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ABSTRACT

Within the frame of the Zebiak-Cane model, the impact of the uncertainties of the Madden–Julian
Oscillation (MJO) on ENSO predictability was studied using a parameterized stochastic representation of
intraseasonal forcing. The results show that the uncertainties of MJO have little effect on the maximum
prediction error for ENSO events caused by conditional nonlinear optimal perturbation (CNOP); compared
to CNOP-type initial error, the model error caused by the uncertainties of MJO led to a smaller prediction
uncertainty of ENSO, and its influence over the ENSO predictability was not significant. This result suggests
that the initial error might be the main error source that produces uncertainty in ENSO prediction, which
could provide a theoretical foundation for the data assimilation of the ENSO forecast.
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1. Introduction

ENSO is the most prominent interannual signal in
the climate system and has large effects on the global
climate. Knowledge about the ENSO cycle and the
ability to forecast its variations can provide valuable
information to professionals in the fields of agriculture,
public health and safety, fisheries, forestry, and many
others in climate-sensitive professions (Huang, 1999;
Zhang et al., 2003). Therefore, simulation and predic-
tion of the ENSO is very important.

ENSO is by far the most predictable short-term
fluctuation in the Earth’s climate system (Chen and
Cane, 2007). However, considerable uncertainty re-
mains in ENSO predictions (Tang et al., 2008; Luo
et al., 2008). Many studies have been conducted on
the ENSO predictability method regarding initial er-
ror growth. Moore and Kleeman (1996) investigated
the spring predictability barrier (SPB) and revealed
the impact of the initial error on ENSO predictability.
Xue et al. (1997) also demonstrated that the ENSO

prediction level was dependent on the initial field pre-
cision of the numerical model. Chen et al. (1995, 2004)
reduced the SPB and enhanced the ENSO prediction
accuracy of the Zebiak-Cane model by improving the
model initialization, among others. Recently, Mu et
al. (2007a, b) and Duan et al. (2009b) further stud-
ied ENSO predictability and displayed the effect of
the transient growth of initial errors caused by non-
linear instability, and their results showed that the
initial errors with specific spatial structure can lead
to significant SPBs. Duan et al. (2009b) and Yu et
al. (2009) recognized two types of initial errors using
statistical and dynamical methods, respectively; they
demonstrated that the dynamical mechanisms of error
growth were related to the SPB.

The aforementioned studies primarily investigated
the effect of initial errors on ENSO predictability. In
general, the uncertainty of climate prediction is caused
by initial error and model error. The effect of model er-
ror on ENSO predictability can be meaningful. Duan
and Zhang (2010) studied the effects of initial error
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and model error caused by parameter uncertainty on
ENSO predictability with a theoretical ENSO model.
Compared with initial error, their results showed that
the prediction error produced by parameter uncer-
tainty was relatively small and did not have a signifi-
cant impact on ENSO predictability. The uncertainty
of the external forces was also an important source
of model error. Then how do they affect ENSO pre-
dictability?

The Intraseasonal Oscillation or the Madden–
Julian Oscillation (ISO/MJO) is considered to be
one of the main external forces affecting ENSO, even
though a great deal of dispute remains concerning their
relationship. Some insist that MJO is one of the mech-
anisms that provoke El Niño events and that MJO
has a significant effect on the ENSO (Sperber et al.,
1997; McPhaden, 1999; Seo and Xue, 2005; Hendon et
al., 2007); however, others have argued that MJO has
little influence on El Niño. Slingo et al. (1999) and
Hendon et al. (1999) demonstrated that the correla-
tion between interannual variations of MJO and the
sea-surface temperature anomaly (SSTA) of El Niño
is very weak. This debate and uncertainty regarding
MJO effects on ENSO continues; therefore, it is nec-
essary to further study the effect of MJO forces on
ENSO.

In this study, we explored the effect of stochastic
MJO forces on ENSO predictability and attempted to
quantitatively compare the impact of the initial er-
ror and the MJO uncertainty on the predictability of
ENSO. The paper is organized as follows. In section 2,
the Zebiak-Cane model and the parameterized form of
the stochastic MJO forces is described. An approach
called the conditional nonlinear optimal perturbation
(CNOP) is introduced in section 3. In section 4, we
present the primary results of the numerical experi-
ments and show the effect of MJO uncertainty on the
ENSO predictability. Finally, the discussion and con-
clusions are presented in section 5.

2. ENSO model

2.1 Zebiak-Cane model

The Zebiak-Cane model (Zebiak and Cane, 1987)
was the first coupled ocean–atmosphere model to simu-
late the interannual variability of the observed ENSO,
and it has been a benchmark in the ENSO community
for more than two decades. The Zebiak-Cane model
has been widely used in predictability studies and pre-
dictions of the ENSO (Zebiak and Cane, 1987; Blu-
menthal, 1991; Chen et al., 2004; Tang et al., 2008).
It is composed of a Gill-type, steady-state, linear at-
mospheric model and a reduced-gravity oceanic model,
which depict the thermodynamic and atmospheric dy-

namics in the tropical Pacific with oceanic and atmo-
spheric anomalies from the mean climatological state
specified from the observations (see Zebiak and Cane,
1987).

The atmospheric dynamics are described by the
steady-state, linear, shallow-water equations on an
equatorial beta plane. The circulation is forced by a
heating anomaly that depends partly on local heating
associated with SST anomalies and on low-level mois-
ture convergence (parameterized in terms of the sur-
face wind convergence). Herein, the convergence feed-
back is a nonlinear process because moisture-related
heating is operative only when the total wind field is
convergent; this feedback depends not only on the cal-
culated convergence anomaly but also on the speci-
fied mean convergence. The important effect of the
feedback is to focus the atmospheric response to the
SST anomalies into or near the regions of mean con-
vergence, in particular, the Intertropical Convergence
Zone and the Southern Pacific Convergence Zone.

The thermodynamics of the model are governed by
an evolution equation of the SSTA in the tropical Pa-
cific that includes three-dimensional temperature ad-
vection by both the specified mean currents and the
calculated anomalous currents. The assumed surface
heat flux anomaly is proportional to the local SST
anomaly, always acting to adjust the temperature field
towards its climatologic mean state, which is specified
by observations.

In the model simulations, the atmosphere was pre-
viously run with the specified monthly mean SST
anomalies to simulate the monthly mean wind anoma-
lies. Then, the ocean component was forced by surface
wind-stress anomalies generated from a combination
of the surface wind anomalies produced by the atmo-
sphere model and the mean background winds.

2.2 MJO forcing

In this study, the effect of stochastic MJO forc-
ing on ENSO predictability was investigated, but the
forcing was not considered in a Zebiak-Cane model.
Therefore, it was necessary to introduce MJO forc-
ing in a rational fashion into the Zebiak-Cane model.
Zebiak (1989) constructed a parameterized form of
MJO forcing and investigated the effect of MJO on the
ENSO prediction. In this study, we used this rational
type of MJO forcing to investigate the effect of MJO
forcing on ENSO predictability from the viewpoint of
error growth. Zebiak (1989) used the rational MJO
forcing method according to the following rules: (1)
The low-level wind signal was dominantly zonal in the
equatorial region; (2) the 30–60-day period contained
most of the power; and (3) the disturbances were en-
ergetic in the western Pacific, but weaker (at the sur-
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face) in the eastern Pacific. Therefore, the rational
MJO forcing method determined by Zebiak (1989) is
as follows:

τ(x)(t) = A[R(t) + 2R(t−∆t) + R(t− 2∆t)]×

cos(ω0t + t0)
exp

[
−

( y

10

)2
]

exp

[
−

(
x− x0

10

)2
] , (1)

where R is a normal random variable with zero mean
and unit variance, and t0 represents a uniform ran-
dom variable on (0, 2π), and the subscript (x) means
the zonal wind-stress. This force was evaluated at time
intervals of ∆t, which was 10 days for the ZC model.
The parameters used for ω0 and x0 were 2π/40 d−1

and 146◦E, respectively, and the amplitude A was set
at 0.015 N m−2. The western Pacific region (5◦N–5◦S,
163.125◦E–163.125◦W) was forced using the rational
MJO forcing method.

Figure 1 shows data corresponding to three 48-
month studies of this forcing function. The unit of
stress is N m−2, and time is in months. Anomalies as
large as the climatological mean stress (∼0.05 N m−2)
occurred frequently; the model forcing was possibly
stronger than had been previously observed (Madden,
1988; see his Fig. 3). In addition, Fig. 2 shows the
SSTA and Ustress (zonal wind stress) versus Niño3
in the model. It shows that El Niño began with an
expansion of the warm pool into the eastern Pacific

Fig. 1. Three 48-month realizations (units: N m−2) of
the stochastic MJO wind-stress forcing.

beginning in May, referred to as May(0) (Fig. 2a).
This initial eastward expansion of the warm pool was
accompanied by westerly anomalies in the western Pa-
cific (Fig. 2b) in the preceding winter. These results
were similar to those shown in Hendon et al. (2007;
see his Fig. 8). Therefore, the parameterized form of
MJO here was acceptable for our use to investigate the
effect of MJO on ENSO predictability.

The MJO forcing parameter had a large degree of
uncertainty. What is the evolution of the uncertainty?
What is the effect of the MJO forcing uncertainties on
ENSO predictability? Between the MJO forcing un-
certainty and the initial error, which one has a more
important affect on ENSO prediction?

3. Conditional nonlinear optimal perturba-
tions

The CNOP is an initial perturbation that satisfies
a given constraint and has the largest nonlinear evo-
lution at the prediction time. The CNOP approach
is a natural generalization of the Linear Singular Vec-
tor (LSV) approach to a nonlinear regime; it has been
used to study the nonlinear dynamics of ENSO pre-
dictability (Mu and Duan, 2003; Duan et al., 2004;
Duan and Mu, 2006; Mu et al., 2007a, 2007b) and the
sensitivity of ocean circulation (Mu et al., 2004). Re-
cently, the CNOP approach has also been used to gen-
erate initial perturbations for ensemble prediction (Mu
and Jiang, 2008) and to determine the sensitive area
in target observations for typhoons (Mu et al., 2009).
These studies have shown that CNOP is a useful tool
for studying weather and climate predictability. The
CNOP approach is briefly reviewed here (Duan et al.,
2009a).

The evolution equations for the state vector w,
which may include surface current, thermocline depth,
and SST, among others, can be put into a nonlinear
model:

w(t) = Mt(w0) , (2)

where w0 is an initial value of the model and Mt is the
“propagator” that “propagates” the initial value w0 to
the future time t. If u0 is an initial perturbation super-
imposed on a reference state U(t), which is a solution
to the nonlinear model and satisfies U(t) = Mt(U0)
(U0 is the initial value of the reference state), the evo-
lution of u0 can be obtained using the following equa-
tion:

u(t) = Mt(U0 + u0)−Mt(U0) . (3)

For a chosen norm ‖·‖, an initial perturbation, u0δ

is called the CNOP, if and only if the following is true:

J(u0δ) = max
‖u0‖6δ

‖Mt(U0 + u0)−Mt(U0)‖ , (4)
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Fig. 2. Monthly regression (contours) of equatorially averaged (a) SST and (b) Ustress onto Niño-3.
Contour intervals at (a) 0.5◦C and (b) 0.01 N m−2.

where ‖u0‖ 6 δ is an initial constraint defined by the
norm ‖·‖, and J is the objective function.

CNOP is the initial perturbation whose nonlinear
evolution attains the maximal value of the cost func-
tion J at time t. In predictability studies, CNOP rep-
resents the initial error that has the worst effect on
the prediction result at the optimization time (Mu and
Duan, 2003). Therefore, CNOP has been used to iden-
tify the initial error that causes the largest prediction
error for ENSO events (Xu and Duan, 2008).

To compute CNOP, Eq. (4) must be solved. Eq.
(4) is a maximization optimization problem, and no
optimization solver is available to calculate it. How-
ever, many optimization solvers are readily available to
deal with minimization optimization problems. There-
fore, we transformed Eq. (4) into a minimization
problem by considering the negative of the cost func-
tion. Some optimization solvers, such as Spectral Pro-
jected Gradient 2 (SPG2: Birgin et al., 2000), Sequen-
tial Quadratic Programming, and Limited-memory
Broyden–Fletcher–Goldfarb–Shanno, among others,
can be used to compute CNOP. The gradient of the
modified cost function was necessary in these solvers;
furthermore, the adjoint of the corresponding model
is usually used to obtain the gradient. With this in-
formation on the gradient, running these solvers with
initial guesses could aid in the determination of the
minimum, modified cost function [i.e., the maxima of
the cost function in Eq. (4)] along the descendent di-
rection of the gradient. In a phase space, the point
corresponding to the minimum value of the modified
cost function is the CNOP defined by Eq. (4). In
this study, we used the SPG2 solvers to obtain the
CNOP values of the ZC model. To obtain a CNOP,
we tried at least 30 initial guesses chosen randomly;
if several initial guesses converged to a point in the
phase space, this point was considered to be a mini-

mum in the neighborhood. Thus, several such points
were obtained. Of these points, the one that made the
cost function in Eq. (4) the largest was regarded as
the CNOP.

4. Effects of MJO uncertainty on the maxi-
mum prediction error for ENSO events

As stated above, MJO is one of the main external
forcing events for ENSO. Many studies have used a
parameterized form of MJO to investigate the MJO’s
effect; therefore, there are uncertainties in MJO ac-
tivities. For example, Zebiak (1989) used a stochastic
MJO forcing to study the effect of MJO on ENSO
predictions. The stochastic forcing was unpredictable
because of its randomicity and was certain to lead to
model error. How do model errors evolve, and what
is their impact on ENSO predictability? In this sec-
tion, we will adopt the stochastic rational MJO forcing
method to address these questions.

4.1 Experimental strategy

Integrating the ZC model for 1000 years, we ob-
tained a time series of SSTA, which provided a great
number of El Niño events. These El Niño events
tended to have a 4-year period and phase-lock to the
end of the calendar year. In numerical experiments, we
chose many El Niño events and found that the sim-
ulation results depended on the intensities of the El
Niño events. Therefore, two groups of El Niño events
were used to describe the results: one group consisted
of weak events with Niño-3 indices (the SSTA aver-
aged over the Niño-3 region) <2.5◦C; the other group
included strong events, with Niño-3 indices >2.5◦C.
Considering that different types of El Niño events ex-
ist in nature, we chose four events in each group with
initial warming times in January, April, July, and Oc-
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tober.
For convenience, we called the Zebiak-Cane model

with MJO forcing the ZC–MJO model. We were able
to investigate the model errors caused by stochastic
MJO forcing on ENSO predictability with the ZC–
MJO model. Integrating the Zebiak-Cane–MJO model
with the original states of El Niño events as the initial
values led to the El Niño events under the influence
of model errors produced by stochastic MJO forcing.
Comparing the uncertain El Niño events with reference
to state events, their difference was in the prediction
error caused by stochastic MJO forcing for El Niño
events.

To compare the initial error with the model error
caused by the stochastic MJO forcing on ENSO pre-
dictability, we calculated the initial error, which had
the largest impact on the El Niño forecast at the pre-
diction time and could run to a maximum prediction
error with a CNOP approach (i.e., CNOP error). The
CNOP error in this study was calculated as follows:

We constructed a cost function to measure the evo-
lution of the initial error. The aforementioned CNOP,
denoted by u0δ, was obtained by solving the following
nonlinear optimization problem:

J(u0δ) = max
‖u0‖6δ

‖T ′(τ)‖2 , (5)

where u0=(w1T
′
0, w2h

′
0) is a non-dimensional initial

error of the SSTA and thermocline depth anomaly su-
perimposed on the initial state of a predetermined ref-
erence state El Niño event. Values of w1=(2◦C)−1 and
w2 = (50 m)−1 are the characteristic scales of SST and
thermocline depth. The constraint condition ‖u0‖ 6 δ
is defined by a prescribed positive real number δ and
the norm

‖u0‖ =
√∑

i,j
[(w1T ′

0i,j)2 + (w2h′0i,j)2] ,

where T ′
0i,j and h′0i,j represent the dimensional initial

error of the SSTA and thermocline depth anomaly at
different grid points; position (i, j) is the grid point in
the domain of the tropical Pacific with latitude and
longitude, respectively, from 129.375◦E to 84.375◦W
by 5.625◦ and from 19◦S to 19◦N by 2◦. The evolu-
tion of the initial error is measured by

‖T ′(τ)‖2 =
√∑

i,j
(T ′

i,j(τ))2 .

The prediction error of SSTA T ′(τ) is represented at
time τ and is obtained by subtracting the SSTA of the
reference state from the predicted SSTA at prediction
time τ .

For each prediction, we calculated the CNOP-type
initial errors whose optimization time length was 12

months. Comparing the prediction errors caused by
stochastic MJO forcing and CNOP errors and their
combined error modes, we investigated the effect of
stochastic MJO forcing on ENSO predictability and
recognized the main error source affecting ENSO pre-
dictability.

Within the context of this study, we used Year(0)
to denote the year when El Niño attained a peak value,
and we used Year (−1) and Year (1) to signify the year
before and after Year (0), respectively. For each El
Niño event, we made predictions for 12 months with
different starting months. In numerical experiments,
the El Niño predictions were made with a starting
month of July (−1) [i.e., July in Year (−1)], October
(−1), January (0), and April (0).

4.2 Results

For convenience, the strong and weak events with
initial warming times in January, April, July, and Oc-

Fig. 3. Two groups of reference-state El Niño events
whose initial warming time is January (0) (marked
“Rs1” and “Rw1”), April(0) (marked “Rs2” and “Rw2”),
July(−1) (marked “Rs3” and “Rw3”), October(−1)
(marked “Rs4” and “Rw4”), respectively. (a) The time-
dependent Niño-3 indices (units: ◦C) of four strong El
Niño events; and (b) those of four weak El Niño events.
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Fig. 4. Predictability experiment (units: ◦C) of El Niño events initially warming in
July(−1). The curves marked “ori” represent the reference state; those marked “mod”
represent the results of ZC–MJO model; those marked “ini” represent the results of Zebiak-
Cane model; those marked “joi” represent the results of ZC–MJO model with initial errors.
Panels (a) and (b) show the predictability experiment of weak El Niño event under the in-
fluence of different MJO forcing, respectively. Panels (c) and (d) show the experiment using
the strong El Niño event.

tober, were denoted by Rsi and Rwi (i=1, 2, 3, 4).
Figure 3 shows the time-dependent Niño-3 indices for
these eight El Niño events. The El Niño events with
initial warming times in January and April, such as
Rs1 , Rs2 , Rw1 , and Rw2 , usually reached a peak value
in the same year, and those with initial warming times
in July and October, such as Rs3 , Rs4 , Rw3 , and Rw4 ,
reached a peak value in the next year.

4.2.1 Prediction errors caused by stochastic MJO
forcing for El Niño events

First, an investigation into the effect of model er-
rors caused by stochastic MJO forcing on El Niño pre-
dictability was conducted. The MJO form described
in Eq. (1) of section 2 included the stochastic term.
Each numerical realization of the stochastic term was
predicted to display different results because of the
randomicity; thus, diverse realizations of Eq. (1) ex-
hibited diverse results. Similar to Zebiak (1989), we
made nine numerical realizations of stochastic wind

stress for each El Niño event to obtain nine differ-
ent MJO forcings. In the experiments, we imposed
each MJO form as an external value into the Zebiak-
Cane model and explored the prediction error caused
by the stochastic MJO forcing for El Niño. The results
demonstrated that some of the stochastic MJO forcing
overestimated the El Niño prediction, while others un-
derestimated them. Furthermore, for the weak El Niño
events, the stochastic MJO forcing had little effect on
the El Niño prediction results in the early stages, while
large effects were evident in the latter stages; however,
the circumstance was the opposite for the strong El
Niño events, i.e., the stochastic MJO had a large ef-
fect on the prediction in the early stages, while little
effect was evident in the final period. To clarify the
results, we displayed the results of the predictability
experiment with initial warming time in July for both
the weak and strong El Niño events, respectively (Fig.
4). Because the springtime MJO activity is associated
with ENSO evolution, we also showed the spring case
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Fig. 5. Predictability experiment (units: ◦C) of El Niño events initially warming in April(0),
which are similar to Fig. 4.

(i.e., the initial warming time in April) in Fig. 5. Clea-
rly, El Niño, under the influence of different MJO forc-
ing values, departed from the reference state differ-
ently. For the weak and strong El Niño events with
initial warming times in July and April, one numerical
MJO realization made the prediction stronger, and the
other realizations make the prediction weaker. More-
over, with the initial warming time in July, for weak
El Niño events, the MJO forcing had little effect from
July in Year (−1) to April in Year (0) (i.e., the early
stage), while the effect was large from then on (i.e.,
the latter stage); however, it was just the opposite for
the strong El Niño event. The results were not as ob-
vious with an initial warming time in April, but we
could also see that in the last stage, the effect of the
MJO forcing had become larger for the weak El Niño
events, while the strong El Niño events weakened.

Therefore, we could infer that the impact of the
stochastic MJO forcing on the weak El Niño events was
higher compared to its impact on the strong events. Of
course, this result requires further validation by obser-
vational data and concurrent theory.

4.2.2 Prediction error caused by initial errors

We calculated the CNOP error for each El Niño
prediction whose reference state is displayed in Fig. 3.
Piling up the CNOP error on the starting month of
each El Niño prediction and then using the perturbed

initial value to integrate the Zebiak-Cane model, we
obtained the El Niño event affected by the CNOP error
(subtracting the reference El Niño event was the maxi-
mum prediction error for the reference El Niño). Thus,
the CNOP errors damaged the El Niño prediction the
most. The maximum prediction error is denoted by
ENiño−3, where positive value indicates overprediction
of El Niño and negative value indicates underpredic-
tion of El Niño.

For the weak El Niño events, the results showed
that CNOP errors almost always displayed an overpre-
diction of El Niño; for the strong events, CNOP errors
displayed excessively underpredicted values (see Fig.
6).

Figures 4 and 5 show the El Niño events influenced
by CNOP errors, which were predicted with an initial
field, including CNOP errors. Clearly, the reference El
Niño events, which exhibit few differences compared
to the results of the ZC–MJO model, were discrepant
with the events affected by the initial errors. Thus,
compared to the El Niño events impacted by stochas-
tic MJO forcing, the difference between the reference
El Niño events and those caused by CNOP errors were
much larger between the reference events and those af-
fected by stochastic MJO forcing. The prediction error
caused by stochastic MJO error was much smaller than
what was produced by the initial error (Fig. 6). There-
fore, the main source of error leading to the ENSO
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Fig. 6. Prediction errors of Niño-3 indices (units: ◦C) of the eight El Niño events with
starting months of July (−1), October (−1), January(0), and April(0). All the predictions
correspond to the same numerical MJO forcing. The symbol “MOD” stands for the pre-
diction errors caused by the stochastic MJO forcing; “INI” indicates those caused by initial
errors; “JOI” indicates those resulted from the combined mode of initial errors and model
errors.

uncertainty prediction was probably not from model
error caused by stochastic MJO forcing, but from the
uncertainty of the initial field in the ENSO prediction
model. To further demonstrate the problem, we per-
formed another numerical experiment described in the
next section.

4.2.3 The prediction error caused by the combined
mode of the initial error and the model error
produced by stochastic MJO forcing for El Niño
events

In the actual ENSO prediction, the ENSO model
contained both the initial and model error. Therefore,
in this section, we further investigated the effect of the
combined mode of the initial and model error produced
by the stochastic MJO forcing on the ENSO predic-
tion error. Calculating the impact of CNOP error in
the initial field of the ZC–MJO model and integrating
the model, we attained the El Niño events affected by
the joint error mode of the CNOP and model error
caused by stochastic MJO forcing. Then, the El Niño

events and those affected only by CNOP error were
compared. The results demonstrated that the El Niño
events affected by the joint error mode were close to
those impacted by the initial error (see Figs. 4 and
5); moreover, the Niño-3 index prediction errors that
resulted from the initial and joint error mode have lit-
tle discrepancy (see Fig. 6). In view of the chosen
stochastic MJO forcing, which had a similar charac-
teristic and intensity compared to the observation and
a smaller prediction error than the initial errors (see
also in section 4.2.4), we think that the model error
produced by stochastic MJO forcing had little effect
on the ENSO uncertainty prediction and that the ini-
tial error was probably the primary source of error for
the ENSO uncertainty prediction.

Though the impact of the model error caused by
the stochastic MJO forcing on the ENSO uncertainty
prediction was very small, some small El Niño events
affected by the joint error mode were stronger than
those impacted by the CNOP error; other events af-
fected by joint error were weaker, but for the strong
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Fig. 7. The SSTA patterns (units: ◦C) of the evolutions of the composite type-1 CNOP errors with a
0-month lead, a 4-month lead, an 8-month lead, a 12-month lead, and a 16-month lead. (a) The evolution
of errors in the Zebiak-Cane model; and (b) the ZC-MJO model, which was the ensemble mean of nine
MJO forcings.

El Niño events, the discrepancy was much smaller
(see Figs. 4 and 5). The results demonstrated that
the stochastic MJO forcing possibly had a large effect
on weak El Niño events, while having little effect on
strong events. Of course, this result was determined
by an empirical approach and needs further validation
by observational data and concurrent theory.

4.2.4 The effect of stochastic MJO forcing on the pat-
tern of initial error

Studies by Yu et al. (2009) have shown that the
CNOP-type initial error can be divided into two types:

the SSTA field of the first CNOP-type error has the
pattern of positive anomaly in the eastern Pacific and
a negative anomaly in the central and western Pacific;
the second CNOP-type error has almost the opposite
pattern. Furthermore, the two types of errors indicate
two mechanisms of error growth in the ENSO predic-
tion: one is the development of initial error that has
the same growth behavior of El Niño events; the other
is the development of initial error that has the oppo-
site trend of El Niño. We also gained two similar types
of CNOP error (see the first picture in Figs. 7 and 8).
The errors of SSTA in Niño-3 area were usually less
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Fig. 8. The SSTA patterns (units: ◦C) of the evolutions of the composite type-2 CNOP errors
which are similar to Fig. 7.

than 0.1◦C for the CNOP error, while the observed
SST error and the error of analytical SSTA were more
than 0.2◦C (Kaplan et al., 1998; Reynolds et al., 2002).
Hence the initial errors that were larger than CNOP
errors were easily visible in the actual ENSO predic-
tion. What is the effect of the stochastic MJO forcing
on the evolvement of CNOP error found in this study?

To explore the effect of the model error caused by
the stochastic MJO forcing on the evolving CNOP-
type initial error, we appended the CNOP error into
the initial field of the Zebiak-Cane model and the
Zebiak-Cane–MJO model; then, the evolutive spatial
pattern of their prediction error of SSTA were com-
pared. Figures 7 and 8 show the evolvement of two
types of CNOP errors in the two models. The evo-
lution of CNOP error in the Zebiak-Cane model is
on the left, and the ZC–MJO model is on the right.

The pattern of two types of CNOP errors evolved into
something similar to El Niño and La Niña, while the
evolutive trend was analogous to the ZC–MJO model.
The distinction indicated that the effect of MJO usu-
ally increased the SSTA in the central and eastern
Pacific, i.e., SST warming. In fact, previously men-
tioned studies have pointed out that MJO and the re-
lated western wind burst can give rise to remote com-
pelling to the eastern equatorial Pacific by westerly
wind anomalies (Hendon et al., 1998; McPhaden and
Zhang, 2002) that could bring a sinking Kelvin wave,
which can propagate to the central and eastern Pa-
cific, along the thermocline; this can also lead to the
phenomenon of raising the sea level along the western
coast of South America after the western wind burst
∼6–7 weeks later. Concurrently, the abnormal sur-
face current can lead to an eastern shift of the east-
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ern boundary in the warm pool in the western Pacific
along the equator. Both of the zonal currents and the
thermocline submergence create the SST increase in
the central and eastern Pacific. However, the effect of
the MJO was much smaller than the evolution of the
initial error. Clearly, although the results in the left
and right in Figs. 7 and 8 exhibit some differences in
numerical value, their spatial patterns had little dis-
crepancy. This further verifies that the initial error is
probably the main error source resulting in the uncer-
tainty of ENSO prediction.

5. Summary and discussion

In this study, the effect of model error caused by
stochastic MJO forcing on the ENSO predictability
was studied and compared to the prediction error that
resulted from the CNOP-type initial error using the
Zebiak-Cane model and a parameterized form of the
MJO forcing. The main results were as follows. For
the weak El Niño events, the stochastic MJO forcing
had little effect on the prediction results in the initial
stages, while large effects were evident in the termi-
nal stages; for the strong El Niño events, the oppo-
site effect was observed. The impact of the stochastic
MJO forcing on weak El Niño events may have been
higher than on the strong events. In terms of the spa-
tial pattern, the MJO usually increased the SSTA in
the central and eastern Pacific. Clearly, the stochastic
MJO forcing had an effect on ENSO predictability, but
it was less than that of the initial errors. Therefore,
the initial error was probably the primary error source
that led to the uncertainty of the ENSO prediction.

The results suggest that more attention should be
given to the precision of the initial field in ENSO pre-
diction. We noticed that the area of the CNOP-type
initial error was concentrated and that it had obvi-
ous characteristics of locality. This CNOP error in-
dicated the sensitive area of the ENSO prediction. If
we increased the observation in the sensitive area and
reduced the opportunity of the CNOP error in an ac-
tual ENSO forecast, the forecast skill would possibly
improve enormously. Moreover, the dependency of the
ENSO predictability on the initial error emphasized in
these results provided a theoretical base for the adap-
tive data assimilation of the ENSO forecast.

Zebiak (1989) posed the following question: “Is
there any feature that is symptomatic of an uncertain
future evolution, beyond our imperfect knowledge of
the state of the system at any given time?” The re-
sults of this study have provided some answers to this
question: The initial field of the coupled ENSO system
determined the future predictability in great part, and
the precursor leading to a maximum uncertain future

evolution had the pattern of CNOP error.
Further results, discussions, and investigations are

needed to complete this study and to settle this debate.
For example, if the actual observational MJO data
were used, would the results also support those with a
parameterized MJO form in this study? In addition,
the Zebiak-Cane model used in this paper to study
the effect of the MJO on the ENSO predictability was
relatively simple, and a more complicated air–sea cou-
pled model is required to further explore the problem.
Moreover, it is necessary to investigate whether the
results are model dependent. In conclusion, further
research is needed to investigate the problems encoun-
tered in this paper; the theoretical results of this study
may be applied to improve the model and to enhance
the ENSO forecast accuracy.
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