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[1] Within the Zebiak-Cane model, we identify two types of initial errors that have
significant season-dependent evolutions related to the spring predictability barrier (SPB)
for El Nifio events. One type includes the sea surface temperature anomaly (SSTA)
errors that have a zonal dipolar pattern with positive anomalies in the central equatorial
Pacific and negative ones in the eastern equatorial Pacific; the other type consists of
the SSTA errors with a spatial structure opposite to that of the former type, the zonal
dipolar pattern shows negative anomalies in the central equatorial Pacific and positive
anomalies in the eastern equatorial Pacific. The patterns of these two types of errors are
nearly opposite of each other. The former causes the El Nifio event to be underpredicted,
and the latter causes the El Nifio event to be overpredicted. For strong El Nifio events
the former tends to have a larger effect on the predictions than the latter, but for weak
El Nifo events, it is very difficult to determine which type of initial errors results in worse
predictions. It is thought that strong (weak) El Nifio events could be affected by strong
(weak) nonlinearities. There are also other initial errors; however, they do not yield
considerable season-dependent evolutions nor can a common characteristic be extracted
from their patterns. The two types of initial errors suggest two dynamical behaviors of
error growth related to the SPB: in one case, the initial errors grow in a manner similar
to the El Nifio events; in the other case, the initial errors develop with a tendency
opposite to the El Nifio events. The two types of initial errors may capture the errors
that exhibit significant season-dependent evolutions related to the SPB. In addition,
they may provide information regarding the “sensitive area” of ENSO predictions
because of their localized regions. Therefore, if these types of initial errors exist in the
realistic El Nifio—Southern Oscillation (ENSO) predictions and if a data assimilation or a
target method can filter them, the ENSO forecast skill may be improved. For ensemble
forecast studies, different signs of prediction errors caused by the two types of initial errors
could illustrate why the ensemble mean offers a better forecast than a single prediction.
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1. Introduction

[2] El Nifio—Southern Oscillation (ENSO), a prominent
climate phenomenon in the coupled ocean-atmosphere sys-
tem of the tropical Pacific, has a great impact on the global
climate. In the past three decades, the ENSO has received
tremendous attention. While significant progress has been
made in ENSO theories and predictions over the years, espe-
cially through the TOGA (Tropical Ocean Global Atmo-
sphere) program (see the review of Wang and Picaut [2004]),
there still exist considerable uncertainties in realistic ENSO
predictions [Jin et al., 2008]. In particular, if forecasts are
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made before and through the spring, ENSO predictions tend
to be much less successful. This low predictability has been
related to the so-called “spring predictability barrier”” (SPB)
of the ENSO.

[3] The SPB is a well-known characteristic of ENSO
forecasts [Webster and Yang, 1992; Lau and Yang, 1996;
McPhaden, 2003], which refers to the phenomenon that
most ENSO prediction models often experience an apparent
drop in prediction skill across April and May [Latif et al.,
1994]. SPBs exist in coupled and statistical models. In some
cases, the SPB is even stronger in statistical models than in
general circulation models (GCMs) [van Oldenborgh et al.,
2005]. Considerable efforts have been made in studying this
phenomenon [e.g., Walker, 1924; Moore and Kleeman, 1996;
Samelson and Tziperman, 2001; McPhaden, 2003], but its
cause remains controversial. One of the possible causes is the
rapid seasonal transition of monsoon circulation during
the boreal spring, which perturbs the Pacific basic state when
the east-west sea surface temperature (SST) gradient is the
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weakest [Webster and Yang, 1992; Lau and Yang, 1996].
Another notion proposed by Webster [1995] is that the SPB
is due to the weakest ocean-atmosphere coupling occurring
during the spring in the eastern Pacific. Other studies argued
that the SST anomalies in the boreal spring are relatively
small, such that these anomalies are difficult to detect and
forecast in the presence of atmospheric and oceanic noises
[Chen et al., 1995; Xue et al., 1997]. Samelson and Tziperman
[2001] demonstrated that the SPB is an inherent characteristic
of the ENSO, whereas Chen et al. [2004] suggested that this
predictability barrier could be reduced through improving
initialization. McPhaden [2003] showed that subsurface
information has a winter persistence barrier and that the
predictability of the ENSO across the spring may potentially
be enhanced by incorporating this information into the
model. In general, the cause of the SPB remains elusive.
There is an urgent need to further address the problems
related to the SPB for the ENSO.

[4] A number of papers have emphasized the role of initial
errors in the SPB. Moore and Kleeman [1996] investigated
the season-dependent evolutions of initial errors related to the
SPB. Chen et al. [1995] eliminated the SPB phenomenon of
the model developed by Zebiak and Cane [1987] through
improving initialization. Recently, Mu et al. [2007a, 2007b]
demonstrated that the SPB may be a result of the combined
effect of three factors: the climatological annual cycle, the
El Nifo event itself, and the initial error pattern. The former
two factors remain in the model and are the origin of the
seasonality of error growth. It has been suggested that, even if
the seasonality of error growth is determined by the model,
particular initial error modes are necessary to bring about the
SPB [Mu et al., 2007a]. That is, there exists the possibility
that some types of initial errors may cause extreme uncer-
tainties in ENSO forecasting through the spring and exhibit a
prominent season-dependent evolution related to the SPB,
because of the seasonality of ocean-atmosphere coupling,
while other types tend to yield an unapparent season-
dependent evolution. The initial errors could play an impor-
tant role in the occurrence of the SPB for the ENSO. Mu et al.
[2007b] used the Zebiak-Cane model [Zebiak and Cane,
1987] to investigate the initial error that causes a significant
SPB by computing the conditional nonlinear optimal pertur-
bation (CNOP) [Mu et al., 2003] for El Nifio events and
argued that the CNOP-type error cause a notable SPB.
However, the CNOPs are not generally computed in realistic
ENSO predictions. Thus, some questions need to be
addressed: do there exist initial errors similar to CNOPs in
ENSO predictions? what features display initial error patterns
that exhibit a significant season-dependent evolution related
to the SPB for ENSO events?

[5] In this paper, we will explore these questions by
performing perfect model predictability experiments with
the Zebiak-Cane model. The so-called perfect predictability
experiments means that the numerical models are assumed to
be perfect in predictability experiments and one only con-
siders the effect of initial errors on the prediction uncertain-
ties. In fact, this belongs to the studies of the first kind of
predictability proposed by Lorenz [1975]. In this paper, to
explore the characteristic of initial errors that exhibit a sig-
nificant season-dependent evolution related to the SPB for
ElNiflo events, a large number of El Nifio events are chosen
from a time series of SST anomalies (SSTA) in the Zebiak-
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Cane model. These El Nifio events are predicted with the
perturbed initial fields and the seasonal growth rates of the
initial uncertainties are estimated. For the initial errors
that have prominent season-dependent growth related to
the SPB, we evaluate their pattern structures in attempt to
determine common characteristic among them.

[6] The paper is organized as follows. In section 2, the
Zebiak-Cane model is described. The main results are
reported in section 3. In section 4, we discuss the implications
of the results. Finally, a conclusion and a discussion are
presented in section 5.

2. ENSO Model

[7] The Zebiak-Cane model was the first coupled ocean-
atmosphere model to simulate the interannual variability of
the observed ENSO and has been a benchmark in the ENSO
community for over two decades. The Zebiak-Cane model
has been widely used in predictability studies and predictions
of the ENSO [Zebiak and Cane, 1987; Blumenthal, 1991,
Xue et al., 1994; Chen et al., 2004; Tang et al., 2008]. It is
composed of a Gill-type steady state linear atmospheric
model and a reduced-gravity oceanic model, which depict
the thermodynamic and atmospheric dynamics in the tropical
Pacific with oceanic and atmospheric anomalies about the
mean climatological state specified from observations [see
Zebiak and Cane, 1987].

[8] The atmospheric dynamics is described by the steady
state linear shallow water equations on an equatorial beta
plane. The circulation is forced by a heating anomaly that
depends partly on local heating associated with SST anoma-
lies and partly on low-level moisture convergence (param-
eterized in terms of the surface wind convergence [Zebiak,
1986]). Here, the convergence feedback is a nonlinear pro-
cess because the moisture-related heating is operative only
when the total wind field is convergent, and this depends
not only on the calculated convergence anomaly, but also on
the specified mean convergence. The important effect of the
feedback is to focus the atmospheric response to the SST
anomalies into or near the regions of mean convergence, in
particular, the Intertropical Convergence Zone and the South-
ern Pacific Convergence Zone.

[9] The thermodynamics are governed by an evolution
equation of the SSTA in the tropical Pacific that includes
three-dimensional temperature advection by both the spec-
ified mean currents and the calculated anomalous currents.
The assumed surface heat flux anomaly is proportional to
the local SST anomaly, always acting to adjust the temper-
ature field toward its climatological mean state, which is
specified from observation.

[10] In the model run, the atmosphere is previously run
with the specified monthly mean SST anomalies to simulate
monthly mean wind anomalies. Then the ocean component
is forced by surface wind stress anomalies that are generated
from a combination of the surface wind anomalies produced
by the atmosphere model and the background mean winds.

3. Results
3.1. Experimental Strategy

[11] Inperfect model predictability experiments, the model
ENSO events, which are obtained by integrating the model
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with proper initial conditions, could be predicted with per-
turbed initial fields [Smith et al., 1999; Mu et al., 2007a,
2007b]. On the basis of this viewpoint, Xu and Duan [2008]
estimated the predictability of the Zebiak-Cane model by
predicting the maximum prediction errors of model ENSO
events. Their results indicated that the ENSO warming event
is rarely predictable through the spring, mimicking the
behavior of the SPB. In this paper, we will investigate the
characteristic of the initial errors that cause a significant SPB
for model El Nifio events.

[12] By integrating the Zebiak-Cane model for 1000 model
years, we obtained a time series of NINO3 SSTA (averaged
SSTA in the east Pacific 150°W-90°W, 5°S-5°N). In this
series, there are many El Nifio events with different intensi-
ties, which have a dominant period of 4 years [Pan et al.,
2005]. Furthermore, with the present model parameters, most
of the model El Niflo events tend to warm initially during
January— April or September—November, that is, they prefer
to transit from cold to warm during January—April or
September—November (Figure 1). In this study, the El Nifio
events to be predicted are therefore considered to be two
types of model El Nifio events: events with initial warming in
January— April, and events with initial warming in September—
November.

[13] In the numerical experiments, the 1000 model years
are divided into ten continuous time intervals starting with
year 0—99, year 100—199, and so on. In each of these ten time
intervals, two strong and two weak El Niflo events are
respectively chosen, where the strong (weak) El Niflo events
refer to events in which the NINO3 SSTA are larger (less)
than 2°C in the Zebiak-Cane model. A total of 40 El Nifio
events are obtained, including 12 events with initial warm-
ing in January—April and 28 events with initial warming in
September—November. All these El Nifio events are pre-
dicted through the spring with the start month being their
initial warming time plus a leading time of 12 months.

[14] The initial uncertainties in this study are superimposed
on the SSTA and thermocline depth anomaly fields of the
“true state” El Niflo events. Although the atmosphere is
previously perturbed in the coupled models, in the Zebiak-
Cane model, it is described by the steady state linear shallow
water equation (see section 2), in which the variations of the
atmospheric perturbations are controlled by time-dependent
oceanic variables such as SSTA, thermocline depth anoma-
lies, etc. Therefore, we perturb the components of SSTA and
thermocline depth anomaly in the perfect predictability
experiments of this study, where the initial uncertainties are
taken from the time series of the model SSTA and thermo-
cline depth anomalies. The model ENSO has a dominant
period of about 4 years. For the dimensional SSTA and
thermocline depth anomaly patterns in each month of the 4
years preceding each El Niflo year, we scale them to yield the
initial uncertainties. Thus, we have 48 different initial error
patterns to add on the initial values of each El Nifio event.
Each of these initial error patterns is analyzed. The details are
as follows. We denote the dimensional SSTA and thermo-
cline depth anomalies as 7'with grid points 7}; and & with A,
where (i, j) represents the grid points in the region with
latitude ranging from 129.375E to 84.375W by 5.625 and
longitude from 19S to 19N by 2. T'and / are then scaled by 7
= T/6 and hog = h/6 with an appropriate fraction 1/6 (6 is a
positive number), respectively. 7 and A are then regarded as
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Figure 1. A histogram of the number of ENSO events
with initial warming in each month of the calendar year. The
horizontal axis indicates the months of the calendar year,
and the vertical axis denotes the number of ENSO events
with initial warming in each month.

the initial errors superimposed onto the initial states of the
El Niflo events in the following theoretical prediction
experiments.

[15] To measure the magnitudes of the initial errors, the
characteristic scales of the SST and thermocline depth, w; =
2°C and w, = 50 m are used to non-dimensionlize the initial
errors Ty and /o [Wang and Fang, 1996]. We have T = It
and hy = ﬁ—" Then, Ty and h respectively represent the
nondimensional initial errors of SSTA and thermocline
depth anomaly components for the “true state” El Niflo events.

2 2
The norms || 74 = /iy (73, ) and 1A 1= /S (i, )
are used to constrain the magnitudes of the initial errors, i.e.,
I 751 = |yl = o. By adjusting the value of o, different
magnitudes of initial errors can be obtained.

[16] For each of the 40 chosen El Nifio events, we
integrate the Zebiak-Cane model for 12 months with its
own 48 different perturbed initial conditions and obtain the
48 predictions of the Nifio-3 indices for each El Nifio event.
The difference between the “true states” and their predic-
tions is generally referred to as prediction error. In prefect
model predictability experiments, the prediction error is
only caused by the growth of initial errors. In this paper,
we will explore the dynamical behaviors of these prediction
errors (i.e., the evolutions of initial errors) at different sea-
sons and investigate the common characteristic of the initial
errors that exhibit significant season-dependent evolutions
related to the SPB for El Niflo events. A calendar year is
divided into four “seasons” starting with January—March
(JFM), followed by April—June (AMJ), and so forth. Since
NINO3 SSTA are generally used to determining whether an
El Nifio event is occurring, the slope ~ of the curve (¢) =
| T'(¢)|| related to the NINO3 SSTA is computed at different
seasons, where T'(¢) is the difference between the predicted
SSTA in Nino-3 region and those of the “true state” El Nifio
events and acts as the prediction errors of El Niflo events
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Figure 2. Four examples of the chosen El Nifio events: (a) strong event and (b) weak event with initial
warming in October and (c) strong event and (d) weak event with initial warming in January.

caused by initial errors (7}, /). The slope x describes the
tendency of seasonal growth for SSTA component of initial
errors. The prediction error, T'(f) here is measured by the

2
norm || T'(0)|| =1/ s, (T (t):]) , where (i, ) represents the grid

points in the Nino-3 region. A positive (negative) value of k
corresponds to an increase (decrease) in the SSTA errors,
and the larger the absolute value of , the faster the increase
(decrease).

3.2. Tendencies of Initial Error Growth
at Different Seasons

[17] For each of the chosen 40 El Nifio events, the cor-
responding 48 initial error patterns are superimposed on it to
investigate the slope, x of the error growth related to the SPB.
For each initial error superimposed onto an El Nifio event,
there are four seasonal slopes « to be calculated. Denoting the
largest positive slope as k., and the second largest positive
slope as Kq max, We can use these two factors to explore the
season during which the initial error growth is significantly
larger than those at other seasons. In this section, we prescribe
that if Kpax >1 and Kpax — Ksmax 0.5 [Mu et al., 2007a,
2007b], the error growth at the season corresponding to
Kmax 18 considerably larger than those at other seasons. Here,
Kmax >1 indicates that the prediction error measured by the
chosen norm is amplified exceeding 1 (nondimensional;
dimensional 2°C) at the corresponding season; K. -
Ks.max 0.5 means that the magnitude of the prediction error
growth at the season of K. is 0.5 (nondimensional;
dimensional 1°C) larger than that at the season of kg ax.

[18] Within the above approach, we study the seasonal
evolutions of different initial error patterns on model El Nifio
events. In the numerical experiments, the El Nifio events are
predicted through spring with the start month being their

initial warming times. For example, in the case of the El Nifio
event shown in Figure 2a, the initial warming occurs in
October, so the prediction is carried out with October as the
start month. In addition, for the initial error constraints, we
tried several reasonable values of ¢ ranging from 0.5 to 1.2.
Similar results are obtained for the chosen 40 El Nifio events.
For simplicity, we take only o= 0.8, i.e., || T'|| = || 4| = 0.8, to
show our results.

[19] We first consider the El Nifo events with initial
warming in September—November. This type of El Nifio
events tend to peak at the end of next year. In the predict-
ability experiments, there are 28 such El Niflo events to be
considered (see section 3.1). By investigating the initial errors
of these El Nifio events, we find that, although the error
patterns that exhibit significant season-dependent evolutions
have common characteristics, their effects on El Nifio pre-
dictions show some differences between strong and weak
El Nifo events. Therefore, we will describe the results of
the strong and weak El Nifio events.

[20] For the strong El Niflo events with initial warming in
September—November, the slopes « of each of the 48 dif-
ferent initial errors with o = 0.8 are calculated to evaluate the
seasonal tendencies of the error growths. It is found that for
each of these strong El Niflo events, some of'its own 48 initial
error patterns yield extreme uncertainties in the El Nifio
predictions, in which most initial errors tend to grow con-
siderably during the AMJ season and exhibit prominent
season-dependent evolutions, while a few initial errors
have significant growth in AMJ and JAS, with the largest
growth rates occurring in JAS. As an example of these
strong El Nifio events (see Figure 2a), we illustrate in Table 1
eight cases of the initial errors that yield extreme prediction
uncertainties, of which seven have the largest growth occur-
ring in AMJ, and one has significant growth in AMJ and JAS
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Table 1. Seasonal Growth Rates of Types I and II Errors for the
Strong El Nifio With Initial Warm in October®

SSTA Errors OND JFM AMJ JAS Enino3
Error 11 0312 1.695 5.833 4.657 —1.294
Error 12 0.521 1.971 5.819 4611 —1322
Error 13 0.622 1.848 4.269 5.743 ~1.299
Error 14 0.195 1.651 6.170 4913 —1.334
Error 21 0.093 0.977 2.891 1.517 0.561
Error 22 0.114 1.116 2.551 1.363 0.528
Error 23 0.183 1.146 2.923 1.647 0.594
Error 24 —0.060 0.739 3.173 2.052 0.612

“Bold denotes seasons when the error growth is considerable.

with the largest occurring in JAS. Ey;,,,-3 there represents the
uncertainties of the El Nifio predictions with 1 year lead time,
which are caused by the corresponding initial errors and
obtained by subtracting the NINO3 SSTA of the ““true state”
from that of the predicted state. The negative (positive) values
of Eni,o-3 indicate an under-prediction (over-prediction) of
the event. The numerical results demonstrate that the initial
errors that exhibit prominent season-dependent evolutions
for the strong E1 Niflo events with initial warm in September—
November can be classified into two types: those that result in
negative errors in the NINO3 SSTA for El Nifio events (i.e.,
the negative values of Ey;,,.3) and cause an under-prediction
of El Niflo events and those that induce positive prediction
errors of El Nifio events (i.e., the positive values of Ey;,,.3)
and cause an over-prediction of El Nifio events. The eight
initial errors listed in Table 1 are examples of such errors (see
the column of “Eyy;,,.3”"). There also exist other initial errors
in strong El Niflo events that do not show considerable
season-dependent evolutions, although they have the same
magnitudes as the above two types of initial errors. Table 2
lists the seasonal growth rates (i.e., the slope ) of some of
such initial errors for the El Nifio event shown in Figure 2a.

[21] Figure 3a (3b) shows the SSTA components of the
eight initial errors listed in Table 1, which shows that the
SSTA components of the initial errors that cause the El Nifio
to be under-predicted may have a common characteristic of
possessing a large-scale zonal dipolar pattern with positive
anomalies in the central equatorial Pacific and negative
anomalies in the eastern equatorial Pacific (Figure 3a; here-
after referred to as Type I errors), but the initial errors that
cause the El Nifio to be over-predicted have a SSTA compo-
nent with a zonal dipolar pattern with negative anomalies in
the central equatorial Pacific and positive anomalies in the
eastern equatorial Pacific (Figure 3b; hereafter referred to as
Type Il errors). This common characteristic of the eight initial
errors listed in Table 1 led us to investigate whether all such
initial errors possess a large-scale dipolar structure of SSTA
components for all the strong El Nifio events with initial
warming in September—November. To address this, we took
the composite of the initial errors that cause those strong El
Niflo events to be under-predicted and to be over-predicted,
respectively (Figure 4). It is shown that the composite SSTA
component also tends to exhibit the large-scale dipolar
patterns shown in Figures 3a and 3b, which indicates that
the large-scale dipolar pattern of SSTA component could be
the dominating characteristic of initial errors that exhibit
significant season-dependent evolutions for strong El Nifio
events. In addition, we also find that for the strong El Nifio
events, although both types of initial errors have significant
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season-dependent evolutions, the Type-I errors tend to have a
greater effects on the predictions, because of their larger
resultant prediction errors in the NINO3 SSTA (see Table 1
and section 4). For the error patterns without an apparent
seasonal evolution, we find that it is very difficult to identify a
common characteristic among them. In Figure 3¢, we plot the
SSTA component of four examples of such errors listed in
Table 2.

[22] For the thermocline components of the Type-I errors
(Type-II errors), we note that the evolution behaviors are
favorable for Type-I errors (Type-II errors) yielding nega-
tive (positive) prediction errors in the NINO3 SSTA for
El Niflo events and making the predicted El Niflo events
weaker (stronger). This indicates that the thermocline depth
components cause the Type-1 errors (Type-II errors) to
evolve into La Nifia—like (El Niflo—like) events because
of the Bjerknes’ positive feedback mechanism (for details,
see section 4).

[23] For the weak El Nifio events with initial warming in
September—November, we also explored the characteristics
of the initial errors that have significant growth during the
spring. The results demonstrate that there exist two types of
initial errors, which have patterns similar to that of Type-I
and Type-II errors and exhibit significant season-dependent
evolutions. Table 3 lists the seasonal growth rates of some
of these two types of initial errors for the weak El Nifio
event in Figure 2b. For convenience, we designate these two
types of initial errors as Type-I and Type-II errors as well.
Type-I errors cause the El Nifio events to be under-predicted
and Type-II errors cause the El Niflo events to be over-
predicted. Nevertheless, in the case of weak El Nifio events,
we cannot determine which type of error patterns have a
larger effect on the predictions. For some weak El Nifio
events in the numerical experiments, Type-I errors yield
larger prediction errors, while in other events, Type-II errors
produce the larger prediction errors. Sometimes the predic-
tion errors caused by these two types of initial errors exhibit
only a trivial difference in amplitude. Likewise, it is also
found that, in addition to these two types of initial errors,
there exist other initial errors, which do not have an obvious
season-dependent growth. Furthermore, we cannot extract a
common characteristic from their patterns.

[24] The initial errors of the El Nifio events with initial
warming occurring in January — April were also investigated.
In the numerical experiments, there are 12 such El Nifio
events to be studied. These El Nifio events tend to peak at the
end of year. Figures 2¢ and 2d show two examples of such
El Niflo events, including a strong and a weak event. For the
12 El Nifio events, we investigate the initial errors that show
significant season-dependent evolutions. It is shown that
these initial errors tend to grow significantly in AMJ and
JAS with maximum growth rate appearing in JAS, which is

Table 2. Seasonal Growth Rates of Other Type of Errors for the
Strong El Niflo With Initial Warm in October

SSTA Errors OND JFM AMJ JAS Eninos
Error 1 —0.879 —0.061 0.350 0.309 —0.105
Error 2 —0.762 —0.358 —0.146 0.519 0.083
Error 3 —0.830 —0.001 —0.020 0.214 —0.057
Error 4 —0.439 —0.069 —0.110 0.497 0.139
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(a) Type I errors and (b) Type II errors: examples of two types of initial errors that have

significant season-dependent evolutions related to the SPB for the strong El Niflo event shown in Figure 2a.
(c) Examples of the initial errors that do not have obvious season-dependent growth for the strong El Nifio

event shown in Figure 2a.

slightly different from those of the El Nifio events with initial
warming in September—November. Tables 4 and 5 list the
seasonal growth rates of a few such initial errors for the
El Nifio events shown in Figures 2c and 2d, respectively. For
this situation, Mu et al. [2007b] argued that although the
maximum growth of the initial errors appears in JAS, the
error growth during AMJ also becomes large, which may
cause the dramatic decrease in El Nifio forecast skill during
AMLI. Despite this difference, the initial errors that show
obvious season-dependent evolutions can still be classified
into two types, such as those of the El Niflo events with initial
warming in September—November: errors that cause the El
Niflo to be under-predicted through the spring and errors that
cause the El Nifio to be over-predicted. The data in Tables 4
and 5 illustrate some of these two types of errors for the two
examples El Nifio events shown in Figures 2¢ and 2d. In
addition, the patterns of these two types of initial errors
(and their composite) are similar to those shown in
Figures 3a and 3b (and Figure 4). That is, the former
characterizes the SSTA component as a zonal dipolar pattern
with positive anomalies in the central equatorial Pacific and
negative anomalies in the eastern equatorial Pacific and the
latter exhibits the SSTA component as a zonal dipolar
pattern with negative anomalies in the central equatorial
Pacific and positive anomalies in the eastern equatorial
Pacific. For the strong El Nifio events, the former error
patterns tend to have a larger negative effect on the
prediction than the latter ones. It is also shown that, for
the initial errors that do not have obvious season-dependent

evolutions, a common characteristic cannot be extracted
from their patterns.

[25] The above analysis has identified two types of initial
error patterns (for different El Nifio events), Type-I and Type-II
errors, that exhibit significant season-dependent evolutions
and have a considerable effect on the predictions of El Nifio
events in the ZC model. To support this classification, we
simply performed a cluster analysis experiment, in which the
SSTA components of all the initial errors that exhibit signif-
icant season-dependent evolutions are collected as the objects
(a total of 483 ones for the 40 El Nifio events) for cluster
analysis. A similarity coefficient is used to measure the sim-
ilarity between the objects (SSTA components of initial
errors). Let matrices T, = (Tj}),ux, and T = (L‘-})M be two
different SSTA error patterns, where 7;; and T}f represent the
values of initial errors at different grid points. We rewrite
these two matrices into two column vectors

T o o ] o o el o o a T
T(y_{T117T127'“7T1n’TZI’T22’.“7T2m7'“7m17 m2“‘7Tmn}7
’ 3 B B B b 3 ) 3 8 T
TL}_{Tll7T127"'7T1n7T217T227'“7T2m7"'7Tm17Tm27“'7Tmnv}'

Then the similarity coefficient can be calculated by

1,

5
_ S T
TGN

m n a 2 m n o) 2’
LI (Ty. ) LI (T,;.)

v =cosbns =
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Figure 4. Composite of the initial errors (superimposed on the strong El Nifio events with initial
warming in September—November) that exhibit significant season-dependent evolutions: (a) composite

of Type I errors and (b) composite of Type II errors.

where  is the similarity coefficient and cosf, 3 represents
the cosine of the angle between the two column vectors, T,
and T. By using the statistical software of SPSS (Statistical
Product and Service Solutions), we classified the 483 initial
errors into two groups: one consists of 263 initial errors, and
the other has 220 ones. Then, we took the composite of the
SSTA errors in each group and obtained two composite
patterns (Figure 5). It is found that these two patterns are
very similar to those in Figures 3 and 4, also exhibiting
large-scale zonal dipolar patterns of SSTA components with
positive anomalies in the equatorial central Pacific and
negative anomalies in the equatorial eastern Pacific, and

Table 3. Seasonal Growth Rates of Type I and II Errors for the
Weak El Nifio With Initial Warm in October”

with negative anomalies in equatorial central Pacific and
positive anomalies in equatorial eastern Pacific, respective-
ly. It is therefore reasonable to suggest that the Type-I and
Type-II errors may illustrate the dominant characteristic of
initial errors that exhibit significant season-dependent evolu-
tions for El Nifio events.

4. Implications

[26] The results presented here have demonstrated that
there exist two types of initial errors that show significant
season-dependent evolutions, which are therefore related to

Table 4. Seasonal Growth Rates of Type I and II Errors for the
Strong El Nifio With Initial Warm in January®

SSTA Error OND JFM AMJ JAS Eninos  SSTA Errors JFM AMJ JAS OND EnNino-3
Error 11 0.020 0.964 2.355 0.975 —0.452 Error 11 0.246 2.609 2.759 —1.501 —0.306
Error 12 0.389 1.234 2.947 0.764 —0.511 Error 12 0.410 3.437 3.936 —1.167 —0.549
Error 13 —0.109 0913 2.856 1.171 —0.477 Error 13 0.109 2.509 3.511 —0.861 —0.428
Error 14 —0.058 0.899 2.436 1.046 —0.458 Error 14 —0.177 2.229 4.236 —0.128 —0.561
Error 21 —0.035 0.630 2.898 2.143 0.493 Error 21 —0.072 1.771 2.576 —1.384 0.126
Error 22 —0.050 0.774 2.503 1.728 0.533 Error 22 0.098 1.647 2.251 —1.311 0.105
Error 23 —0.286 0.514 2.317 1.532 0.449 Error 23 —0.032 1.857 2.424 —1.398 0.115
Error 24 —0.001 0.704 2.929 1.938 0.574 Error 24 —0.219 1.747 3.312 —1.267 0.171

“Bold denotes seasons when the error growth is considerable.

“Bold denotes seasons when the error growth is considerable.
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Table 5. Seasonal Growth Rates of Type I and II Errors for the
Weak El Nifio With Initial Warm in January®

SSTA Errors JFM AMJ JAS OND Eninos
Error 11 0.472 4.006 4498  —0.591 —0.860
Error 12 0.580 4691 4680  —1613  —0.856
Error 13 0.305 4129 5078  —0527  —0.905
Error 14 0.411 4.029 4614  —0634  —0.86l
Error 21 0.078 2651  3.499 0.569 0.719
Error 22 0.048 2911 4975 1.743 0.983
Error 23 —~0.107 2501  4.208 1227 0.822
Error 24 0.087 2.844 4348 1.206 0.872

“Bold denotes seasons when the error growth is considerable.

the SPB for El Nifio events. There are Type-I-like errors that
possess a SSTA component of a zonal dipolar pattern with
positive anomalies in the central equatorial Pacific and
negative anomalies in the eastern equatorial Pacific and yield
negative prediction errors in the NINO3 SSTA for El Nifio
events; and there are Type-II-like errors that have a spacial
pattern almost opposite to that of Type-I-like errors and cause
positive prediction errors in the NINO3 SSTA. These results
suggest that Type-II-like errors affect El Nifo prediction by
strengthening the El Nifio amplitude and cause the predicted
El Niflo to be warmer. It is conceivable that Type-II-like
errors may evolve into El Nifio-like events, because of their

(a)
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particular signs, such that they could enhance the develop-
ment of an El Nifio event in the model. That is to say, Type-II-
like errors could evolve into a positive NINO3 SSTA and
have dynamical growth behavior similar to that of the “true
state” El Nifio. Since Type-I-like errors have the opposite
sign, they could develop into a negative NINO3 SSTA, a
La Nifa-like event, which would decrease the amplitude of
the El Nifio event and make the predicted El Niflo weaker,
indicating that Type-I-like errors have a growth behavior
opposite to that of the El Nifio event. We have verified
these points by examining the evolutions of the two com-
posite errors (shown in Figure 5) on the 40 El Nifio events. In
Figures 6 and 7, we illustrate this result for two El Nifio
events: a strong El Nifio event, i.e., the model 59/60 El Nifio
event shown in Figure 2¢, and a weak event, the model 877/
878 El Niflo event shown in Figure 2d.

[27] The above two types of initial error patterns have
dynamical growth behaviors similar to that of El Nifio and
La Nina events. It is known that the development of El Nifio
and La Nifa events are now understood as a result of Bjerknes’
[1969] positive feedback. We therefore infer that these two
types of initial error patterns have the same growth mech-
anism as those of ENSO events and also result, in essence,
from Bjerknes’ positive feedback.

~==22-0.05~

160E

120W

15N 1

10N 1

5N 1

EQ -

5S 1

10S 1

1851

160W 140W 120W 100W

Figure 5. Composite of the initial errors (superimposed on the 40 chosen El Niflo events) that exhibit
significant season-dependent evolutions: (a) composite of Type I-like errors and (b) composite of Type I1—-

like errors.
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Model 59/60 El Nino event
(a)Evolution of El Nino (b)Evolution of Type-I-like error (c)Evolution of Type—Il-like error
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Figure 6. SSTA components for (a) the model 59/60 El Nifio event (see Figure 2c) with leading times
of 0, 3, 6,9, and 12 months, (b) the evolutions of the composite Type [-like error shown in Figure 5, and
(c) the evolutions of the composite Type II-like error shown in Figure 5.

[28] Samelson and Tziperman [2001] applied the ap-
proach of a linear singular vector (LSV) in the Zebiak-Cane
model to study the SPB for ENSO events, where the LSV is
the fastest growth perturbation of the linearized version of
the Zebiak-Cane model. They demonstrated that the first
empirical orthogonal function (EOF) mode of the LSV of
the Zebiak-Cane model has the spatial structure of a mature
El Nifio event and emphasized that the SPB results from a
disturbance growth behavior similar to that of the El Nifio
event. Our results demonstrate this possibility (for example,
Type-Il-like errors). Furthermore, we find that the other type
of initial errors, which have a growth behavior opposite to
that of El Nifio events (for example, Type-I-like errors), can
also show significant season-dependent evolutions in the
Zebiak-Cane model. That is to say, among the initial errors
that exhibit season-dependent evolutions related to the SPB
for El Niflo, some may have the spatial structure of a mature
El Nifio event, and others may possess that of a mature
La Nifia event. The latter indicates that the SPB may also
result from disturbance growth opposite to that of the EI Nifio.

[29] In addition, Xue et al. [1997] calculated the LSVs of
the Zebiak-Cane model and attempted to investigate the
initial errors that have the largest effect on El Nifio predic-

tion, where the resultant SSTA error patterns have a prom-
inent “seesaw’ structure with opposite anomalies between
the eastern and western equatorial Pacific. The two types of
initial errors shown in this study exhibit features typical
of those LSV patterns, such as the zonal dipolar structure of
the SSTA component, but the regions associated with the
large anomalies are located in the central and eastern
equatorial Pacific and tend to be more localized than the
LSVs do (compare Xue et al. [1997, Figure 17a] and
Figure 5 in this paper). This difference could be due to
the effect of nonlinearity, which, of course, needs to be
studied in depth. Although the two types of error patterns
are almost the opposite of each other and imply some
linearities, their evolutions (i.e., the resultant prediction
errors) show nonlinear effects. To support this argument,
we have investigated the evolutions of the two composite
initial errors on the 40 El Nifio events. For all the strong El
Niflo events, we took the ensemble mean of the prediction
errors (i.e., Eyino-3) caused by the two composite Type-I-like
and Type-II-like errors (in Figure 5), respectively. It is shown
that the ensemble mean of the NINO3 SSTA prediction errors
caused by the composite Type-I-like error is about
—0.8635°C, but that caused by the composite Type-II-like
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Model 877/878 El Nino event
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Figure 7. As in Figure 6 but for the model 877/878 El Nifio event shown in Figure 2d.

error is 0.3167°C. This amplitude difference exceeds 0.5°C.
It is known that two patterns with opposite signs, such as
LSVs and -LSVs, will have the same amplitude of evolutions
in the linearized model [e.g., Xue et al., 1997, Mu et al.,
2007a]. Therefore, we show that the differences between the
prediction errors caused by the composite Type-I-like and
Type-II-like errors reflect the effect of nonlinearity on the
error growth of strong El Nifio events. For the weak El Nifio
events, the amplitude difference between the ensemble
means of the NINO3 SSTA prediction errors caused by the
composite Types-I-like and Type-Il-like errors ia only
0.0812°C and can be neglected. These comparisons indicate
that the predictions of strong El Niflo events could be affected
by relatively strong nonlinearities, while those of weak El
Niflo events may be affected by weak nonlinearities.

[30] In realistic ENSO predictions, all sorts of initial error
patterns may exist because of different initializations and
different models. Many studies have been carried out to find
the initial error pattern that has the largest effect on the pre-
diction results, for example, the aforementioned Xue et al.
[1997], Samelson and Tziperman [2001], and Mu et al.
[2007a, 2007b]. The above two types of initial errors may
roughly illustrate the error patterns that cause extreme uncer-
tainties in the El Nifio prediction through the spring. Fur-
thermore, considering that the regions associated with the
large SSTA errors are located in the equatorial east-center

Pacific, the Type-I-like and Type-II-like errors may provide
some information regarding the “sensitive area” of El Nifio
predictions. It is conceivable that, if we intensify the obser-
vations in the sensitive area rather than in other areas, the
ENSO predictions may be greatly improved.

5. Summary and Discussion

[31] The main results of this paper are as follows. Two
types of initial errors have been identified to have signifi-
cant season-dependent evolutions related to the SPB for
El Nifio events. One type possesses a SSTA component that
has a large-scale zonal dipolar pattern with positive anoma-
lies in the central equatorial Pacific and negative anomalies
in the eastern equatorial Pacific and tends to cause the El Nifio
events to be under-predicted through spring; the other type
has a zonal dipolar pattern of the SSTA component with
negative anomalies in the central equatorial Pacific and
positive anomalies in the eastern equatorial Pacific and
causes the El Niflo events to be over-predicted through the
spring. For strong El Nifio events, the former error pattern
tends to have a larger effect on the prediction than the latter.
However, for weak El Nifio events, it is very difficult to
determine which type of initial errors cause worse predic-
tion. The results also demonstrate that there exist other
initial errors that do not induce obvious season-dependent
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evolutions; furthermore, a common characteristic cannot
be extracted from their patterns. These results suggest that
once a particular error mode similar to the two types of
initial error patterns has been initiated, the SPB for El Nifio
events could occur under the model conditions. On the basis
of these two types of initial errors, it is also suggested that the
initial errors related to the SPB for El Nifio events grow in two
possible ways: some grow with dynamical behavior similar to
that of the El Nifio events, and others develop with a tendency
opposite to that of the El Nifio events. The significant growth
of these initial errors during the spring may be also related to
the strongest ocean-atmosphere coupling instability occur-
ring in the spring in the climatological annual cycle and the
strongest dynamical instability (or the weakest persistence) in
the spring of the El Niflo events [Mu et al., 2007a]. These two
factors, which are determined by models, together with the
particular patterns of initial errors, induce the considerable
growth of the initial errors during the spring, which essen-
tially results from Bjerknes’ positive feedback mechanism.

[32] The two types of initial error patterns are almost
opposite to each other and imply some linearities, but the
resultant prediction errors show considerable differences for
strong El Nifio events and reflect the effect of nonlinearity on
the prediction uncertainties for El Nifio events. The strong
(weak) El Nifio events have relatively strong (weak) non-
linearities and the corresponding predictions are affected by
the relatively strong (weak) nonlinearities.

[33] To reduce the effect of the initial uncertainties on the
prediction results, an ensemble forecast technique based on
a multiinitial condition ensemble is used in many predict-
ability studies and even many operational forecasts [Kirtman
et al., 2002]. In this study, we demonstrate that for a forecast
of a single theoretical El Nifio event, there exists some
perturbed initial conditions that cause the El Nifio event to
be over-predicted and others that cause the El Nifio to be
under-predicted. These results imply that if multiple per-
turbed initial conditions are adopted to predict the El Nifio
event, the ensemble mean could offer a better forecast as
compared to a single forecast. Furthermore, we note that in
both two types of initial errors, the regions associated with the
large SSTA errors are always located in the equatorial central
and eastern Pacific and cause extreme prediction uncertain-
ties. These two types of initial errors may therefore capture
the “sensitive areas” of ENSO predictions. It is conceivable
that if the observations in this area are intensified, ENSO
forecasting may be improved.

[34] To investigate the characteristics of initial errors that
cause a significant SPB for El Nifio events, we chose initial
error patterns from a time series of SSTA and thermocline
depth anomalies obtained by integrating the model. This
strategy may not guarantee that the chosen initial errors cover
all realistic error patterns. Thus, the resultant characteristics
of initial errors in this paper are only indicative. Although the
LSV method aims to find the fastest growing perturbation, it
does not consider the effect of nonlinearity, because of its
linearity. It is therefore expected that a nonlinear method (for
example, the CNOP approach) may provide more useful
results. Also, because of the simplicity of the adopted model,
the results obtained here may be limited in the model’s ability
to simulate a real system. Furthermore, since the main
characteristics of La Nifia events, for example, phase locking,
cannot be well modeled by the Zebiak-Cane model [An and
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Wang, 2001], no attempt has been made in this paper to study
the corresponding problem for La Nifia events.

[35] SPB is an unresolved problem for ENSO predictions
and needs to be explored step by step. In this paper, we
explored the characteristics of initial errors that cause a
significant SPB for El Nifio events by performing some
perfect model predictability experiments. The model error
may also affect the ENSO predictions. In this case, it is
unclear whether the characteristics of the initial errors that
cause a significant SPB demonstrated in this study would
hold in the scenario of imperfect model predictability. To
determine this, the effect of the model errors on ENSO
predictions should be studied with imperfect model predict-
ability experiments. Furthermore, realistic hindcast experi-
ments should be conducted to apply these theoretical results
and examine their reliability. Although these questions are
challenge, it is still expected that these questions can be
resolved in future work.
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