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ABSTRACT

There are three common types of predictability problems in weather and climate, which each involve
different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the
upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and
parameter error. Highly efficient algorithms have been developed to solve the second optimization problem.
And this optimization problem can be used in realistic models for weather and climate to study the upper
bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other
two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits
the applicability of these two predictability problems in realistic models. In this paper, a new strategy is
designed to solve these problems, involving the use of the existing highly efficient algorithms for the second
predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy
and the new method are performed. It is demonstrated that the new strategy not only outputs the same
results as the old one, but is also more computationally efficient. This would suggest that it is possible
to study the predictability problems associated with these two nonlinear optimization problems in realistic
forecast models of weather or climate.
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1. Introduction

Optimization methods have been a useful tool in
estimating the predictability of weather and climate
(Lorenz, 1965; Fan and Chou, 1999; Smith et al.,
1999; Mu, 2000; Mu et al., 2003). To quantifying
the predictability, Lorenz (1965) applied the linear
singular vector (LSV) approach and introduced this
method to meteorology. The LSVs represent the op-
timal perturbations of a linearized model. One can
use a Power Method (Packard et al., 1988) to obtain
them. Furthermore, if one only needs the leading
LSV that represents the fastest-growing initial per-
turbation of the linearized model, an unconstrained

optimization algorithm can also be used to obtain it
(Mu and Zhang, 2006), and there have been many
highly efficient solvers developed for this task, such
as the Limited memory Broyden-Fletcher-Goldfarb-
Shanno method (L-BFGS; Liu and Nocedal, 1989),
MIQN3 (Liu and Nocedal, 1989), etc.

To reveal the effect of nonlinearity on predictabil-
ity, Mu et al. (2003) further proposed a novel tech-
nique to tackle the optimal initial perturbation in non-
linear models, i.e. conditional nonlinear optimal per-
turbation (CNOP). CNOPs represent a kind of initial
perturbations that have the largest nonlinear evolu-
tion and are different from the leading LSV. A dis-
tinct advantage of the CNOP approach is that it con-
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siders the effect of nonlinearity (Mu et al., 2003; Mu
and Zhang, 2006). Physically, CNOPs describe initial
errors that satisfy a certain constraint and yield the
largest prediction errors. Calculating CNOPs requires
a constrained nonlinear optimization algorithm, where
the sequential quadratic programming (SQP; Powell,
1982) algorithm is useful (Mu et al., 2003), but regard-
less, the available solvers can still only tackle the prob-
lems of small dimensionality (Mu and Zhang, 2006).
In predictability studies for weather and climate, the
associated numerical models are generally of high di-
mensionality and the resulting optimization problems
are complex. For application in such situations, Mu
and Zhang (2006) modified an existing SQP solver and
efficiently obtained the CNOPs of a quasi-geostrophic
model of 513. Other algorithms are also possible for
computing the CNOPs of a complex model. For ex-
ample, Mu et al. (2007) and Mu et al. (2009) adopted
the spectral projected gradient 2 (SPG2; Birgin et al.,
2000) solver to successfully calculate the CNOPs of the
complex PSU/NCAR Meso-scale model (MM5). All
the CNOPs computed in these studies provide use-
ful information for exploring predictability limits for
weather and climate predictions (Mu et al., 2003; Mu
and Zhang, 2006; Mu et al., 2007; Mu et al., 2009;
Duan and Mu, 2009).

Three predictability problems proposed by Mu
et al. (2002) also highlight an important approach
to studying these kinds of predictability problems.
Namely, these problems are associated with the maxi-
mum predictability time, the maximum prediction er-
ror, and the maximum allowable initial error and pa-
rameter error. In that paper, these three problems
were formulated into three constrained nonlinear op-
timization problems. Since the true state of weather
and climate cannot be exactly known, the three pre-
dictability problems were further reduced into three
others, i.e., solutions for the lower bound of the max-
imum predictability time, the upper bound of max-
imum prediction error, and the lower bound of the
maximum allowable initial error and parameter error.
By solving these three reduced nonlinear optimiza-
tion problems, we can obtain estimations regarding
the predictability limits for weather and climate pre-
dictions. For convenience, we hereafter refer to these
three optimization problems as Problem-1, Problem-2,
and Problem-3, respectively.

Problem-2 deals with the upper bound of the max-
imum prediction errors for a weather or climate event,
in which the upper bound can be exactly reached.
Problem-2 can also be understood as solving for the
largest prediction error caused by the initial errors,
subject to certain constraints (Duan and Mu, 2005).
In this case, the CNOP is the initial error that causes

the largest prediction error. Therefore, Problem-2 is
related to the CNOP approach (Duan and Mu, 2005).
Consequently, Problem-2 can be solved by an existing
highly efficient solver for computing CNOPs.

For Problems 1 and 3, although Mu et al. (2002)
and Duan and Mu (2005) have solved these by a filter-
ing method, they did so for two very simple ordinary
differential equation models of 2–3 dimensions. Even
so, an expensive computation was still necessary. We
concede that for a large-scale system of high dimen-
sionality, it would be impossible for us to solve Prob-
lems 1 and 3 by the filtering method.

In this paper, a new strategy is designed to effi-
ciently compute answers to Problems 2 and 3. The
paper is organized as follows. In next section, the
nonlinear optimization problems related to the three
predictability problems proposed by Mu et al. (2002)
are briefly introduced. In section 3, we design a new
strategy for solving the Problems 2 and 3. In section
4, we use a simple model to compare the new and
old strategies. Finally, a conclusion and discussion are
presented in section 5.

2. Three nonlinear optimization problems re-
lated to predictability

In realistic predictions of weather and climate, a
numerical model is often useful, in which the model
parameters are predetermined, and these parameters
each have uncertainties which cause model errors.
Also, the initial observations are uncertain. In the
three predictability problems proposed by Mu et al.
(2002), both these two kinds of uncertainties are con-
sidered. To facilitate the description, we signify the
initial observations as u0,obs, the initial assumed val-
ues of the model parameters as µg, the initial obser-
vational error (hereafter referred to as initial error) as
u0 and the model parameter error as µ. We further
assume that Mt and MT stand for the propagators of
a numerical model from the start time 0 stepping for-
ward to prediction times t and T , respectively. Then
the three predictability problems in Mu et al. (2002)
can be described as follows.
Problem-1 Lower bound of maximum predictable
time. Suppose that the maximum allowable prediction
error of a weather or climate event is predetermined
to be less than ε (the allowable prediction precision; a
positive number), i.e.,

‖Mt(u0, µ) − Mt(u0,obs, µg)‖ � ε . (1)

The information about the errors in the initial observa-
tions and the initial assumed values of the parameters
are also known with the following levels of tolerance:

‖u0,t − u0,obs‖A � δ1, ‖µt − µg‖B � δ2 , (2)
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where ‖ · ‖A and ‖ · ‖B are norms measuring the er-
rors in initial conditions and parameters in the model,
and u0,t and ut are the true values of the initial con-
ditions and the model parameters. The lower bound
of maximum predictable time can be estimated by the
following nonlinear optimization problem

Tl = min
u0∈Bδ1 ,µ∈Bδ2

{Tu0 ,µ|Tu0,µ = max τ ,

‖Mt(u0, µ) − Mt(u0,obs , µg)‖ � ε, 0 � t � τ} ,
(3)

where Bδ1 and Bδ2 are constraints regions with centers
at u0,obs, µg, and radii δ1, δ2, respectively.
Problem-2 The upper bound of maximum prediction
errors. In this case, information about the initial er-
rors and the parameter errors is known. One hopes to
estimate the upper bound of the maximum prediction
error at a given prediction time T , which can be evalu-
ated by the following nonlinear optimization problem

Eu = max
u0∈Bδ1 ,µ∈Bδ2

‖MT (u0, µ) − MT (u0,obs, µg)‖A .

(4)
Problem-3 The lower bound of maximum allowable
initial error and parameter error. This estimates the
required accuracy of the initial conditions and for the
model parameters when one forecasts the state at time
T . In this case, the maximum allowable prediction er-
ror is known to be less than ε. Then, the following
nonlinear optimization problem can be used to deter-
mine the lower bound of the maximum allowable initial
error and parameter error

δ̄max = max
δ

{δ| ‖MT (u0,obs, µg) − MT (u0, µ)‖A � ε ,

u0 ∈ Bδ1 , µ ∈ Bδ2 , δ1 + δ2 = δ} .
(5)

Remarks In these three problems, if the errors in the
parameter can be ignored, and furthermore the model
can be assumed to be perfect, the problems corre-
spond to the “first kind” of predictability introduced
by Lorenz (1975); on the other hand, if the initial
conditions are considered to be exact, then the corre-
sponding problems become those of the “second kind”
of predictability, concerning parameter errors (Lorenz,
1975).

3. The new strategy for solving Problems 1
and 3

When only the initial errors (the parameter errors)
are considered, the three predictability problems pre-
sented here consist of the first (second) kind of pre-
dictability. In Mu et al. (2002) and Duan and Mu
(2005), the three problems presented there were re-
lated to the first kind of predictability. In those stud-

ies, Problem-2 was related to the CNOP approach and
was solved efficiently by existing solvers such as SQP
and L-BFGS, but Problems 1 and 3 were solved by a
filtering method. As mentioned in the introduction,
the filtering method is very time-consuming even for a
simple model and cannot be used in a more complex
model. In this section, we will suggest a new strategy
to compute solutions to Problems 1 and 3 for the first
kind of predictability, which may provide potential in-
sights for applications in a more complex model.

3.1 The new strategy for solving Problem-1

We first consider Problem-1 for “first kind” pre-
dictability problems. In this case, Problem-1 becomes

Tl = min
u0∈Bδ1

{Tu0|Tu0 = max τ ,

‖Mt(u0, µg) − Mt(u0,obs, µg)‖ � ε, 0 � t � τ} , (6)

and hence, Problem-1 solves for the lower bound of
the maximum predictable time induced by the initial
errors in Bδ1 . From Eq. (6), we notice that for a
given initial error in Bδ1 , the maximum predictable
time (Tu0) satisfying the criterion ‖Mt(u0, µg) −
Mt(u0,obs, µg)‖ � ε needs to be first determined. Fur-
thermore, for each initial error in Bδ1 , we obtain a
corresponding Tu0. Of all these Tu0 , the smallest one
is the lower bound of the maximum predictable time.

From the above discussion, it is known that the
lower bound of the maximum predictable time, Tl, cor-
responds to an initial error in Bδ1 , whose resultant
prediction error at time Tl is the largest among those
caused by the initial errors in Bδ1 . This motivates
us to tackle Problem-1 by solving the problem of the
largest prediction error. Furthermore, we have known
that there are highly efficient solvers which can com-
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pute the largest prediction error for Problem-2 (see in-
troduction).

In the filtering method, for each initial error in Bδ1

we have to evaluate the resultant prediction error at
each prediction time to determine the corresponding
maximum predictable time and then search for the
smallest one of these maximum predictable times, a
process which is very time-consuming. It has been
analyzed that we can directly evaluate the largest pre-
diction error by using the existing solvers employed for
Problem-2, instead of computing the prediction error
caused by each initial error in Bδ1 at each lead time.
Moreover, highly efficient solvers such as SQP and L-
BFGS are based on the fastest descent direction of the
gradient of the corresponding objective function, and
are therefore able to save considerable computational
costs as compared to the filtering method. The main
flow of this strategy is as follows.

For a reasonable first-guess, TG, of the Tl, we use
the L-BFGS, the SPG2 or the modified SQP solver to
calculate the largest prediction errors caused by the
initial errors in Bδ1 , which is denoted by ETG . If
this largest prediction error is larger than the max-
imum allowable prediction error ε, we try a smaller
TG = TG − ΔTG, and do another computation of the
largest prediction error at the update time TG; if the
prediction error ETG is less than ε, we try a much
larger TG = TG + ΔTG. With several tries, if a TG is
found to satisfy ETG > ε for TG + ΔTG and ETG � ε
for TG − ΔTG, this TG is approximately equal to the
maximum allowable prediction errors ε and acts as the
upper bound of the maximum predictable time. To
make it clearer, we plot in Fig. 1 the flow chart of this
strategy.

3.2 The new strategy for solving Problem-3

In the scenario of the first kind of predictability,
Problem-3 becomes

δ̄max = max
δ1

{δ1| ‖Mt(u0, µg) −
Mt(u0,obs, µg)‖ � ε, u0 ∈ Bδ1} . (7)

This nonlinear optimization problem addresses the
lower bound of the maximum allowable initial error
when one attempts to forecast successfully a weather
or climate event. In the filtering method, in order to
obtain δ̄max, one has to compute the prediction error
caused by each initial error in Bδ1 for a first-guess δ1 of
δ̄max to see if there exists any initial error in Bδ1 whose
resultant prediction error does not satisfy the crite-
rion ‖Mt(u0, µg) − Mt(u0,obs, µg)‖ � ε. However, it
is this step that is particularly computationally costly.
Therefore, in any new strategy, this step should be
avoided if possible. In fact, from section 3.1 we have
know that a similar problem can be solved by comput-
ing the largest prediction error among those caused by
the initial errors in a given constraint. Thus, one does
not need to compute the prediction error caused by
each initial error in the constraint, and we only com-
pute the largest prediction error and compare it with
the maximum allowable prediction precision ε. In the
new strategy for solving Problem-3, since we directly
calculate the largest prediction error by using the al-
gorithm used for solving Problem-2, the cost is largely
reduced. The corresponding flow chart is illustrated
in Fig. 2.

In this section, we have designed new strategies for
solving Problems 1 and 3. These strategies were es-
tablished for the computation of the largest prediction
error related to Problem-2. In other words, the new
strategies can directly calculate the largest prediction
error and do not need to compute the prediction er-
ror caused by each initial error in the given constraint.
This may result in the new strategies being highly ef-
ficiency. To verify this, two questions need to be ad-
dressed: Were the results obtained by the new strate-
gies the same as those obtained by the old method?
What are the computational costs of the new strate-
gies?

4. Comparison between the new strategy and
the old one

We use a simple El Niño-Southern Oscillation
(ENSO) model (Wang and Fang, 1996, hereafter
WF96) to show the high efficiency of the new strate-
gies for solving Problems 1 and 3. The WF96 model
describes the interannual variation of SSTA, TE, and
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thermocline anomaly, hE, in the Niño-3 region:

⎧
⎪⎪⎨

⎪⎪⎩

dTE

dt
= a1TE − a2hE +

√
2
3
TE(TE − a3hE) ,

dhE

dt
= b(2hE − TE) ,

where

a1 = (ΔT ′
0 − ū′

1 + T
′
x − α′

s)
∣
∣
xE

,

a2 = (κ + σ1)T
′
x|xE ,

a3 = (κ + σ1),

b =
2

σ(1 − 3ε)
.

The parameters, ΔT ′
0, T̄ ′

x, and ū′
1, are time-dependent

and determined by the climate mean state; κ, σ, ε,
and σ1 are all constant. For values of these parame-
ters, readers are referred to WF96. In this paper, the
WF96 model is discretized by a fourth-order Runge-
Kutta scheme with dt = 0.01.

Duan and Mu (2005) have used this model to
demonstrate that reference states with initial values
of U0 = (TE0, hE0) equal to (−0.1, 0.1) and (0.1,−0.1)
respectively represent El Niño and La Niña events in
the WF96 model. Furthermore, Duan and Mu (2005)
regarded these as two theoretical hindcast modes to be
predicted. In this paper, we also use these two events
as basic states to solve the corresponding Problem-
1 and Problem-3. For convenience, we denote these
two events as UE and UL, respectively. The norm
‖u0‖ =

√
T ′2

E0 + h′2
E0 is used to measure the magnitude

of the initial errors, where T ′
E0 and h′

E0 represent the
errors superimposed on initial values of TE0 and hE0,
respectively. Then the constraint condition u0 ∈ Bδ1

in Problems 1 and 3 are equivalent to ‖u0‖ � δ1, i.e.,
√

T ′
E02 + h′2

E0 � δ1 .

With these prescripts, we estimate the lower bound of
maximum predictable time and the maximum allow-
able initial errors of the above two events.

4.1 Problem-1

In the first kind of predictability studies, the WF96
model is assumed to be perfect. With the above nota-
tion and the given measurements, Problem-1 becomes

Tl = min
‖u0‖�δ1

{Tu0

∣
∣Tu0 = max τ ,

‖Mt(U0 + u0) − Mt(U0)‖ � ε, 0 � t � τ} .

Now we compare the new strategy of computing a so-
lution to Problem-1 with the old method used in Duan

and Mu (2005). For convenience, we first briefly intro-
duce here the old strategy. For a constraint disk

√

T ′2
E0 + h′2

E0 � δ1 ,

its corresponding circumscribed square is considered.
Foursquare-meshes of a certain size are used to dis-
cretize the circumscribed square. For any mesh point
outside the disk, it is connected with the center of
the disk, and the intersection point of this line with
the boundary of the disk is obtained. Integrating the
WF96 model from each of these intersection points
and for the mesh points inside the disk and then com-
paring the prediction error caused by each initial er-
ror (represented by the mesh point in the constraint
disk) with the prediction precision ε, the maximum
predictable time Tu0 can be obtained. For all these
maximum predictable times, the smallest one could be
the lower bound of the maximum predictable time. It
is conceivable that the lower bound of the maximum
predictable time computed by this old strategy may
depend on the size of the foursquare-meshes used for
discretizing the constraint. Therefore, in the follow-
ing numerical experiments, we perform comparisons
of the new strategy to the old one with different sizes
of foursquare-meshes.

In numerical experiments, the initial error bound
δ1 is chosen as 0.06, 0.07, 0.08, 0.09, and 0.10, and
the maximum allowable prediction error ε is predeter-
mined as 0.35, 0.40, 0.45, and 0.50, all of which are
the same as those in Duan and Mu (2005). In the old
strategy, several kinds of foursquare-meshes are used
to discretize the circumscribed square of the constraint
disk. By computing the lower bound of the maximum
predictable time of the above El Niño and La Niña
events based on the old strategy, it is found that when
the size of the foursquare-mesh is decreased from 0.01
to 0.0001, the resultant lower bounds of the maximum
predictable time become accordant for the foursquare-
meshes whose size is smaller than 0.001. The lower
bounds of the maximum predictable time obtained by
the old strategy are related to the mesh sizes. It is
believable that the smaller the foursquare-mesh, the
more accurate the lower bound of the maximum pre-
dictable time computed by the old strategy. We would
rather accept the results of the meshes with small sizes.
However, in the new strategy, the results are inde-
pendent of the mesh sizes. Then, we wish to know
whether the predictabilities for Problem-1 estimated
by the new strategy are the same as those computed
by the old strategy.

According to the flow described in Fig. 1, we use
the new strategy to obtain the lower bound of maxi-
mum predictable time for the chosen El Niño and La
Niña events, which are listed in Tables 1 and 2, re-
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Table 1. The lower bound of the maximum predictable time for the El Niño event UE (obtained by the new strategy).

ε δ1 = 0.06 δ1 = 0.07 δ1 = 0.08 δ1 = 0.09 δ1 = 0.10

0.35 267 204 173 154 139
0.40 317 216 183 161 146
0.45 403 229 193 169 152
0.50 420 246 204 177 159

spectively. The data shown in Tables 1 and 2 are the
same as those obtained by the old strategy with the
foursquare-mesh of sizes smaller than 0.001 [see also
Tables 1 and 2 in Duan and Mu (2005)]. This indicates
that the new strategy holds for solving Problem-1.

In addition, it has been mentioned that the new
strategy does not use a foursquare-like mesh to dis-
cretize the constraint disk and, therefore, avoids the
uncertainties induced by the choice of different mesh
sizes in the old strategy. In this case, we are subse-
quently concerned with the computational costs of the
new strategy.

From section 3, we have indicated that the main
difference between the new strategy and the old one
consists of the computation of the largest prediction
error at the first guess TG of Tl,

ETG(u0δ) = max
‖u0‖�δ1

‖MTG(U0 + u0) − MTG(U0)‖ ,

where u0δ is the initial error that causes the largest
prediction error. In the filtering method, the solver
searches for the lower bound of the maximum pre-
dictable time by comparing the prediction errors
caused by the initial errors in the constraint disk with
each other. It is well known that the lower bound of
maximum predictable time corresponds to the largest
prediction error at this time. This implies that the
filtering method is in essence looking for the largest
prediction error among those caused by the initial er-
rors in the constraint disk. However, in order to obtain
this result, the prediction error caused by each initial
error (i.e., each at mesh point) in the disk must be
calculated at each lead time. It is conceivable that
for a complex model and a complicated constraint,
the computation of the lower bound of maximum pre-
dictable time by the filtering method is almost impos-
sible. However, in the new strategy, the computation
of the largest prediction error is performed by a non-
linear optimization algorithm, which searches for the

initial error that causes the largest prediction error
along the descent direction of the gradient of the ob-
jective function. The algorithm to do this has been
verified to be highly efficient. Furthermore, the new
strategy does not use a foursquare-mesh to discretize
the constraint and is independent of the chosen mesh
size, although the prediction errors are also computed
at each lead time. Despite this, we still perform a sim-
ple comparison between the new strategy and the old
one to show the high efficiency of the new strategy.
In Tables 3 and 4, we list the computational costs
of computing the largest prediction errors of the old
strategy on different foursquare-meshes. We also do
the same for the new method given a first guess at
TG = 8 months and an initial constraint bound of 0.08,
where “Mesh-size” denotes the size of the foursquare-
mesh discretizing the constraint, “ETG” represents the
largest prediction error, and “CPU-time” signifies the
computational cost of the largest prediction error with
one CPU. In the new strategy, the largest prediction
error is computed by using the SQP solver, which is
used to solve the optimization problem with equality
and inequality constraints.

From Tables 3 and 4, it is demonstrated that the
new strategy shows has negligible computational cost
to calculate the largest prediction error related to
Problem-1, but costs of the old method are propor-
tional to the mesh sizes. While the results are ac-
cordant for the mesh sizes smaller than 0.001, com-
putational costs are equivalent to at least 6 seconds
of single-CPU time for the above first guess TG and
initial constraint 0.08. The computational cost of the
old strategy is at least 260 times larger than for the
new strategy and is quite intensive even for the simple
model adopted here. Thus, the filtering method would
be rather insufferable for a complex model; the negligi-
ble costs of the new strategy favors its application for a
more complex weather/climate model. As mentioned

Table 2. The lower bound of the maximum predictable time for the La Niña event UL (obtained by the new strategy).

ε δ1 = 0.06 δ1 = 0.07 δ1 = 0.08 δ1 = 0.09 δ1 = 0.10

0.35 1032 1019 765 639 523
0.40 1036 1024 780 648 531
0.45 1040 1026 957 658 538
0.50 1045 1029 1021 671 546
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Table 3. Comparison between the old and the new strategies for the El Niño event UE.

Mesh-size

0.0100 0.0050 0.001 0.0005 0.0001

ETG

Old strategy 0.4919 0.4921 0.4925 0.4925 0.4925
New strategy 0.4925 0.4925 0.4925 0.4925 0.4925

CPU-time (s) Old strategy 0.0600 0.2550 6.0700 23.6000 599.5000
New strategy 0.0240 0.0240 0.0240 0.0240 0.0240

above, the lower bound of the maximum predictable
time obtained by the old strategy depends on the mesh
size, but the new strategy is mesh size independent.
Furthermore, with increasing mesh resolution in the
constraint disk and then decreasing the mesh sizes,
the lower bound of the maximum predictable time ob-
tained by the old strategy gradually converges to that
obtained by the new strategy. The new strategy is
highly efficient, which suggests the possibility of study-
ing Problem-1 in a realistic weather or climate model.

4.2 Problem-3

Regarding the scenario of the first kind of pre-
dictability, Problem-3 is as follows:

δ̄max = max
δ1

{δ1| ‖MT (U0 + u0) −
MT (U0)‖A � ε, ‖u0‖ � δ1} .

Duan and Mu (2005) adopted the filtering method to
solve Problem-3 related to the El Niño event UE and
the La Niña event UL. The filtering method in this
case uses the following scheme: For a first guess δ1,
there exists a corresponding circumscribed square. A
foursquare mesh of size 0.01 is used to partition the
circumscribed square of the constraint disk ‖u0‖ � δ1

and its mesh-points are obtained. For the points out-
side the disk, we connect these points with the center
of the disk and obtain the intersection points of the
lines with the boundary of the disk. Integrating the
WF96 model from these intersection points and for
each point inside the disk, we obtain the prediction
errors caused by the initial errors represented at the
mesh-points. If all these prediction errors satisfy

‖MT (U0 + u0) − MT (U0)‖ � ε ,

we try another δ1 larger than this one and do another
computation of the prediction errors for the updated
δ1. Step by step, we finally find the maximum value,
δ̄max.

Although the filtering method has been used to
tackle Problem-3 by Duan and Mu (2005), it is very
time-consuming, and so we cannot apply it in a com-
plex model. In fact, in the filtering method, for the
first guess δ1 and the subsequent updated values, we
must calculate the prediction error caused by each ini-
tial error in ‖u0‖ � δ1 to see if it satisfies the criterion

‖MT (U0 + u0) − MT (U0)‖ � ε .

It is this step that costs a large part of the compu-
tation time of solving for δ̄max. However, in the new
strategy suggested in section 3, we do not need to cal-
culate the prediction errors caused by all the initial
errors in the constraint, and instead directly evaluate
the largest prediction error by using a ready-made non-
linear optimization algorithm such as SQP (or SPG2)
or L-BFGS. In the latter case, we only judge if the
largest prediction error is less than the maximum al-
lowable prediction error ε.

In order to verify the effectiveness of the new strat-
egy for solving Problem-3, a series of experiments are
performed. For a given start time January, we choose
ε = 0.35, 0.40, 0.45, 0.50 as the maximum allowable
prediction errors to constrain the accuracy of the pre-
dictions, where the prediction times are for August,
October, and December of the year. In Table 5, we
list the lower bound of the maximum allowable initial
error for the El Niño event UE by using the new strat-
egy. The results demonstrate that the lower bound
of the maximum allowable initial error determined by
the new strategy are almost the same as those deter-
mined by the old strategy [see Table 3 in Duan and Mu

Table 4. Comparison between the old and the new strategies for the La Niña event UL.

Mesh-size

0.0100 0.0050 0.0010 0.0005 0.0001

ETG Old strategy 0.3538 0.3540 0.3542 0.3542 0.3542
New strategy 0.3542 0.3542 0.3542 0.3542 0.3542

CPU-time (s) Old strategy 0.0700 0.2600 6.0100 23.9000 600.2000
New strategy 0.0230 0.0230 0.0230 0.0230 0.0230
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Table 5. The lower bound of the maximum allowable initial error (δ̄max) for the E1 Niño evert UE (obtained by the new
strategy).

Time period ε = 0.35 ε = 0.40 ε = 0.45 ε = 0.50

Jan–Aug 0.0633 0.0654 0.0686 0.0704
Jan–Oct 0.0586 0.0606 0.0644 0.0674
Jan–Dec 0.0516 0.0551 0.0614 0.0641

Table 6. Comparison between the old and the new strategies for the El Niño event UE with the time period January–
December and a first guess δ1 = 0.07.

Mesh-size

0.0100 0.0050 0.0010 0.0005 0.0001

ETG Old strategy 0.4249 0.4253 0.4255 0.4255 0.4255
New strategy 0.4255 0.4255 0.4255 0.4255 0.4255

CPU-time (s) Old strategy 0.0700 0.2700 6.4500 24.8000 628.3200
New strategy 0.0700 0.0700 0.0700 0.0700 0.0700

(2005)], where the foursquare-meshes of different sizes
were also used to discretize the constraint in the old
strategy and the results obtained by foursquare mesh
with sizes smaller than 0.001 are coherent.

As mentioned above, in the computation for
Problem-3, differences between the new strategy and
the old one are also evident with respect to the com-
putation of the largest prediction error. In numerical
experiments, we also compare the new strategy and
the old one based on the two aspects of the accuracy
of the largest prediction error and the costs. Similar
results are obtained. In fact, we demonstrate that in
computing the lower bound of the maximum allowable
initial error, the largest prediction error obtained by
the old strategy depends on the mesh sizes. Actually,
only when the mesh sizes are larger than 0.001 do the
resultant largest prediction errors remain unchanged
with increasing resolution of the mesh in the constraint
disk. Nevertheless, the time costs becomes more and
more expensive. For the new strategy, the computa-
tion of the largest prediction error is independent of
the mesh and has negligible cost. Furthermore, its
resultant largest prediction error is the same as that
of the old strategy with the mesh sizes smaller than
0.001. It is believable that, in the old strategy, the
smaller the mesh size, the more accurate the resul-
tant largest prediction error. That is to say, the un-
changed largest prediction error obtained with mesh
sizes smaller than 0.001 may be the exact largest pre-
diction error. Thus, the new strategy not only yields
the same results as the old strategy with small mesh
sizes, but also has negligible costs for the simple model
adopted here. In Table 6, we show the results of the
comparison between the old strategy and the new one
for the El Niño event UE with time period January–

October and a first guess δ1 = 0.07. It is obvious that
the new strategy may be more applicable than the old
one when applied in a complex model.

The maximum allowable initial errors of the La
Niña event UL are also computed by the new strat-
egy and the same results were obtained as by the old
strategy. Furthermore, the new strategy has negligi-
ble computational cost for the largest prediction error
compared to the old strategy. For simplicity, the de-
tails are omitted here.

In summary, we demonstrate that new strategies
can effectively solve Problems 1 and 3 for the first kind
of predictability. These strategies similarly extend to
the corresponding problems of the second kind of pre-
dictability. In this case, we only need to consider errors
superimposed on the model parameters. For simplic-
ity, we do not describe the details here.

5. Conclusion and discussion

In this paper, we propose a strategy for solving for
the lower bounds of the maximum predictable time
and the maximum allowable initial errors of the first
kind of predictability, which can also be extended to
solve problems of the second kind of predictability.
This strategy has been compared to an existing fil-
tering method. A series of comparisons show that the
results of new strategy are almost the same as those of
the old method; furthermore, the methods presented
here can save a large amount of computation time.
The most advantageous aspect of the new strategy is
the computation of the largest prediction errors caused
by initial errors in a given constraint. The largest pre-
diction error in the new strategy is calculated by an
existing optimization solver, which has been verified
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to be highly efficient, whereas in the old method, the
largest prediction error is filtered out by comparing
the prediction errors caused by the initial errors in the
given constraint. It is conceivable that using the filter-
ing method is impossible for solving the above two pre-
dictability problems in a complex and realistic model.
But with the new strategy, since a highly efficient op-
timization solver is used, this provides the possibility
of studying these two predictability problems for a re-
alistic weather and climate model.

The new strategy is proposed to solve for the lower
bound of maximum predictable time and the maxi-
mum allowable initial error and parameter error and
offers considerable computation savings as compared
to the old strategy. Still, we should realize its limi-
tations. In choosing a reasonable first-guess value of
the new optimization strategy, we have to try sev-
eral values due to imperfect initialization. Despite
thus, the new strategy of computing the lower bound
of maximum predictable time still represents progress
as compared to the old strategy because the filtering
method must try each lead time and each mesh point
to determine the lower bound of maximum predictable
time, which may require far more computational cost.
Therefore, our next work will be to study a feasible ini-
tialization for the new strategy. In a word, there is still
much more work to be done to improve the strategy.
It is expected that an even more highly efficient algo-
rithm can be achieved with the help of computational
mathematician.
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