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[1] Seasonal dependence of initial error growth for El
Niño-Southern Oscillation (ENSO) in Zebiak-Cane model
is investigated by using a new approach, i.e. conditional
nonlinear optimal perturbation (CNOP). It is found that
CNOP-type error tends to have a significant season-
dependent evolution, and produces most considerable
negative effects on the forecast results. Therefore, CNOPs
are closely related to spring predictability barrier (SPB). On
the other hand, some other kinds of initial errors, whose
patterns are different from those of CNOPs, have also been
found. Although the magnitudes of such initial errors are the
same as those of CNOPs in terms of the chosen norm, they
either show less prominent season-dependent evolutions, or
have trivial effect on the forecast results, and consequently
do not yield SPB for El Niño events. The results of this
investigation suggest that the CNOP-type errors can be
considered as one of candidate errors that cause the SPB. If
data assimilation or (and) targeting observation approaches
possess the function of filtering the CNOP-type or (and)
other similar errors, it is hopeful to improve the prediction
skill of ENSO. Citation: Mu, M., H. Xu, and W. Duan (2007),

A kind of initial errors related to ‘‘spring predictability barrier’’

for El Niño events in Zebiak-Cane model, Geophys. Res. Lett., 34,

L03709, doi:10.1029/2006GL027412.

1. Introduction

[2] Considerable efforts have been invested in studying
the El Niño-Southern Oscillation (ENSO) phenomenon
[Philander, 1990; McCreary and Anderson, 1991; Wang
and Fang, 1996; Jin, 1997; Neelin et al., 1998; Wang,
2001]. An important aspect of these studies is on the
exploration of ‘‘spring predictability barrier (SPB)’’ for
ENSO. Some possible mechanisms have been given to
explain this phenomenon [Webster and Yang, 1992; Moore
and Kleeman, 1996; Lau and Yang, 1996; Samelson and
Tziperman, 2001]. Chen et al. [2004] reported that by using
the initial field produced by a data assimilation approach,
SPB in the model of Zebiak and Cane [1987] (CZ model) is
not as severe as that in persistence or in most other forecast
models, which indicates the importance of the accuracy of
initial fields in ENSO predictability. This study motivates us
to investigate SPB problem in view of the development of
initial errors. Since seasonal dependence of initial error
growth is related to SPB, naturally we are required to
answer the following questions: what kind of initial errors

induce the significant season-dependent evolution and then
cause the severest prediction uncertainty of model ENSO?
If a data assimilation or (and) targeting observation
approaches filter such kind of initial uncertainty, can the
ENSO forecast skill be improved? Mu and Duan [2003]
utilized the approach of conditional nonlinear optimal
perturbation (CNOP) and a theoretical ENSO model to
study the predictability of ENSO and its related SPB. CNOP
approach has also been employed by Duan et al. [2004] to
study the optimal precursors of ENSO, and by Mu et al.
[2004] to investigate the nonlinear instability of ocean’s
thermohaline circulations. All these works show that CNOP
is a useful tool to deal with these problems, which suggests
applying CNOP approach to investigate SPB of the
CZ model in this paper.

2. Method

[3] The CZ model is a well-known one and has been used
in the prediction and study of ENSO extensively. The model
describes the essential physics of ENSO, and thus provides
a convenient tool for investigating the SPB of ENSO.
[4] To study the prediction uncertainties of ENSO caused

by initial error, we construct a cost function to measure the
evolution of initial error. Then the aforementioned CNOP,
which has largest effect on prediction uncertainties and is
denoted by ~u0d, can be obtained by solving the following
nonlinear optimization problem

J ~u0dð Þ ¼ max
jj~u0jj1�d

jj~T 0 tð Þjj2; ð1Þ

where~u0 = (w1
~T0

0,w2
~h0
0) is the non-dimensional initial errors

of SSTA and thermocline depth anomaly, w1 = (2�C)�1 and
w2 = (50 m)�1 are the characteristic scales of SST and
thermocline depth. jj~u0jj1 � d is the constraint condition
defined by the prescribed positive number d and the norm
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, where (i,j)

represents the grid point in the region with latitude
and longitude respectively from 129.375 E to 84.375 W
by 5.625 and from 19 S to 19 N by 2, T00i,j and h00i,j denotes
the dimensional initial errors of SSTA and thermocline
depth anomaly at grid point (i,j). The evolutions of these
initial errors are measured by the norm jj~T 0(t)jj2 =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j w1T
0
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r

. And T0i,j(t) is obtained by subtracting

SSTA of reference states (i.e. the ‘‘true states’’ to be
predicted) at time t from the predicted SSTA, the latter is
achieved by integrating CZ model from time 0 to t with
initial condition being initial value of reference state plus its
error ~u0.
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[5] To obtain CNOPs by solving nonlinear optimization
equation (1) numerically, a solver of Spectral Projected
Gradient 2 (SPG2) algorithm is used. Detailed description
of SPG2 were given by Birgin et al. [2000]. In this
algorithm, the gradient of cost function with respect to
initial value is of importance. To calculate the gradient
efficiently, we have developed the tangent linear and adjoint
models of CZ model. The correctness of them are verified,
which guarantees that correct gradients can be provided by
the adjoint model.

3. Results

[6] A large number of reference states, which are gener-
ated by integrating CZ model with proper initial values, are
chosen to address the season-dependent evolution of initial
errors. Considering that there exist different types of El Niño
events in nature, we choose the reference states with initial
time being January, April, July, and October, and denote
them as Ri

Jan, R
i
Apr R

i
Jul, and R

i
Oct, i = 1, 2, 3,. . ., respectively.

For each type of true states, quantities of them have been
taken to perform the numerical experiments. Similar results
are obtained. For simplicity, we take one representative
from each type to present the results. Without loss of
generality, they are denoted by R1

Jan, R
1
Apr, R

1
Jul, and R1

Oct.
Figure 1 shows the SSTA components of the four reference
states, which are averaged over Niño-3 region and are
generally called Niño-3 index. The time-dependent Niño-3
indexes of the true states represent four different El Niño
events, with SSTA starting warming respectively in January,
April, July, and October. The El Niño events, R1

Jan and R1
Apr

tend to peak at the end of the year, while R1
Jul and R1

Oct peak
at the end of next year.
[7] In the prediction experiments, lead times are all

12-month. For each of the four reference states, four
predictions are made with different start months, which
are marked in Figure 1 by dots. For example, in case of
R1

Jul, July, October, and January and April in the next year
are taken as the start months. Considering that CNOP is the
initial error that has largest effect on prediction results
[Mu et al., 2003; Mu and Zhang, 2006], for each prediction
experiment, we calculate the CNOPs of these reference
states for the time interval length t = 12 with the above
start months. For convenience, this kind of initial uncertain-
ties are simply called as CNOP-type errors, which are found
to locate at the boundary of the constraint condition in the
phase space, i.e. jj~u0jj1 = d. Some representatives of these
CNOPs are shown in Figure 2, where the SSTA and
thermocline depth anomaly components are for d = 1.0. In
the rest of this section, we will investigate the season-
dependent evolutions of these CNOP-type errors.

3.1. Season-Dependent Behaviors of CNOP-Type
Errors

[8] To investigate the seasonal dependence of initial error
evolution, a year is divided into four ‘‘seasons’’ starting
with January to March (JFM), followed by April to June
(AMJ), and so forth. We study the slope k of curve g(t) =
jj~T 0(t)jj2 at different seasons, which represents the tendency
of initial error growth. A positive (negative) value of k
corresponds to an increase (decrease) of the errors, and the
larger the absolute value of k, the faster the increase
(decrease).

Figure 1. Niño-3 index of reference states with initial warming time being (a) January, (b) April, (c) July, and (d) October.
The dots located on horizontal axis denote the initial time of prediction, i.e., the start months.
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[9] Tables 1 and 2 list the slopes k of CNOP-type error
evolutions with start month being October and July for the
above reference states (El Niño events). ENino�3 there
represents the uncertainties of El Niño prediction with one
year lead time (t = 12 months), which is caused by the
corresponding CNOP-type errors and is obtained by sub-
tracting the Niño-3 index of reference states from the
predicted one. It is demonstrated that the CNOP-type errors
tend to grow aggressively during AMJ for the four types of
El Niño events and show apparent season-dependent evo-
lution. From the values of ENino�3 in Tables 1 and 2, it is
also clear that CNOP-type errors cause significant predic-
tion uncertainties, which is the largest with the constraint
condition from the definition of CNOP.
[10] For the four types of reference states, the season-

dependent evolutions of CNOPs with start month January
are also investigated (Table 3). The results demonstrate that
the significant growth of CNOP-type errors tend to occur
during AMJ and JAS with maximum value appearing in
JAS. Besides, CNOP-type errors cause the severest predic-
tion uncertainties. Note that although the maximum slopes
appear in JAS, the error growth during AMJ have become
aggressively large, which could have caused the dramatic
decrease of El Niño forecast skill during AMJ. As for the
significant error growth of El Niño in JAS, we will discuss
it in section 3.2.
[11] We further investigate the evolutions of CNOP-type

errors with start month April. In this case, the El Niño
events are directly predicted from spring. Kirtman et al.
[2001] and quite a few authors reported that the forecast
starting in this season is relatively easy and there is no
notable SPB phenomenon. Our results demonstrate this fact

too. Table 4 shows the slopes k with start month April. It is
clear from it that the prediction errors of SSTA (Niño-3
index) caused by CNOP-type errors with start month April
are fairly smaller than the corresponding ones with other
start months (see the ‘‘ENino�3’’in Tables 1–3). Besides, the
values of k tend to attain the largest value during JAS. This
is consistent with the results of Kirtman et al. [2001]. The
decrease of forecast skill in JAS can also be observed from
Figure 4 of Kirtman et al., although it is not so significant as
that in AMJ of other cases.
[12] From the above results, it is clear that when El Niño

events are predicted bestriding next spring from July and
October, there exist apparent seasonal dependence of
CNOP-type error growth, and the largest growths tend to
occur during AMJ. In these two cases, CNOPs cause the
severest prediction uncertainties for El Niño, and the
dramatic decrease of the skill for El Niño forecast may
occur in AMJ due to the considerable error growth, which
could then cause the SPB phenomenon. In case of the start
month being January, although the largest error growth of
El Niño forecast occurs in JAS, the error growth in AMJ has
become aggressively large and could have caused the severe

Figure 2. The patterns of CNOP-type error with magnitude of 1.0 (value of d) for R1
Jan. (left) SSTA and (right)

thermocline depth anomaly components for the start month being (a) January, (b) April, (c) July, and (d) October.

Table 1. Slopes k of CNOP-Type Error Evolution With jj~u0jj �
1.0 for Start Month October

Reference State OND JFM AMJ JAS ENino�3

R1
Jan 1.3507 2.1358 6.3777 1.1392 1.6711

R1
Apr 1.2216 1.6740 5.0808 3.5340 2.0953

R1
Jul 2.1358 3.6559 7.7281 1.7341 �2.4585

R1
Oct 1.9107 3.5522 7.6553 3.1489 �2.7356
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prediction uncertainties of El Niño forecast bestriding
spring. These suggest that CNOP-type errors have the
potential for inducing obvious season-dependent evolution
related to SPB. Now the remaining question is: are there
other kind of initial errors with magnitudes being the same
as those of CNOP-type errors in terms of the chosen norm,
which have less effects on the prediction results, or have
insignificant season-dependent behavior and fail to cause
SPB?
[13] To address this question, for the reference states Ri

Jan,
Ri
Apr, R

i
Jul, and Ri

Oct, we investigate a great deal of initial
errors and find that many of them have the less prominent
season-dependent evolution and do not cause the severe
prediction uncertainties of El Niño. Figure 3 shows four
representatives of them for R1

Jan, which are of the magnitude
of 1.0 measured by the chosen norm jj 	 jj1 and simply
called Non-CNOP type error. Table 5 lists k and ENino�3 of
such errors and those of CNOP for R1

Jan, where CNOP is
also of magnitude of 1.0. It is shown that either there is no
significant seasonal dependence of the growth rates of these
initial errors, or such errors have no considerable effect on
the forecast results, and consequently there is no SPB for El
Niño forecast. Comparison of CNOP and Non-CNOP type
errors demonstrate that CNOP not only induces the severest
prediction uncertainties but also has the prominent season-
dependent evolution.
[14] Besides, we also examine the season-dependent

evolution of CNOP-type error growth for the neutral year.
Our results suggest that in this case the growth of CNOPs
does not have obvious seasonal dependence. For simplicity,
numerical results are not shown here.

3.2. Implication of Season-Dependent Behaviors of
CNOP-Type Errors to SPB

[15] The above results demonstrate that not only CNOP-
type error induces the severest prediction uncertainties of
El Niño, but also its evolution shows the prominent seasonal
dependence. Naturally, it is closely related to the problem of
SPB, which is generally referred to that the forecast skill of
ENSO declines dramatically during spring (April-May).
Our results demonstrate this fact from the point of view
of initial error growth. For the start month being July and
October, the growth rates of CNOP-type errors for the four

types of El Niño events tend to be the maximum during
AMJ, which coincides the time of predictability barrier
documented in observations as well as CZ model runs.
[16] For the start month being January, our results show

that the significant error growths of four types of El Niño
events tend to start in AMJ and to be the largest in JAS. By
investigating the LDEO1 version of CZ model, Kirtman et
al. [2001] showed that the correlation coefficients of SSTA
(Niño-3 index) forecast initialized in January decrease from
0.7 to 0.4 during AMJ [see Kirtman et al., 2001, Figure 4],
while the tendency of the correlation change during JAS
cannot be drawn clearly. Thus, the question is why there
exists this difference. A possible explanation follows. When
the El Niño is predicted bestriding spring (AMJ), the skill of
El Niño forecast has decreased dramatically and become
very small due to the significant error growth in AMJ. Then
there is no more space for remarkable declination of the
correlation coefficient during JAS even if the errors grows
considerably in this period. The second possible explanation
is that our results are based on El Niño year, while Kirtman
et al. [2001] did not distinguish El Niño year from non-El
Niño year and considered the collective of El Niño, La Niña
and neutral years, which is different from that of our study.
Besides, the predictability measurements adopted in these
two studies are also different, which may cause some
difference between the results. Thirdly when Kirtman et
al. [2001] calculated the correlation coefficient between
prediction and observation, the influence of model error
are included, while our results are based on the assumption
of perfect model and we do not consider the effect of model
error on SPB. This also has possibility for causing some
differences between the results of two studies. Of course,
whether the model error has influence on predictability
barrier is an unresolved problem, which might stimulate
further investigation on SPB. On all accounts, the main
results of this study coincide with those of Kirtman et al.
[2001], and there is no essential contradiction.

4. Summary and Discussion

[17] The main results of this short paper are as follows.
There exist some kinds of initial errors represented by
conditional nonlinear optimal perturbations, which yield
prominent season-dependent evolution, cause the severest
prediction uncertainties and are then closely related to
spring predictability barrier (SPB) for El Niño. On the other
hand, there are some other kinds of initial errors, which
have no considerable seasonal dependent evolution in spite
of the fact that the magnitudes of these errors are the same
as those of CNOPs. Furthermore, the prediction uncertain-
ties caused by these initial errors are of little significance.
These results provide a clue to understand why SPB occurs

Table 2. Slopes k of CNOP-Type Error Evolution With jj~u0jj �
1.0 for Start Month July

Reference State JAS OND JFM AMJ ENino�3

R1
Jan 2.0843 2.7967 1.4844 5.6386 2.3252

R1
Apr 2.4797 4.6886 4.0120 1.2780 �1.8365

R1
Jul 2.1575 3.4201 4.6495 5.1457 �2.5613

R1
Oct 1.9124 2.7230 1.7919 5.5768 2.2174

Table 3. Slopes k of CNOP-Type Error Evolution With jj~u0jj �
1.0 for Start Month January

Reference State JFM AMJ JAS OND ENino�3

R1
Jan 0.8481 4.1740 8.8463 0.4555 �2.3865

R1
Apr 0.8218 1.7353 3.9384 2.9960 1.8221

R1
Jul 1.0103 3.6650 4.6170 1.7049 2.0860

R1
Oct 1.0376 5.7698 8.5371 �0.8441 �2.4281

Table 4. Slopes k of CNOP-Type Error Evolution With jj~u0jj �
1.0 for Start Month April

Reference State AMJ JAS OND JFM ENino�3

R1
Jan 1.9335 5.4887 7.9286 �3.9022 �1.2262

R1
Apr 2.7136 6.1334 5.0128 �1.9121 �1.6298

R1
Jul 2.3528 5.3071 3.0262 1.4047 1.5615

R1
Oct 2.6583 6.2192 5.6644 �3.6234 �1.2341
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in some ENSO predictions, and Chen et al. [2004] claimed
that the SPB in their ENSO prediction experiments are not
as severe as that in other forecast models. The study of this
paper also indicate the importance of data assimilation in
ENSO prediction. Besides, considering that the pattern of
CNOPs might represent the ‘‘sensitive area’’, it suggests
that intensifying observations in such areas might be of
importance to increase the ENSO prediction skill by the
reduction of SPB.
[18] In this study, we investigate the evolutions of initial

errors for the individual El Niño events of representative
types with different onset months. Since the main character-
istics of La Niña events, e.g. phase-locking, cannot be well
modelled by CZ model [An and Wang, 2001], no attempt
has been made in this paper to study the corresponding
problem for La Niña. The correlation coefficients obtained
from Kirtman et al. [2001] are essentially a statistical index
of the predictions of El Niño and La Niña events and neutral
case for a period of about 20 years. Obviously, we can not
expect that the results of these two approaches are the same.
Nevertheless, the main results of this paper support those of
Kirtman et al. [2001].

[19] The results in this paper suggest that SPB can be
caused by some kinds of initial errors, and CNOP could be
one of such errors. Besides, other kinds of initial errors, i.e.
Non-CNOP type errors, will not cause SPB. These new
findings encourage us to improve ENSO prediction skill by
data assimilation or (and) targeting observations.
[20] SPB is one of the unresolved problems for ENSO.

This study are on seasonal dependence of error growth and
stand for a step to study SPB using CNOP. It is expected
that the future work can address the following issues: The
first question is whether the results obtained in this paper is
model dependent. Secondly, are the SPB reported in other
papers [e.g., Kirtman et al., 2001] caused only by initial
errors? Thirdly, are there considerable differences among
the errors evolutions of El Niño, La Niña, and neutral years?
Finally, if SPB is caused by the CNOP-type or other kind of
errors, what is the mechanism responsible for that? All these
questions deserve our future studies.
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