF96 model,
which takes perturbations at the initial time and
“propagates” these perturbations to some time in the
Uy is the initial observation of an ENSO
event, and ug=CT > h’) is an initial perturbation of
Uy. The norm || «(e) || =max {{ T"Ce) |, A" (D]}
is chosen to measure the growth of the initial pertur-
bation. For the constraint condition || ug || <o, we

future.

can derive the lower bound of the maximum pre-
dictable time for the model ENSO event, where ¢ is
the bound of the initial observational errors

é’en =, rn‘i‘n/ {C“n | C,,(n = maxt
Uy =0
H MI(UO + uo) - Mz( Uo) H < EO)
0<<t<<rl (D

We choose dimensionless (—=0.1,0.1) and
(0.1, =0.1) of (Ty> hy) as the initial values of the
basic states> which respectively evolve into an El Ni-
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no and a La Nina events (Fig. 1). Here, ( —0.1,
0.1) corresponds to the dimensional SSTA (T) —
0.21C and thermocline depth anomaly (4D 5 ms
and (0.1, —0.1) corresponds to (0.21C, —5m) of
(T, h).
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Fig. 1. (a) El Nino with initial observation ( —0.1,0.1) and
(b) La Nina with initial observation (0.1, —0.1).

For a predetermined initial observational error
bound 6, and the maximum allowable prediction er-
ror €5 the lower bound of the maximum predictable
time of the above El Nino and La Nina events can be
computed from Eq. (1). Firstly, we investigate the
case of the initial time being January. Tables 1 and 2
show the lower bound of the maximum predictable
time for the El Nino and the La Nina events, respec-
tively, where {0 represents the lower bound of the

maximum predictable time.

Table 1. Lower bound of the maximum predictable time for El Nino
with the initial time being January
[0 go
=0.06 6=0.07 6=0.08 5=0.09 5=0.10
0.35 267 204 173 154 139
0.40 317 216 183 161 146
0.45 403 229 193 169 152
0.50 420 246 204 177 159

To further investigate the predictability of El Ni-
no and La Nina, Fig. 2 describes the difference of £

between El Nino and La Nina. It is shown that for
the sufficiently small initial observational error

Table 2.  Lower bound of the maximum predictable time for La Nina
with the initial time being January
[0 o
=0.06 6=0.07 6=0.08 5=0.09 5=0.10
0.35 1031 1019 765 639 524
0.40 1036 1023 781 648 531
0.45 1040 1026 957 659 538
0.50 1045 1029 1021 672 546

bound, with the maximum allowable prediction error
increasing from 0. 35 to 0.50, El Nino event can be
forecasted bestriding spring for a long time. For ex-
ample, if the initial observational error bound ¢ =
0.05, which means that the initial observational error
bound of SSTA is less than 0. 1C, and the maxi-
mum allowable prediction error €” =0.50 (i.e. the
maximum allowable prediction error is not larger than
1.0C ), the maximum predictable time for El Nino
is at least 425 days. That is to say, WF96 model can
predict EI Nino bestriding spring for 245 days. For
the large initial observational error bound, the lower
bound of the maximum predictable time for El Nino is
always limited in the range from about 90 days to 180
days, which corresponds to the season of April-June.
WF96 model cannot forecast El Nino bestriding
spring with the maximum allowable prediction error.
For instances when the initial observational error
bound ¢ =0.09, the dimensional initial observational
error bound of SSTA is not larger than 0.18 C, and
the lower bound of the maximum predictable time for
El Nino is 172 days. For La Nina event with given
allowable maximum prediction error, it can be fore-
casted bestriding spring for a long time by WF96
model and the spring predictability barrier does not
occur. From the above numerical results, it can be
found that for the given initial observational error
bound and the allowable maximum prediction error,
WF96 model can predict La Nina bestriding spring
for at least one year. For example; in the case of 6 =
0.1 and €"=0.50, the maximum predictable time for
La Nina is at least 546 days.

Besidess the case of the initial time being Octo-
ber is also investigated (Fig.2(b)). It can be shown
that when the initial observational error bound is suf-
ficiently small, ¢ €[0.01,0.05] Ccompared to the
above initial observational error bound & € [0. 06,
0.101), which means that the dimensional initial ob-
servational error bound of SSTA is constrained to the
range of [0.02°C, 0.10°C ], and the WF96 model
cannot forecast El Nino bestriding next spring. That
is to say, with uncertain initial fields, El Nino event
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Fig. 2. The lower bound of the maximum predictable time for
ENSO. (a) The initial time is January; (b) the initial time is Octo-
ber. The time periods marked by two dash-lines are spring, and the
allowable prediction error is 0. 50.

cannot be forecasted bestriding next spring from last
October by WF96 model for the allowable prediction
precision. Whereas for La Nina event, there does not
occur the spring predictability barrier and it can be
forecasted through next spring from last October.
The above analyses indicate that El Nino is less pre-
dictable than La Nina.

3 The upper bound of the maximum predic-
tion error for ENSO event

In this section, the predictability of WF96 model
bestriding spring is investigated by studying the pre-
diction error of model ENSO events.

Suppose that the initial observational error bound
o and the prediction time 7 are known, the upper
bound of the maximum prediction error for ENSO
events can be derived by the following nonlinear opti-
mization problem

E

| M.(Uy + ug) = M (U (2D

=  max

gl <o

where U, is the initial observation of an ENSO
event» and uy is an initial perturbation. Mu et al.[1?]
and Mu and Duan' "3 treated U, in Eq. (2) as the ini-
tial values of realistic ENSO events, and then regard-
ed the initial perturbation u, satisfying Eq. (2) as

the conditional nonlinear optimal perturbation
(CNOP) of ENSO, which is characterized by the
maximum nonlinear growth of the initial perturba-
tions satisfying || ug || <. Consequently, CNOP
has the largest effect on the prediction results of EN-
SO events at prediction time 7. Details can be found
in Refs. [12—14].

Predetermining the maximum allowable predic-
tion error (prediction precision) €”=0.50 (i.e. the
dimensional maximum allowable prediction error of
SSTA is not larger than 1. 0C), we consider the
ENSO forecast initialized in January and ended in Oc-
tober, November, and December, respectively. For
the initial observational error bound & € [ 0. 06,
0.10], which corresponds to the dimensional SSTA
observational error bound [0.12°C,0.21C ], we es-
timate the upper bound of the maximum prediction
error for ENSO events and evaluate the forecast abili-
ty of WF96 model bestriding spring.
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Fig. 3. The upper bound of the maximum prediction error for El
Nino E,» and its linear estimation E|. The time interval is from

January to October.

Figure 3 shows the prediction error of El Nino as
a function of ¢ with the time interval from January to
Octobers where E; is the linear evolution of the
above mentioned initial perturbation wu; satisflying
Eq. (2D, which is obtained by integrating the tangent
linear model ( TLMD with the initial value ;. It can
be shown that for the given maximum allowable pre-
diction error €”=0.50, when ¢<<0.07 (the dimen-
sional SSTA observational error bound is less than
0.14°C), WEF96 model can potentially forecast El
Nino bestriding spring, while when the SSTA initial
observational error bound exceeds 0. 14 C, El Nino
cannot be forecasted bestriding spring by WF96 mod-
el. However; information on the linear estimation of
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the prediction error by TLM suggests that when the
initial SSTA observational error bound is less than
0.17C > the model prediction error still satisfies the
given prediction precision ¢’ =0.50. That is to say»
even though the initial observational error bound ex-
ceeds 0. 14 C, the model can also forecast El Nino
bestriding spring. Obviously> it is not true. Since the
nonlinear model is assumed to describe the observed
ENSO events and the TLM is only an approximation
to it, the estimation of the prediction error by TLM
approximates merely the evolution of the prediction
error for ENSO, which cannot quantitatively reflect
the nonlinear evolution of the prediction error for
WF96 model. Thus, estimating the prediction error
by TLM may cause the false evaluation of the model’
s forecast ability. For the time interval from January
to November and December, there are quite similar
results for the above El Nino event. For simplicity,
we do not discuss it in detail.

Additionally, we also perform extensive numeri-
cal experiments to investigate the prediction error of
El Nino taking October as the initial time. It is
demonstrated that for sufficiently small initial obser-
vational error bound, the upper bound of the maxi-
mum prediction error of El Nino bestriding spring is
always larger than the above allowable prediction pre-
cision. Therefore, for El Nino forecast initialized in
October, prediction uncertainties are more likely to
occur when it bestrides next spring.

The above discussion demonstrates that the pre-
dictability of WF96 model about El Nino depends on
the initial time of forecast. If the forecast is initialized
in January, the WF96 model may be of certain pre-
dictability of El Nino bestriding spring. But if the
forecast initialized in October, the forecast skill of
WEF96 model about El Nino may dramatically decline.
Additionally, the above results also explore the differ-
ence between linear and nonlinear estimation of pre-
diction error and reveal the limitation of linear ap-
proach.

For La Nina event; we also conduct many nu-
merical experiments. The results suggest that for the
above initial observational error bound (o € [0. 06,
0.10D), WF96 model is always of strong forecast
skill whatever the initial time is. That is to say, for
the given prediction precision, WEF96 model can al-
ways forecast La Nina bestriding spring, which fur-

ther demonstrates that El Nino is less predictable than
La Nina.

4 The lower bound of the maximum allow-
able initial error of ENSO events

The above analysis has shown that for the known
initial observational error bound and the prediction
precision, we can evaluate the forecast ability of
WEF96 model about ENSO events bestriding spring by
estimating the maximum predictable time for ENSO;
while for the given initial observational error bound
and prediction time, we can also estimate the pre-
dictability of model ENSO events bestriding spring by
computing the upper bound of the maximum predic-
tion error of ENSO. Contrarily, if it is expected that
the model can forecast ENSO bestriding spring, what
conditions should the initial observation of ENSO sat-
isfy, or say, how small should the initial observation
error be?

To discuss this problem, we establish the lower
bound of the maximum allowable initial observational
error for ENSO events,

o, =max{o | || M.(Uy + uy) — M.(U || < &%

[ugll <ok (3
where €’ is the maximum allowable prediction errors
U, is the initial observation of ENSO, and u is an
initial perturbation of ENSO.

Table 3 describes the lower bounds of the maxi-
mum allowable initial observational errors for El Ni-
nos where the time interval r is taken as from Jan-
uary to August> October;
demonstrated that for the prediction precision e
0.50 (the maximum allowable prediction error of SS-
TA is not larger than 1.0 ), when WF96 model
forecasts El Nino during August, the lower bound of
the maximum allowable initial observational error
bound is ¢ = 0. 0704, which means that the initial
SSTA observational error bound cannot
0.14°C. That is to say; if we want to forecast El Ni-
no during August using the WF96 model, the initial
observational error bound of SSTA should be less than
0.14 C. Otherwises due to the fast growth of initial
perturbation during spring, the prediction error will
exceed the given prediction precision, and the phe-
nomenon of spring predictability barrier will occur.

and December. It is
0 p—

exceed

For El Nino forecast starting with October, we
also calculate the lower bound of the maximum allow-
able initial observational error for El Nino. The re-
sults demonstrate that for the given prediction preci-
sions, the lower bounds of the maximum allowable
initial observational errors for El Nino are always less
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than 0. 01, corresponding to the dimensional initial
observational error bound 0.02 C, which cannot be
generally identified in observation. That is to say»
the observation cannot usually reach the precision of
0.02 CH3. Therefores WF96 model cannot forecast
El Nino bestriding next spring from October for the
given prediction precision.

Table 3.  The lower bound of the maximum allowable initial observa-
tional error for El Nino event
UT
i =0.35 =040 =045 =0.50
Jan-Aug 0.0633 0.0654 0.0686 0.0704
Jan-Oct 0.0586 0.0606 0.0644 0.0673
Jan-Dec 0.0516 0.0551 0.0614 0.0641

For La Nina event, discussions in the above two
sections have demonstrated that the phenomenon of
spring predictability barrier does not occur, and with
the given prediction precision, the lower bounds of
the maximum allowable initial observational errors for
La Nina should be larger than those for El Nino. Ac-
tually, our numerical results verify this theoretical
conclusion. This also sheds lights on that La Nina is
more predictable than El Nino from another point of
view.

S Summary and discussion

In this paper, we have established the nonlinear
optimization problems related to the lower bound of
the maximum predictable time for ENSO, the upper
bound of the maximum prediction error> and the low-
er bound of the maximum allowable initial error. By
solving these problems, the phenomenon of “spring
predictability barrier” for ENSO has been revealed,
which shows that ENSO predictability depends on the
initial time when the forecast started. Further studies
demonstrate that the large error of the initial field po-
tentially induces the prominent spring predictability
barrier. There is also evidence that LLa Nina is more
predictable than El Nino, which qualitatively sup-
ports the view of Moore and Kleeman''®) about ENSO
predictability. Then in the present study, the effects
of nonlinearity on predictability are further empha-
sized and the limitation of the tangent linear model
(TLM) estimating prediction error is pointed out.
TLM is only an approximation to the nonlinear mod-
el, which holds only when the initial perturbations
are sufficiently small and the optimization time inter-
vals are very short. For the finite amplitude of initial
perturbations and the long optimization time inter-
vals, if we adopt TLM to obtain the information on

the prediction error, it may result in a false judge-
ment on the prediction results of nonlinear model.
This is not favorable for the improvement of the EN-
SO forecast skill. Therefore; when the prediction er-
ror is used to evaluate the model predictability, we
would rather believe the information on prediction er-
ror obtained by the nonlinear model.

These above results are derived theoretically
from a numerical model for ENSO by identifying this
model the so-called “ perfect model scenario”. Given a
perfect model, the model ENSO may represent the
realistic ENSO event. In this cases ENSO pre-
dictability is limited only by the growth of the uncer-
tainties in the initial condition. The model ENSO
predictability and the predictability of realistic ENSO
are unified. Upon this assumption of “perfect mod-
el”s the evolutions of the initial uncertainties of EN-
SO are quantified through nonlinear optimization
method in the present study and some indicative re-
sults are obtained. Practical predictability experi-
ments are often carried out with an imperfect model
forecasting observational data. Model error exists in
the particular model employed. The predictability
quantified by numerical models may under- or over-
estimate the inherent ENSO predictability. That is to
say, the different numerical models may show differ-
ent predictabilities for ENSO due to the model error.

In this paper, the ENSO model employed is sim-
ply and may be of some uncertainties in describing
ENSO oscillation. Therefore, the derived results
from this model are qualitatively indicative. The nu-
merical experiments performed here are of exploratory
nature. However, we are greatly encouraged by these
results. It is expected that for a more realistic model,
there will be more significant findings by using the
nonlinear optimization methods. The methods may
verify the results derived by a simple model and quan-
tify the ENSO predictability.
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