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Abstract. The approach of conditional nonlinear optimal 1 Introduction

perturbation (CNOP) was previously proposed to find the op-

timal initial perturbation (CNOP-I) in a given constraint. In In 1975, Lorenz classified two kinds of predictability prob-
this paper, we extend the CNOP approach to search for théems (Lorenz, 1975): one is related to initial error with an as-
optimal combined mode of initial perturbations and model sumption of a perfect model and referred to as the first kind
parameter perturbations. This optimal combined mode, als®f predictability; the other is associated with model errors
named CNOP, has two special cases: one is CNOP-| that onlyith a perfect initial field and consists of the second kind
links with initial perturbations and has the largest nonlinearof predictability. The former has been largely investigated,
evolution at a prediction time; while the other is merely re- and many theories and methods have been proposed or in-
lated to the parameter perturbations and is called CNOP-Hroduced (Lorenz, 1965; Toth and Kalnay, 1997; Mu et al.,
which causes the largest departure from a given referencd003; Mu and Zhang, 2006; Riviere et al., 2008), in which
state at a prediction time. The CNOP approach allows us t®ptimal methods are important for estimating the limit of the
explore not only the first kind of predictability related to ini- Predictability of weather and climate events. The applica-
tial errors, but also the second kind of predictability associ-tion of a singular vector (SV; Lorenz, 1965; Farell, 1989)
ated with model parameter errors, moreover, the predictabilin meteorology is pioneer in this scenario. Considering the
ity problems of the coexistence of initial errors and parametedimitation of the linear theory of SV, Mu et al. (2003) pro-
errors. With the CNOP approach, we study the ENSO pre{osed the approach of conditional nonlinear optimal pertur-
dictability by a theoretical ENSO model. The results demon-bation (CNOP) to search for the optimal initial perturbation
strate that the prediction errors caused by the CNOP errorédenoted by “CNOP-I”) in a given constraint; its competing
are only slightly larger than those yielded by the CNOP-| er-aspect is that it considers the effect of nonlinearity. CNOP-I
rors and then the model parameter errors may play a minofepresents the initial error that has the largest negative effect
role in producing significant uncertainties for ENSO predic- on predictions and has been applied to the predictability stud-
tions. Thus, it is clear that the CNOP errors and their resuld€s for ENSO (Duan et al., 2004, 2008, 2009; Duan and Mu,
tant prediction errors illustrate the combined effect on pre-2006; Mu et al., 2007), the sensitivity analysis for thermo-
dictability of initial errors and model parameter errors and haline circulation (Mu et al., 2004; Sun et al., 2005; Wu and
can be used to explore the relative importance of initial er-Mu, 2009), and the adaptive observation for Typhoon (Mu et
rors and parameter errors in yielding considerable predictiorfll., 2009). Riviere et al. (2009) showed an extension of the
errors, which helps identify the dominant source of the errorsCNOP approach and used it to estimate the predictability of
that cause prediction uncertainties. It is finally expected thagtmospheric moist processes. Bred vector (Toth and Kalnay,
more realistic models will be adopted to investigate this usel997) is another important nonlinear optimal method, which
of CNOP. has been used to investigate the first kind of predictability of
climate (Cai et al., 2003). All these theories and methods
have played an important role in guiding scientists in devel-
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climate (Houtekamer and Deroma, 1995; Xue et al., 1997;evolutions of the initial perturbations in a given constraint
Thompson, 1998; Hamill, 2000; Mu and Zhang, 2006; Mu (Mu et al., 2003; Mu and Zhang, 2006). llluminated by the
and Jiang, 2009). CNOP-I, we attempt to extend the CNOP approach to find
The existing numerical models cannot yet describe exacththe optimal combined mode of initial perturbation and model
the atmospheric and oceanic motions and have model errorparameter perturbation and to disclose the optimal parameter
which have caused significant uncertainties in weather angberturbations in a given constraint.
climate predictions (William, 2005; Orrell, 1999, 2003). The  The paper is organized as follows. In the next section,
effect of model errors on predictability is related to the sec-the CNOP approach is extended to consist not only of opti-
ond kind of predictability (Lorenz, 1975). One important as- mal initial perturbation, but also optimal parameter perturba-
pectin this field is on the effect of the uncertainties of modeltion. The calculation of the extended CNOP is discussed in
parameters on predictability (Lu and Hsieh, 1998; Mu, 2000;Sect. 3. In Sect. 4, the CNOP approach is used to illustrate
Mu et al., 2002). Chu et al. (1999) chose a control parametethe dominant source of the uncertainties that limit ENSO pre-
and studied the predictability of a numerical model by super-dictability by a theoretical ENSO model. Finally, the results
imposing different perturbations on this control parameter.obtained in this paper are summarized and the physics of
Zebiak and Cane (1987), Liu (2002) and Orrell (2003) con-CNOPs are discussed in Sect. 5.
sidered each model parameter and took different values of
this parameter to investigate the effect of the uncertainties of
the parameters on climate simulation, and to explore the serf
sitivity of the climate simulation on the parameter perturba-

tions. However, in reahstlc_ predictions, the multiple pa_rar_n-We write the evolution equations for the state vecity
eters of the model may simultaneously have uncertainties; . :
moreover. there mav exist not onlv model parameter errorsWhlch may represent surface current, thermocline depth and
T y yn X . ... sea surface temperature, etc., as follows;

but also initial errors. Then how to estimate the predictability
limit caused by these combined error modes? aU

Mu et al. (2002) considered both initial errors and model | 5~ = FU,P),
parameter errors and classified three predictability problems Ul—o=Uo,
according to the demands of realistic predictions, the sec-
ond one of which is to estimate maximum prediction errors herel _w U U AU« |
caused by both initial errors and parameter errors that respe(‘.{[y ?rﬁ_ I(x’tt)t_'( 10”22 Z(S’t)’“gé’. "(x’dt))’ andi (1)3:15
tively satisfy a constraint condition. In a predictability study, 'S Mtial state; (x.r) € €2 x[0,7], & is a domain inR",

it is required to know which combined mode of initial er- * = (¥1-X2:---xa), £ =0 Is the initial time and = with
T < +o0 is a future time; furthermore? = (P, Po, ..., Pm)

ror and parameter error yields the maximum prediction error. del " ¢ del ¢
and what is the patterns of the multiply parameter errors that> MOUE! parameters ark| represents one model parameter

have the largest effect on predictability. For example, in pre—thattIS n;\dependtehntt(i;tmdve F ISa r;onh?ear dlffe;entlalEop-Z 1
dictability studies of ElI No-Southern Oscillation (ENSO), erz?rr]. .si.urlnet ta ek ynamica st?/s t?]m ;a(iua |0tnst g ( b )
it is our desire to know: is it initial error or model error that &N¢ € Iniial state are known exactly, the future state can be

has a much larger effect on prediction uncertainties? Thedetermined by integrating Eq. (2.1). The solutionto Eq. (2.1)

answer to this question will provide insight on improving for the state vectol/ at timer is given by
ENSO forecast skill (Mu et al., 2007a, b; Duan et al., 2009).
By investigating the optimal combined mode of initial errors

and model parameter errors and its resultant prediction errorgiere pr, ( P) is the propagator of Eq. (2.1) with the parameter

and comparing them with those of the optimal parameter eryector p and, as described by (2.2), “propagates” the initial

rors, we may answer this question. Thus, we first need tq,5yer, to the timer in the future.

find these optimal modes. Although the above approaches, considering further the solutio/(z) + u(z) of the

related to parameter perturbations, are simple in operation, i, (2.1) with initial valuelg + uo, we have

is very difficult for them to determine these optimal modes. It

is, therefore, needed to develop a new approach to study th& (t) +u(t) = M. (P)(Ug+uo),

optimal parameter perturbations and the optimal combined

mode of initial perturbation and parameter perturbation, inwhereug is the initial perturbation of a time-dependent state

an attempt to quantify the predictability limit caused by the U (¢) (hereafter as reference state), an@) describes the

initial error and model error. nonlinear evolution of this initial perturbation. To facilitate
As described above, Mu et al. (2003) have proposed théhe discussion, we use the denotatidno; 7) instead of the

CNOP approach to find the initial perturbation of the largestu (7).

evolution at the prediction time, i.e., the aforementioned

CNOP-I. CNOP-I is obtained by maximizing the nonlinear

Conditional nonlinear optimal perturbation: initial
perturbation and parameter perturbation

in Qx[0,7] (2.1)

U(t) =M (P)(Uo). (2.2)
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Assume that a parameter perturbatjgnis superimposed CNOP. It has been shown that CNOP-I is a natural general-

on a reference parameter then ization of linear singular vector (LSV) to nonlinear regime
) ) (Mu et al., 2003), which has been applied in stability, sensi-
U@ +u(p'it)=M:(P+p)(Uo), tivity, and predictability studies (Mu et al., 2007b; Terwiss-

cha van Scheltinga and Dijkstra, 2008; Wu and Mu, 2009).
All these applications demonstrate that CNOP-I is more ap-

o . . ... plicable than LSV in estimating predictability limit.
Now we explore the situation that th_ere _eX|sts both initial Another special case of the CNOP is on model parameter
perturbation and parameter perturbation in Eq.(2.2). Then

perturbation. In fact, when only investigating the effect of
we have : . .
model parameter perturbation on a given reference state, it
U(t)+uluo, p';t) = My (P + p')(Ug+uo). requires one to explore the departure from the reference state
at the prediction time. In this case, we can derive from (2.4)
u(uo, p';7) is the departure from the reference stater) the parameter perturbations that cause the largest departure
caused by the combined error mo(d@,p/). from the given reference state. In (2.4), we neglect the initial
A nonlinear optimization problem is defined as follows.  perturbation, namely, take the constraint of initial perturba-
tion asug =0, and obtain

whereu(p’;t) describes the departure from the reference
statelU (7) (see Eq. 2.2) caused .

J (uo; p')= Mz (P +p') Uo+uo) M (P)(Uo) .~ (2.3) /
| Tp(pg) = max(|Mz (P+p) Wo) = M:(P)W0).  (2.6)
an o

J(uosiph) = max  J(uo:p'). (2.4) ?n Which pb is just ;uch an op_timal parameter perturbation
upeCs,p'eCqy in the given constraint. Following the CNOP-I, we call such
, . an optimal parameter perturbation as “CNOP-P”.
Hereup € Cs and p’ € C,,, respectively, are the constraint Although Lu and Hsieh (1998), Fan and Chou (1999),
conditions of the initial perturbations and parameter pertur-gimstad et al. (2003) and Aanonsen (2005) used the non-
bations, wher&’s andC, are closed andando distinguish  |inear optimization method to explore the model parameters,

the constraints of initial perturbations and parameter pertur-they devoted their time to solving a minimization problem

bations. The constraint conditions here can simply be exynq 1o determining the values of the unknown parameter in

pressed as belonging to a ball with a chosen norm; obviously, merical models. In a predictability study, it is also required

we can also investigate the situation that the perturbationg, inyestigate the parameter uncertainties that have the largest

satisfy some physical laws or other. In addition, we can con-gftect on prediction results, but this is related to a maximiza-

sider the parameteysin the Eq. (2.1) to be time-dependent oy problem. In essence, this is different from those in the
and to establish the optimization problems similar to the 0p-5¢rementioned works on parameters and cannot be realized
timization problem (2.4). Nevertheless, the correspondingby their approaches. The CNOP-P can be used to address this
computation could be more difficult, which will not be dis- question. In fact, if theq in (2.3) is regarded as an initial

cussed here. S _ _ observation, the CNOP not only illustrates the optimal com-
Obviously, the optimization problem (2.4) is a constrained pineq mode of initial observational error and model parame-

maximization problem. By this optimization problem, one (e error, but also presents an estimation of the upper-bound
can obtain the optimal combined mode of initial perturbation y,4vimum prediction errors through its resultant prediction
and parameter perturbatiouos; p,), which, for the given oo (see Mu et al., 2002). Correspondingly, the CNOP-
constraint, induces the largest departure from the referencg (CNOP-1) error shows an estimation of the upper-bound
stateU () at timez. It is noticed that, when we consider ayimum prediction errors in a perfect initial condition sce-
only initial perturbaﬂ_on or assume that_th_e C(_)nstralnt of thenario (perfect model scenario) and represents the parameter
parameter perturbation g’ = 0, the optimization problem o5 (the initial observational errors) that has the largest ef-
(2.4) becomes fect on predictability. These upper bounds of the maximum
prediction errors can be attained. It is the CNOP, CNOP-I
and CNOP-P errors that cause the maximum prediction er-
ror in their respective scenario. To facilitate the discussion,
and the initial perturbatiormé’)(s satisfying (2.5) just is the we hereafter use the term “initial error”, rather than “initial
CNOP-I, i.e., the CNOP defined by Mu et al. (2003). Thus, it observational error”, to describe the results obtained in this
is clear that the optimal combined mode in (2.4) is an exten{paper.

sion of the CNOP proposed in Mu et al. (2003). For conve- In order to employ the CNOP approach in predictability
nience, we still named this extended CNOP as CNOP. Thastudies, CNOP-I or CNOP-P or CNOP should first be ob-
is to say, the CNOP hereafter consists of the optimal com-+ained. However, it is very difficult to solve them analyti-
bined mode of initial perturbation and parameter perturba-cally. One should attempt to compute them numerically. In
tion; and the aforementioned CNOP-I is a special case of thehe next section, we will discuss this question.

Juo (1hs) = max || Mc (P) Wo-+uo) — Mc (PYUo), (25)
upeCs

www.nonlin-processes-geophys.net/17/211/2010/ Nonlin. Processes Geophys., 22022010



214 M. Mu et al.: Extension of conditional nonlinear optimal perturbation approach

3 Computations of CNOP, CNOP-I and CNOP-P By introducing two Lagrangian Multipliers; andio, we
obtain that
CNOP-I has been computed in many studies. In calculat-
ing CNOP-I, some optimization solvers are useful (Powell et . I8
al., 1982; Liu and Nocedal, 1989; Birgin et al., 2000). They —§J1 =< u(t),du(r) > —/ < A1), rrae
0

usually search for CNOP-I along the steepest descent in the
dyectpn of the gradient of the porrgspondlng objective fu'nc- OF (U+u; P+p') OF (U+u; P+p)
tion. It is obvious that the gradient is important for capturing du— -

. S - ou ap
the maximal value of the objective function. In large-scale
optimization, the gradient of the objective function, with re- * 08p
spect to initial perturbations, is often obtained by the adjoint/O <A2(t), ot >dt. (3.4)
method (Le Dimet and Talagrand, 1986). In fact, CNOP and
CNOP-P can also be obtained by optimization solvers with
a gradient; moreover, the gradient of the objective function, With an integration by parts, we can get
with respect to initial perturbations and parameter perturba-
tions, can be transferred to a particular case of the obje:/f

ép >dt—

tive function with respect to augmented initial perturbations.

Then the computation of such a gradient is an elementary ap=°

plication of the general adjoint method. Although itis now = 3xq(r)

very well known in meteorology and oceanography (see Lu/ < T"S” >dt =<21(7),8u(t) > —

and Hsieh, 1998), we, for the readers’ convenience, still de-

spribe here how to compute CNOP and CNOP-P with a gra-_; . (0).6u(0) > _/T - 0r1(2)

dient. 0 ot
The existing optimization solvers are often used to com-

pute minimization problems; while CNOPs is related to a nd

constrained maximization problem. In calculating CNOPs,

we turn the maximization problem into a minimization prob- 2 .

lem. In particular, we rewrite the objective function in (2.3) / < (1), PP _ ar =/ — <2o(1),8p > dt—

as follows: 0 ot o 0t

1 2 T
Ao ) = =3[ (w0 p) | = / < mazt(t) 8p > dt =< h2(0),8p(1) > —
0

1 / 2
—EIIMT(P—HD)(U0+uo)—Mr(P)(U0)II =

3@, 2% ar /T O ai(t).Su>dt
< ,—>dt=| —< ,0u >dt—
! at o Ot !

,0u > dt

d2(t)
Jt

T
<k2(0),8p(0)>—/ < ,O0p >dt =
0

_% <u(uo,p's7),u(uo, p';7) >, (3.1)

T
where < - > is the inner product. Then the maximization < x,(t),8p" > — < 12(0),8p’ > —/ < MZ(I),(Sp > dt.
problem (2.4) becomes a minimization one. By computing 0 ot
the minimum of the function/y (uo; p’), the CNOPs can be
obtained. Then we derivéJ as follows:

The first-order variational of1 (uo; p’) is as follows:

—aJ —aJ —8J
—8J1=<u(r),du(r) >=< 3 1,8uo>+<a—/1,8p/>, !
uo P T
(3 2) :/ <%,814>dt+<u(t)—A1(r),8u(r)>+<A1(O),8uo>
' 0
where, to facilitate the description, we simply us@nstead T AF U@ +u(t): P+ p)
of u(uo, p; 7). Furthermoregu () andsp can be governed + | <xr(), ™ Su >dt
by the following tangent linear model . DF(U®) +u(t): P+ p')
86u_8F(U(l)+u(t);P+p/)8 8F(U(l)+u(t);P+p/)8 + A <), oy dp >dt
o u “r ap’ P T 9na(r)
@_0 +f < o 8p >dt+ <0—1x(1),8p" > + < 12(0),8p" >
ot - (33) 0
dul=0 = duo, :/ <%,8u >dt+ <u(t) —r1(1),8u(t) > + < A1(0),8ug >
/ 0 ot
Spli=0o=46p".
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+/T - [3F(U(l>+”(t); P+p/)}*)»1(t),3u - dt This suggests that, if there are adjoint models Eq. (3.9) re-
0 ou lated to initial perturbations, one can easily modify them as
the adjoint models Eq. (3.8) to calculate CNOPs.

T . / *

+/ - [BF(U(t) —i—uEt), P+p )} (1), 8p > di In the above, we derive the gradient of the objective func-
0 dp tion J1, with respect to initial perturbations and parameter
T ana) ) ) perturbations, by introducing two Lagrangian Multipliers

/0 :8p > di+ <0-22(7),8p" > + <42(0).6p" > and x, for an augmented initial perturbation equation. The

approach could clearly present the relationship between the
adjoint model with the initial perturbations and the model
with parameter perturbations. Of course, this gradient can
also be obtained by the usual differentiation of the objec-

/, g | OF(U®+u@); P+p
= < — 4+
0 ot ou

)i| A1(t),0u > dt

+ <u(r) —A1(7),0u(r) > + < 21(0),dup > tive function, with respect to initial condition and parame-
. n* ters (i.e. using the definition of the derivative of a nonlin-
&N IFU ) +u@); P+ o X
+/ < a—t2+[ V) auf ) P )] A1(1),8p > dt ear operator) (see Shutyaev et al., 2008). In addition, since
0 P CNORP is related to a constrained optimization problem, the
+<0—22(1),8p" > + < 12(0),8p’ >, (3.5) constraint condition itself is also enforced in optimization.

e . In different optimization algorithms, the constraints, together
where the sign[]*” denotes an adjoint operator. Therefore, it the objective functions, may show different manners to

by (3.2) and (3.5), we have determine the new iteration points in the optimization pro-
a1 cesses (see Powell et al., 1982; Birgin et al., 2000). In the
P —21(0), (3.6) L-BFGS-B solver to be adopted in the next section, the con-
uo . : ) . I .
straint defines a feasible region of the initial perturbatiofns
and and the feasible direction of the steepest decent is obtained
" by the gradient projection method (Rosen, 1960). Given that
%Z_/\Z(O)Z_/‘f [8F(U(t)+u(t);P+P’)i| r()dr ug is in the feasible region, the gradiewt/; is computed.
ap’ 0 ap’ ’ The direct gradient decent giveg— 1V J1 (u is a step size).

(3.7) But this vector may no longer be in the feasible region. To
keep this feasibility, the new iteration points are obtained by

wherei1(¢) andAx(r) satisfies projectingug — 1V J1 onto the feasible region defined by the
constraint. By this, the updated iteration points still lie in the

*
(5% n IF (U0)+u(); P+p') =0 feasible region, which finally makes the extreme points cor-
at ou == respond to minimal value satisfy the constraint condition as
o [OFWU®O +u@);P+p) T well. This is only a rough description. For more details, the
ot [ op’ ] r1=0, (3.8) reader is referred to Zhu et al. (1997).
)\l|t=r ZM(T)a
A2li=r =0. 4 Application of CNOPs to a simple coupled

The Eq. (3.8) is the adjoint equation of the Eg. (3.3). By in- ocean-atmosphere model for ENSO

tegrating the Eq. (3.8), we can obtain the gradi&nht/dug . . .

ar?d 8]1?3;;/. V(\q/itr(1 thi)s gradient informatic?n the C/:NOP— The ENSO, a prominent climate phenomenon in the coupled
I, CNOP-P and CNOP can be computed t;y optimizationocean—atmosphere system of the tropical Pacific, has a great
s’olvers such as Spectral Projected Gradient 2 (SPG2; Biri_mpact on the global climate. While significant progress has

. : : . been made in ENSO theories and predictions over the years
in et al., 2000), Sequential Quadratic Programming (SQP . . X )
I%owell et al. 1382) gnd Limited memory Br?)yden-FI%tE:her- (see the review of Wang and Picaut, 2004), there still exists

. oo considerable uncertainties in realistic ENSO predictions (Jin
Goldfarb-Shanno for bound-constrained optimization (L- ) .
BEGS-B; Liu and Nocedal, 1989: Zhu et al., 1997). etal., 2008; Tang et al., 2008). Many studies explored ENSO

It is easily seen that the Eq. (3.8) is established on theoredictability from the view of initial error growth (Moore
Eqg. (3.9). And the Eq. (3.9) is the adjoint of the tangentlinearand Kleeman, 1996; Samelson and Tziperman, 2001) and

model of Eq. (2.1) and can be used to calculate the gradien?hom./e(.j that |n.|t|al error may havc_a a Iarge. effect.or.n ENSO
9.J1/duo related to CNOP-I, predictions. It is well known that, in realistic predictions of

ENSO, the prediction uncertainties are generally caused by
9 8F(U(t)+u(t); P—I—p/) * initial errors angl model errors. Furthermore, an incrgasing
7 ™ r1=0, number of studies have indicated that the errors which ex-
(3.9) isted in some model parameters influence the ENSO forecast
Mli=r =u(7), skill at a particular time scale (Liu, 2002; Wu et al., 1993;

www.nonlin-processes-geophys.net/17/211/2010/ Nonlin. Processes Geophys., 22022010



216 M. Mu et al.: Extension of conditional nonlinear optimal perturbation approach

Zebiak and Cane, 1987). Then the question is, in initial er- The steady solutio® (0, 0) represents the climatological
rors and model parameter errors; which one plays the majoannual cycle, in which both SST and the depth of thermo-
role in yielding considerable uncertainties of ENSO predic- cline are normal. In this paper, the model is integrated by
tions? In this section, we will try to address this by using the the fourth-order Runge-Kutta scheme with=0.01, which
CNOP approach. represents one day.

4.1 The coupled ENSO model 4.2 Estimation of prediction errors for El Nifio events

by CNOP, CNOP-I, and CNOP-P
The model we used in this paper is the theoretical coupled

ocean-atmosphere model of Wang and Fang (1996) (heredith an initial constraintUg € {Ug|||Uoll < po}, Where
after referred to as WF96), which has been used to investi{|Up|| = max{|To|, |ko|}, Duan et al. (2009) studied the
gate the predictability of ENSO by Duan et al. (2004, 2008) CNOP-I superimposed on the climatological annual cycle
and Duan and Mu (2006). This model consists of two di-in the WF96 model and demonstrated that the CNOP-I
mensionless equations: one describing the evolutions of thanomalies(Tp, ko) = (—po, o) with different positive val-
anomalous SST in the equatorial eastern Pacific, and the ues ofpg evolve into different intensities of El Rb events.
other depicting those of the anomalous thermocline depth These initial anomalies have the robust patterns of nega-
tive SST and positive thermocline depth anomalies, which
agree with the observations qualitatively (Duan et al., 2004),

ar =a1T—a2h+\/?T(T—a3h), and act as the optimal precursors of Elfilievents. In

dt 3 (4.1)  this paper, we choosgy = 0.05 and 008, then obtain two

ﬁ —b(2h—T) initial precursory anomaliegTy, ko) = (—0.05,0.05 and

dt ' (—0.08,0.08), which are dimensionless and represents di-
where mensional £0.1°C, 2.5m) and £0.16°C, 4.0 m) of SSTA

and the thermocline depth anomaly in the equatorial east-
a1 = T;+T;—a;, ern Pacific. We consider these initial precursors occurring
-, in January, April, July, and October, respectively. And for
az=(pu+60)T,, each initial precursor time, the above two initial anomalies
az=p+081 (4.2)  induce two different intensities of El Ko events. The ini-
tial anomaly (—0.05, 0.05) develops a weak ERblievent,
b= 2—“ while (-0.08, 0.08) evolves into a relatively strong ERNI
p(1-3a?) event (see Mu and Duan, 2003; Duan et al., 2009). For
- _ ) _ convenience, we denote the weak (strong) EidNevents
The coefficients:; andaz involve basic state parametefs  yith initial precursor time January, April, July and Octo-
andT/, which characterise, respectively, the mean temperapg, asUW (U, U WS, UNWS) and UYL (US.),
ture difference between the eastern and western basins angdspectively. We regpard these Elfdi events as “observed
between the surface and subsurface water, and reflect the cli| Njfo events” to be predicted and then compute their
matological annual cycle of the basic staté, represents  cNOP, CNOP-1 and CNOP-P errors, finally determining the
the contribution of the horizontal temperature advection bygominant source of the errors that yield considerable predic-
anomalous zonal currents to local SST variation. Two €S+jon uncertainties.
sential coupling parameters (nondimensional) are presented ysing the uncertain initial condition and model param-
in this model. One is the air-sea coupling coefficient=  eters, we predict the above predetermined HidNevents
(%) , whereLg is the oceanic Rossby radius of deforma- With a one year lead time and the respective initial precur-

tion'and L, is the characteristic meridional length scale of SOY time as the start time of predictions. In the WF96
the coupled ENSO mode. Another coupling parameter ig"0del, we/co/n3|der the initial errors af and 4, denoted
the thermocline effect coefficiept= 21, which measures by uo = (T3, hg); and thf" unc/ert;amhes of the parameters
the degree of coupling between thermocline fluctuation andf’ = (@ 1), signified by p’ = (@',1). In this caselo and
SST. These two parameters are often empirically determinef© in the objective function (2.3) related to CNOPs repre-
in the model and have uncertainties. In this paper, we choos&€NtS the initial State,TO’hO) of the model El Niio events

« =0.0212 andu = 1.525 as the given values of the two pa- &Nd its initial error(7g, hp), P and p’ stand for the param-
rameters. The nondimensional parametiara function oty €t€rse andu and their errors” and u’, and the objective
and the model parameteps= (1— Hy/H)(Lo/Ls)2, where function J = /T’(t)24h’(1)2 measures the resultant pre-
H and H, respectively, are the mean depth of the thermo-diction errors by(Tg, ) and (e, 1) at the prediction time
cline and the mixed layer anfls is the Ekman spreading . respectively.

length. For the values of these parameters, the reader is re-

ferred to Table 1 in WF96.
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The norm|jug|l = max{|Ty|. |hyl} is used to measure the

; w
magnitudes of initial errors. And the constraint Table 1. CNOPs for the reference state Eifdievent! jz;

Cs = {uollluoll <8} (4.3) Cs andCo Ty, hp o W

. . . §=0.01,01=0.03,0,=008 -0.01 0.01 0.0006 -0.1220
with § ranging from 0.01 to 0.05 is adopted to control the — ;_ g, 22003 Zi:o.os 2002 002 00006 —01220

magnitudes of initial errors. For parameter erretandu/, 8=0.03,01=0.03,00=008 -0.03 0.03 0.0006 -0.1220
we determine their constraints according to the basic rules §=0.04,01=0.03,0,=0.08 -0.04 0.04 0.0006 -0.1220
of numerical simulation of ENSO. In realistic ENSO predic- ~$=005,01=003,0,=008 -005 005 0.0006 -0.1220
tions, the forecast model should first guarantee that it can
simulate the main features of the observed ENSO. As such,

the values of the parameters in the model must be set to sat  2jgg=cs

isfy this precondition. Keep this in mind, as we determine  |[=9eer

that the parameter errors satisfy the constraint L
161

Co ={(c". ) 1le/ | /e < 01,11 /1 < 02} (4.4) La-

with o4 =0.03 ando, = 0.08.

With the constraintCs, Mu and Duan (2003) computed
the CNOP-I superimposed on some ENievents in the
WF96 model and demonstrated that the CNOP-I errors al-x *%
ways have the patterns 63, 8). In this paper, we obtain the 06
CNOP-I of the predetermined eight Elii events, which
are similar to those of Mu and Duan (2003) and have the
common patterng—§,8) with § ranging from 0.01 to 0.05. 02
In the perfect model scenario, these CNOP-I errors have the |
largest effect on prediction uncertainties of the correspond-
ing El Nifio events for the constraidl; and make the corre-
sponding EI Niio events to be over-predicted. Fig. 1. Magnitudes of prediction errors caused by the CNOP-

In order to explore the dominant source of the errors thath CNOP-P, CNOP errors, and the combination of CNOP-I and
yield considerable prediction uncertainties for ENSO events CNOP-P errors witls =0.05 ando; = 0.03 ando, = 0.08, for the

redetermined eight model EI b events. The measurement of the

we also include the effect of parameter errors in the modeﬁreoliction errors i (uo: p') — v/ T/ (0124 W (0)2. The numbers 1
: : ) i ug; p)=v1'(z L2 ,
z\r:snl?svestlgate the CNOP and CNOP-P errors of the BoNi 2, 3 and 4 in the horizontal axis denote the Efiblieventsy/ WV

Jan’
To compute the CNOP and CNOP-P, we need the infor-Uapr Uui @ndUg; and 5, 6, 7 and 8 signify the El Kb events
mation of the gradient of the objective functidn similar to USin U/fprl U3, andUS,,, respectively.
the computation of CNOP-I. According to Eg. (3.3) and the
Egs. (3.6)—(3.8), we construct the adjoint model of the ENSO
model (4.1) and obtain the gradient of the objective functionof initial errors and parameter errors in a constraint. To il-
J with respect to the initial perturbations and the parametedustrate them, we plot, in Fig. 1, the prediction errors caused
perturbations. By using this gradient information, the CNOP by CNOP errors witls = 0.05. By comparing the prediction
and CNOP-P errors of the eight EIiNi events are computed errors caused by CNOP errors and CNOP-I errors, we find
by the L-BFGS-B solver (Liu and Nocedal, 1989; Zhu et al., that the CNOP errors only lead to a slightly larger predic-
1997), the algorithm which was also used to obtain CNOP-Ition error than the CNOP-I errors. This indicates that, even
in Mu and Duan (2003) and Duan et al. (2009). if the maximum allowable parameter errors are considered
The CNOP errors of the predetermined eight ERdNi  in the WF96 model, they have, at most, trivial effects on the
events are first investigated. The results demonstrate thgarediction errors caused by initial errors. It is implied that
there exists one CNOP error for each ERbliprediction for  initial errors may be the dominant source of the errors that
each of different magnitudes of constraints; furthermore, thecause notable uncertainties of ENSO predictions.
CNOP errors of different El Nio predictions always corre- Now we study the CNOP-P errors for the eight Enbli
spond to initial perturbations that lie on the boundary of theevents. In this case, we assume initial states of reference
domain defined by the constraint and have similar patternsstate El Niio events are perfect, then only consider the effect
For simplicity, we only list the ones, in Table 1, of the predic- of parameter errors on ENSO predictability. The optimiza-
tions of the EI Niio event/}Y for different constraints. From  tion problem (2.6) in Sect. 2 is related to CNOP-P, whége
the definition of CNOP, it is known that the CNOP errors P and p’ are the same as those of CNOP, but the objective
cause the largest prediction errors for the combined modefunctionJ = /T’ (t)2+ h’(t)2 only measures the prediction

=
N
T

ediction errors
-

1 2

4 5 6
El Nino events
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error of the El Nfio events caused by the parameter errorsrenewed CNOP has two special cases: one is CNOP-I that
(o, 1) in the constrainC, in (4.3). With the gradient of, is only related to initial perturbation and induces the largest
with respect to(e’, '), the CNOP-P for the eight El Ro nonlinear evolution at prediction time; the other is CNOP-
events are calculated. The results show that, for the conP, which is proposed in this paper and merely associated
straint C, with o1 = 0.03 ando, = 0.08, the CNOP-P er- with the parameter perturbation, causing the largest depar-
rors for eight El Nilo events are coherently of the pattern ture from the reference state.
(0.03x,0.08u) with @ =0.0212 andu = 1.525 and corre- CNOP-I acts as the initial error that has the largest ef-
spond to the parameter perturbations that lie on the boundarfect on prediction uncertainties in a perfect model scenario;
of the domain defined by the constrafy. Furthermore, we  while the CNOP can represent the optimal combined mode
find that these CNOP-P errors are not the same as the pararof initial errors and model parameter errors, which causes the
eter perturbation component in the CNOP patterns obtainednaximum prediction error; and CNOP-P can stand for the
above. We note that the CNOP-P errors cause the correparameter error that yields the maximum prediction errors
sponding EI Nilo events to be under-predicted; while the pa- in perfect initial condition scenario. This physics of CNOPs
rameter error componelii®.03x, —0.08u) in the CNOP er-  allows us to investigate, not only the first kind of predictabil-
rors cause the El Kb events to be over-predicted (figures are ity problems but also the second kind of ones; furthermore,
omitted). This indicates that CNOP in the WF96 model couldthe predictability problems of the coexistence of initial er-
not be a simple combination of CNOP-I and CNOP-P, whichrors and model parameter errors. In this paper, we use such
then may imply that CNOP errors consider the effect of non-physics of the CNOPs to study the ENSO predictability by
linear interaction between initial errors and model parameteia theoretical coupled ocean-atmosphere model. It is demon-
errors. In addition, the CNOP-I errors, as described abovestrated that the CNOP errors only cause a slightly larger pre-
cause the model El Kb events to be over-predicted; further- diction error than the CNOP-I errors. This indicates that
more, the initial error component in the CNOP errors is theinitial errors, rather than model parameter errors, may play
same as the CNOP-I errors and also cause the corresponditige major role in yielding notable prediction uncertainties for
El Nifio events to be over-predicted. It is conceivable that,ENSO events. It is clear that the CNOP errors consider the
if the model parameter error components in the CNOP erroreombined effect of initial errors and model parameter errors
are the same as the CNOP-P patterns, they will offset the preand enable itself to investigate the relative effect of initial er-
diction errors caused by the initial error components of therors and model parameter errors on prediction uncertainties
CNORP errors. This fact illustrates physically why the CNOP and to identify the dominant source of the uncertainties that
error, rather than the combination of CNOP-I and CNOP-P, isyield a big effect on predictability. In addition, we show that
the optimal one in the WF96 model and has the largest effecthe CNOP errors are not a simple combination of CNOP-I
on prediction uncertainties for El o events. Furthermore, and CNOP-P errors, but a particular combined pattern of ini-
we note that the differences between the prediction errordial errors and model parameter errors. Furthermore, this par-
caused by the CNOP errors and those caused by the conticular error pattern and its resultant prediction error consider
bination of CNOP-I and CNOP-P errors reflect the effect of sufficiently an effect of nonlinearity. Therefore, to better es-
nonlinearity, due to the nonlinear response of initial errorstimate the predictability limit and reveal nonlinear effect, we
to the parameter errors. Of course, the nonlinearities showishould explore the CNOP errors, i.e. the optimal combined
in CNOP errors, similar to those in CNOP-I errors (see Mu mode of initial errors and model parameter errors.
et al., 2007a), can also be extracted from the difference be- CNOP-I also manifested its physics as the optimal precur-
tween the prediction errors in nonlinear model and those insor of a weather or a climate event, and the most sensitive
its corresponding linearized one. Therefore, although we(or most unstable) initial pattern in sensitivity analysis (Duan
have demonstrated that the model parameter errors play et al., 2004; Mu et al., 2004). It is expected that CNOP-P
minor role in yielding significant uncertainties of ENSO pre- could illuminate the most sensitive parameter perturbation,
dictions in the WF96 model, the differences among CNOP,and provide information on determining the sequence of sen-
CNOP-I and CNOP-P errors suggest that, to better estimatsitivity of model parameters. It is known that there are many
the predictability limit and reveal the nonlinear effect, the parameters in numerical models and most of these parame-
optimal combined mode of initial error and model parameterters are determined by observations. The CNOP-P may help
errors should be investigated. determine the parameters that should be better fixed by ob-
servations. For the CNOP, it could be used to find the opti-
mal precursor of a weather or a climate event under the opti-
5 Summary and discussion mal parameter condition, in an attempt to study the effect of
model parameters’ sensitivity on the precursors. CNOP may
This study presents an extension of the CNOP approachalso be applied to investigate the most unstable (sensitive)
which has renewed the CNOP as the optimal combined modénitial modes with the most sensitive parameter perturbations
of initial perturbation and parameter perturbation, i.e. the onein sensitivity analysis. Of course, these physics of CNOP
that causes the largest departure from the reference state. Tlsbould be realized by applying them to physical problems of
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interest. Nevertheless, what should be pointed out is that the verse Problems and Numerical Solutions, Chinese J. Atmos. Sci.,
CNOP-P here is only related to model parameter errors and 23, 543-550, 1999 (in Chinese).

cannot consider other kinds of model errors. Despite this Grimstad, A., Mannseth, T., Nevdal, G., and Urkedal, H.: Adaptive

it is expected that CNOP will play an important role in the ~multiscale permeability estimation, Comput. Geosci., 7, 1-25,

; ; ; ; 2003.
studies of atmospheric and oceanic sciences. .
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