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ABSTRACT

Recent progress in the study of nonlinear atmospheric dynamics and related predictability of weather
and climate in China (2007–2011) are briefly introduced in this article.

Major achievements in the study of nonlinear atmospheric dynamics have been classified into two types:
(1) progress based on the analysis of solutions of simplified control equations, such as the dynamics of NAO,
the optimal precursors for blocking onset, and the behavior of nonlinear waves, and (2) progress based on
data analyses, such as the nonlinear analyses of fluctuations and recording-breaking temperature events, the
long-range correlation of extreme events, and new methods of detecting abrupt dynamical change.

Major achievements in the study of predictability include the following: (1) the application of nonlinear
local Lyapunov exponents (NLLE) to weather and climate predictability; (2) the application of condition
nonlinear optimal perturbation (CNOP) to the studies of El Niño-Southern Oscillation (ENSO) predictions,
ensemble forecasting, targeted observation, and sensitivity analysis of the ecosystem; and (3) new strategies
proposed for predictability studies.

The results of these studies have provided greater understanding of the dynamics and nonlinear mecha-
nisms of atmospheric motion, and they represent new ideas for developing numerical models and improving
the forecast skill of weather and climate events.
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1. Introduction

Nonlinear atmospheric dynamics is an important
topic in the study of geophysical fluid dynamics, which
itself shows complexity and nonlinearity and presents
many important physical and mathematical issues for
scientists. The complexities and nonlinearities of at-

mospheric flows are challenging to analyze and under-
stand or predict. Even though, scientists made signif-
icant progresses in the last several decades. For ex-
ample, the properties of baroclinic instability were ex-
tensively studied in linear approximation (Pierrehum-
bert, 1984; Dimas and Triantafyllou, 1995); the crucial
characteristics of the mean state for the development
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of the instability were identified (Charney and Stern,
1962; Bretherton, 1966); the North Atlantic Oscilla-
tion (NAO) events were recognized as arising from the
eddy forcing in the Atlantic storm track (Vallis et al.,
2004); the optimal perturbation method was exten-
sively applied to the studies of large-scale meteorology,
oceanography, coupled systems, and even the meso-
scale meteorology (Lorenz, 1965; Moore and Kleeman,
1996; Samelson and Tziperman, 2001).

Predictability is a key issue in the study of at-
mospheric sciences. The complexity, nonlinearity,
and randomness of atmospheric motion limit its pre-
dictability. Studies on predictability received consid-
erable attention in recent decades due to the pioneer-
ing works of Lorenz in the early 1960s (i.e., Lorenz,
1963, 1965, 1969a). One of the great efforts is the
exploration of the fundamental limits of predictability
(Smith et al., 1999). The predictability of a system is
strongly dependent on its stability properties (Moore
and Kleeman, 1996; Smith et al., 1999). If a system
is particularly unstable, any initial uncertainty that
projects significantly onto one of these instabilities
will severely limit the skill of an initial-value forecast.
Lorenz (1975) showed that the extreme sensitivity of
weather predictions to initial conditions means that
detailed forecasts are, in general, impossible beyond
∼2 weeks. Webster and Yang (1992) demonstrated the
“spring predictability barrier” (SPB) of ENSO fore-
casts by analyzing the correlation between El Niño and
the Southern Oscillation. Samelson and Tziperman
(2001) showed the growth-phase predictability barrier
of El Niño.

Concerning both nonlinear atmospheric dynamics
and their related predictability, Chinese scientists have
also made an indelible contribution in last few decades.
For example, in the study of nonlinear atmospheric
dynamics, Mu et al. (1996) established a series of sta-
bility criteria for several famous atmospheric models.
Luo (2005a–d) proposed a new theory to address the
relationship between a blocking flow (planetary scale)
and short synoptic-scale eddies. Fu et al. (2003a–
c) proposed new methods to solve nonlinear evolution
equations, including the Jacobi elliptic function ex-
pansion method and the new transformation method.
All of these methods benefit our understanding of the
irregularities in period and multiple structures of at-
mospheric motion.

In addition, Chinese scientists explored the calcu-
lation of the gradient related to variational data assim-
ilation with “on–off” processes. They presented a new
method based on the nonlinear perturbation equation
(NPE) for an idealized model to calculate the gradient
of the cost function in the presence of on–off switches
(Mu et al., 2003; Mu and Zheng, 2005; Wang et al.,

2005). In the studies of predictability, Mu et al. (2004)
referred it to the study of the uncertainty of forecast re-
sults, which consisted of two parts: (1) the analysis of
the factors and mechanisms that yield these uncertain-
ties, and (2) the search for methods and approaches to
reduce these uncertainties. In addition, the concepts
of conditional nonlinear optimal perturbation (CNOP)
and the nonlinear local Lyapunov exponent (NLLE)
was proposed and used to address the effects of non-
linearity on weather and climate predictability (see the
review by Duan et al., 2007); CNOP was also used to
study the phenomenon of spring predictability barrier
(SPB) for ENSO predictions (Mu et al., 2003). Some
new approaches were also developed to improve the
predictability of some forecast models (see the review
by Duan et al., 2007), which included a new initializa-
tion scheme for an intermediate coupled model, the use
of the real-time initial atmospheric data in the IAP9L-
AGCM, and the use of the reconstruction phase space
theory and a spatio-temporal predictive method in a
nonlinear dynamical regional prediction model. Fur-
thermore, the ensemble forecast approach was adopted
to investigate the predictability of tropical typhoons.

In recent years (2007–2011), Chinese scientists
have made further progress in the study of nonlinear
atmospheric dynamics and predictability. In this pa-
per, we briefly summarize this progress. In section 2,
we review advances in the studies of nonlinear atmo-
spheric dynamics. The progress in the study of pre-
dictability of weather and climate are summarized in
section 3. Finally, a summary and discussion are pre-
sented in section 4.

2. Nonlinear atmospheric dynamics

The basic structures of atmospheric motion can be
derived using two methods: (1) controlled equations
used to describe the motions of the atmosphere, and
(2) patterns derived using datasets of recorded mo-
tions of the atmosphere. Thereby, two methods to ex-
plore the nonlinearity of the atmospheric motions fol-
low: (1) analyzing the solutions derived from the con-
trolled equations of the atmospheric motions, and (2)
analyzing the statistical laws found in the recorded the
changes of the atmospheric motions. Progress in the
study of the North Atlantic Oscillation (NAO), block-
ing onset, and nonlinear waves have been achieved us-
ing the first method, while progress elsewhere has been
obtained using the second method.
2.1 The dynamics of North Atlantic Oscilla-

tions

The NAO is an important low-frequency dipole
mode confined to the Atlantic sector of the Northern
Hemisphere (NH). The essential time scale of an NAO
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event is known to be ∼2 weeks (10–20 days; Feldstein,
2000; Benedict er al., 2004; Franzke et al., 2004). NAO
events arise from the eddy forcing in the Atlantic storm
track (Vallis et al., 2004)); however, many problems
such as why the eddy forcing from the Atlantic storm
track can drive the NAO event with a life period of
∼2 weeks and what determines the phase of the NAO
event remain unsolved theoretically.

Luo et al. (2007a,b) developed a weakly nonlinear
NAO model to explain why synoptic-scale eddies can
reinforce an NAO event with a timescale of 10–20 days
and what dominates the phase of a NAO event. Then
the weakly nonlinear NAO model was extended to in-
clude the effect of topographic waves on NAO events.
This generalized model was used to interpret how the
zonal mean westerly anomaly changes during the dif-
ferent stage of the NAO event (Luo et al., 2007c). Re-
sults showed that the variation of the zonal mean flow
is consistent with the change of the NAO amplitude,
and the interaction between the NAO anomaly and to-
pographic wave can induce the meridional shift of the
zonal mean westerly wind, but the direction of the jet
shift is dominated by the phase of the NAO event. In
a subsequent paper, Luo et al. (2008a) confirmed that
the synoptic-scale wave breaking and the meridional
shift of the westerly jet are different descriptions of
the NAO phenomenon. At the same time, it was also
verified that the phase of the eddy-driven NAO event
is determined by the north–south shift of the Atlantic
jet prior to NAO onset (Luo et al., 2008b). Moreover,
Luo and Gong (2006) also used this weakly nonlinear
NAO model to explain why NAO patterns underwent
an eastward shift from 1950–1977 to 1978–1997.

More recently, Luo et al. (2010a, b) investigated
why the NAO pattern exhibited different spatial struc-
ture and zonal shifts during 1958–1977 and 1978–1991.
The different tilting of the NAO pattern was due to the
different meridional shifts of the center of the Atlantic
jet during the different phases of the NAO. Moreover,
Luo et al. (2011) found that a very strong Atlantic
storm track can result in the transition of the NAO
event from the positive to negative phase, thus ex-
plaining why the winter mean NAO index underwent
a decline during 1991–2009.

2.2 The precursors for blocking onset

The dynamics of blocking onset is another impor-
tant issue in nonlinear atmospheric dynamics. How to
determine the perturbations that trigger the blocking
onset is very important for forecasting blocking on-
set. To address this question, Mu and Jiang (2008a)
used the linear singular vector (LSV) method and the
conditional nonlinear optimal perturbation (CNOP)
method to investigate the precursor of blocking on-

set and to reveal the effect of nonlinearity by a T21L3
quasigeostrophic (QG) model.

CNOP is defined as an initial perturbation, whose
nonlinear evolution in a given norm attains the maxi-
mum at a prescribed forecast time with physical con-
straint condition (Mu et al., 2003; Duan et al., 2004).
It is a natural generalization of LSV into the nonlin-
ear regime. Jiang et al. (2008) first investigated the
CNOPs of a T21L3 QG spectral model. They ob-
tained the CNOPs of the model in terms of three kinds
of norms (stream-function-squared norm, total-energy
norm, and enstrophy norm) and compared them with
their linear counterparts, namely LSVs, revealing the
effect of nonlinearity. Results showed that the CNOP
method may be a more appropriate tool for the study
of stability and sensitivity problems when nonlinearity
is of importance. Furthermore, a proper norm should
be chosen aiming at different physical problems; based
on this, Mu and Jiang (2008a) studied the precursor of
blocking onset using CNOP and the T21L3 QG model.
At the optimization time of 3 days or 6 days, the
CNOP was always the best technique to discover per-
turbations triggering blocking onset, and the selection
of objective function played an important role. For the
same initial constraint condition, if a forecast period
was extended into the medium range, the advantage
of CNOP became more evident.

Furthermore, the inverse problem of determining
the precursors to a given blocking anomaly in climato-
logical flow over the Atlantic and Pacific Oceans was
explored using the CNOP method with the T21L3 QG
model (Jiang and Wang, 2010). A blocking anomaly in
geopotential height field is specified as a dipole struc-
ture that is dominated by a strong positive anomaly
centered at ∼60◦N and a weak negative anomaly to
the south.

Results showed that both for the Atlantic and Pa-
cific blockings, the precursors are baroclinic synoptic-
scale wave-train disturbances, whose maximum ampli-
tudes are located in the upstream of the corresponding
blocking regions. The disturbances, which mostly fo-
cus on the northward flanks of the corresponding At-
lantic and Pacific upper-level jets, take on a northeast–
southwest trend. However, the leftover parts located in
the southward flanks of the corresponding upper-level
jet take on northwest–southeast trend. This structure
is favorable to the precursors to gain more kinetic en-
ergy from the horizontal shear of the basic flow. Fur-
ther energy analysis reveals that the available potential
energy contributes more to the initial precursors, and
with time, the kinetic energy dominates the structures.
The Pacific block onset is more easily understood from
the viewpoint of an eddy-forcing mechanism.



NO. 5 ZHOU ET AL. 1051

2.3 Nonlinear waves and their applications

The NAO and its blockings are different patterns
that exist in atmospheric motion that can be described
by different simplified controlled equations. Usually,
these simplified equations are nonlinear partial differ-
ential equations, and they are difficult to solve an-
alytically. However, a number of solvable nonlinear
equations exist, such as the Korteweg-de Vries (KdV)
equation. It is therefore very important to analytically
solve these equations to obtain more and more differ-
ent analytical solutions, and finally to explain these
phenomena. Chinese scientists have proposed a sys-
tematic way to find breather lattice solutions to some
solvable nonlinear equations (Fu and Liu, 2007; Fu et
al., 2007a–c; Zhao et al., 2009). These breather solu-
tions have been used to explain some features of rogue
wave (Ruban, 2007). Another way to solve nonlinear
equations is to derive their approximate solutions; re-
cently, new Lame functions have been used to derive
different multi-order exact solutions of some nonlinear
systems (Fu et al., 2009a, b; 2010a, b).

2.4 Nonlinear analysis of fluctuations in
fields related to weather and climate vari-
ables

In this section, we review progress in the non-
linearity of the atmospheric motions which has been
explored by analyzing observation data of the atmo-
spheric motion.

Studies by Chinese scientists have shown that sta-
tistical similarity in atmospheric motion exists over
broad ranges found in a variety of different variables
(Chen et al., 2007a; Lin et al., 2007; Lin and Fu, 2008;
Feng et al., 2009a; Yuan et al., 2010). Time series of
different variables, such as temperature, relative mois-
ture, wind speed, etc. can be used to qualify this kind
of statistical similarity, i.e., long-range correlations be-
tween values. Different fractal behaviors have been
found for different temperature variables (Yuan et al.,
2010). Even for a single variable, such as wind speed,
the spatial distribution of singularities differs (Feng et
al., 2009b), which can be explained by different mo-
ments over different scales, where mono-fractal behav-
ior and multi-fractal behavior take obviously different
moments using detrended windows. This kind of sta-
tistical similarity can be used to define a new index
χ to illustrate different characteristics over different
climatic regions (Chen et al., 2007b). For example,
the northern midland of China and the southern mid-
land of China can be separated by this single index.
The inherent physical processes reflected in fluctua-
tions in relative humidity may lead to self-organized
behavior, and this may be used to explain the strong
power law relationship between observed lightning fire

ignition probability and relative humidity. Long-term
persistence of different variables where variability is
correlated on all time scales can also be used to con-
struct models with long-term persistence to interpret
the rapid increase of Earth’s temperature.

2.5 Record-breaking temperatures events in
climate changes

The nonlinearity of the atmospheric motion can
also be found from the analysis of the record-breaking
temperatures events and from the long-range corre-
lation of extreme events (see section 2.6). Both the
theoretic analyseis and Monte Carlo simulation re-
sults show that the maximum probability of the oc-
currence of the kth record-breaking high tempera-
ture events tends to increase linearly with the rate√

k (k = 1, 2, 3 · · · · · ·), and the frequency of the occur-
rence of record-breaking high temperature events in a
year is inclined to decrease at a rate of 1/(t + 1) where
t is time. Based on the theory of probability distribu-
tion of record-breaking events and daily high/low tem-
perature observation data in China from 1960 to 2005,
the spatio-temporal characteristics of record-breaking
temperatures were investigated (Xiong et al., 2009).
Results showed that the frequency of record-breaking
high temperature was obviously greater than normal in
Northwest, North, Northeast China, and Tibet, while
the frequency of record-breaking low temperature was
obviously less than normal there. In recent years, the
frequency of record-breaking high temperature events
tended to increase in most parts of China, but record-
breaking low temperatures became fewer and fewer
across China. The strength of record-breaking high
temperature events was enhanced in high latitude ar-
eas of China, but the strength of record-breaking low
temperature events has not changed or has weak-
ened in these areas as well as Xinjiang. Notably, the
strength of record-breaking low temperature events
has become obviously enhanced in South China.

Based on the monthly Palmer Drought Severity
Index (PDSI) of 614 stations in China from 1960 to
2007, the statistics of record-breaking monthly PDSI
(RBMP) in these recent 48 years was studied theo-
retically (Yang et al., 2010). According to the the-
ory of record-breaking events, universal arithmetic re-
garding the evaluation of record-breaking events was
designed. The expression of the expectation value of
RBMP was obtained based on the Gaussian distribu-
tion model and the initial condition of observed histor-
ical RBMP. These numerical results were then com-
pared with those obtained by the iteration computa-
tion of the purely theoretical model. The comparison
suggested that the results obtained from the former
are more consistent with observation data than those
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from the latter.

2.6 Long-range correlation of extreme events

The method of fixed threshold was used to investi-
gate the long-range correlation of extreme events in the
Lorenz system (Feng et al., 2009b; Wang et al., 2009).
It demonstrated that all of the extreme events with dif-
ferent thresholds exhibit long-range correlation, and
the scaling exponents are similar—just smaller than
the original series. The results also showed that the
long-range correlation of extreme events is less affected
by the changes of the initial values, but it decreases
distinctly with the increasing parameters (Feng et al.,
2009b; Wang et al., 2009). The long-range correlation
of Lorenz system’s extreme events series has the traits
of memory when compared with Gaussian white noise,
and the memory is closely related to the threshold.
Finally, the maximal daytime air temperature data of
194 stations between 1957 and 2004 from the National
Climate Center of China Meteorological Administra-
tion revealed that the similar law exists in the practical
meteorological factors (Feng et al., 2009b; Wang et al.,
2009).

2.7 Dynamical abrupt change detecting
method

Some new methods have been proposed to detect
abrupt dynamic change in time series for the studies of
nonlinear atmospheric dynamics. Based on the meth-
ods of scaling analysis—detrended fluctuation analysis
(DFA), and rescaled range analysis (R/S), He et al.
(2008) proposed some new methods to detect abrupt
dynamic change in time series, such as the moving
detrended fluctuation analysis (MDFA), the moving
cut data-detrended fluctuation analysis (MC-DFA),
and the moving cut data-rescaled range analysis (MC-
R/S). The results demonstrated the validity of these
new methods in detecting abrupt change in model time
series and observation data. Meanwhile, the results
also showed that the window sizes and strong noise
have only a tiny effect on the results of MDFA, MC-
DFA, and MC-R/S.

Approximate entropy (ApEn) is a valid index that
can be used to quantitatively describe the dynamic
characteristics and complexity of a time series. ApEn
has been developed to detect an abrupt change in
one-dimensional time series by sliding a fixed win-
dow, which can identify an abrupt dynamic change
to some extent. But the sliding ApEn results depend
on the window scales, and they cannot accurately po-
sition the time-instants of an abrupt change. Based on
this limitation, a new method, the moving cut data-
Approximate Entropy (MC-ApEn), was proposed by
He et al. (2010). This method can be used to detect

an abrupt dynamic change in time series. By using
this method in model time series, the detected results
using the new method have relatively good stability
and highly veracity, much better than those using the
sliding ApEn method. Also, the application of the new
method to daily precipitation records further verified
the validity of the new method.

3. Predictability studies for weather and cli-
mate

Progress in predictability studies is classified ac-
cording to three aspects. First, CNOP is applied
to ENSO predictions, ensemble forecasting, targeted
observation, and sensitivity analysis of ecosystem.
CNOP is used in these studies to tackle the issues with
the largest forecast errors. Second, nonlinear local
Lyapunov exponent (NLLE) is applied to weather and
climate predictability. NLLE is used to deal with the
limit of the predictable time. Third, new approaches
have been proposed for the second kind of predictabil-
ity studies and for dealing with the lower bounds of
the maximum predictable time and the maximum al-
lowable initial errors in the first kind of predictability
studies.

3.1 Applications of CNOP

3.1.1 ENSO predictions
ENSO is a prominent climate phenomenon of the

coupled ocean–atmosphere system in the tropical Pa-
cific, and it has a great impact on the global climate.
The applications of CNOP to ENSO predictions in-
clude the studies of the spring predictability barrier
(SPB) and ENSO amplitude asymmetry.

3.1.1.1. The spring predictability barrier (SPB)

The SPB is a universal phenomenon in ENSO pre-
diction. It has been demonstrated that CNOP errors
cause a significant SPB for El Niño events, while LSV
errors yield a less significant SPB. The non–CNOP-
like errors that were studied by Mu et al. (2007b) and
Duan et al. (2009) and the random initial errors in-
vestigated by Yu et al. (2009) do not induce a SPB.
Furthermore, Duan and Zhang (2010) used the model
of Wang and Fang (1996) to show that the parame-
ter errors in models may not cause a significant SPB
for El Niño events, but initial errors cause a signifi-
cant SPB. All of these studies indicated that a partic-
ular pattern of initial errors is necessary for the SPB
of El Niño events to occur. This is consistent with
the study of Li and Ling (2009). Actually, there are
two types of CNOP errors. One type of CNOP er-
ror has an SSTA pattern with negative anomalies in
the equatorial central-western Pacific, positive anoma-
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lies in the equatorial east Pacific, and a thermocline
depth anomaly pattern with positive anomalies along
the equator. The other type of CNOP error possesses
almost the opposite patterns (Yu et al., 2009). If two
such opposite error patterns can be found in realis-
tic ENSO predictions, it may establish the robustness
of the characteristic of the initial errors that causes a
significant SPB and demonstrates the dominant role
of the initial errors in the SPB.

Two types of initial errors suggest two dynamical
behaviors of error growth in the SPB phenomenon for
El Niño events. The initial error patterns, which have
a dynamical behavior similar to El Niño and La Niña,
may exhibit an apparent season-dependent evolution.
This may cause a large prediction error, which yields a
significant SPB. Two classes of CNOP-type errors pos-
sess almost the same dynamical behavior as El Niño
and La Niña and induce the largest prediction error;
thus, they can be regarded as most likely to cause a
significant SPB phenomenon. The two types of LSV
errors also have the same dynamical behavior as El
Niño and La Niña; however, they cause a less signifi-
cant SPB, due to a much more localized spatial region
as compared to the CNOP’s. These results encourage
us to consider whether the forecast skill for ENSO can
be greatly improved when these types of initial errors
are filtered out through data assimilation or targeted
observation approaches.

In addition, the CNOP-type errors cover a broader
region than the LSV-type errors. In addition, this lo-
calized region of the CNOP-type errors, which have
large values always arising in the equatorial central-
eastern Pacific, is more likely to capture the “sensitive
area” of ENSO prediction. This result may guide ef-
forts to intensify observations in this area and improve
ENSO prediction.

3.1.1.2. ENSO amplitude asymmetry

ENSO amplitude asymmetry is an important prob-
lem in ENSO studies (Jin et al., 2003). A better under-
standing of ENSO amplitude asymmetry contribute to
better prediction of ENSO. ENSO asymmetry is re-
garded as the phenomenon in which the amplitude of
the observed El Niño is larger than that of La Niña.
This is a distinct feature of ENSO. Furthermore, there
is evidence that ENSO amplitude asymmetry has be-
come pronounced since the climate shift around the
year 1976, from a relatively stable to an unstable os-
cillating system (Duan and Mu, 2006). Duan et al.
(2004), An and Jin (2004), and Rodgers et al. (2004)
used a nonlinear ENSO system respectively to study
ENSO amplitude asymmetry; they demonstrated con-
sistently that ENSO amplitude asymmetry is a typical
nonlinear property of the coupled ocean–atmosphere

system. Furthermore, Duan and Mu (2006) demon-
strated that nonlinearity induces ENSO asymmetry.
The stronger the ENSO events are, the stronger the
nonlinearities are, and the more significant the ENSO
asymmetry is.

Consequently, Duan et al. (2008) used the CNOP
approach to investigate the roles of different types of
nonlinearities in ENSO asymmetry, and they revealed
the decisive role of nonlinear temperature advection.
They adopted both the theoretical model developed by
Wang and Fang (1996) and the intermediate Zebiak-
Cane model. The results of the two models are con-
sistent, that is, the nonlinear temperature advection
considerably enhances El Niño amplitude and triv-
ially affects La Niña amplitude, causing ENSO ampli-
tude asymmetry. The strong ENSO asymmetry with
strong nonlinearity of strong ENSO events indicates
why ENSO asymmetry becomes strong after the 1970s.
That is to say, the decadal change of ENSO asym-
metry may be due to the change of nonlinearity. As
such, a CNOP approach could be extended to study
the decadal variability of ENSO.

3.1.2 Ensemble forecasting

Ensemble forecasting, which serves as an effective
way to improve the weather forecast, has been classi-
fied into the regime of predictability studies (Mu et al.,
2004). One of the key problems in ensemble forecast-
ing is the generation of initial ensemble perturbations,
which are expected to reflect the real initial uncer-
tainty. At the European Centre for Medium-Range
Weather Forecasts (ECMWF), the LSV approach has
been successfully applied to generating initial pertur-
bations for ensemble forecasting. However, the linear
theory of SV could not guarantee the optimum result
with a nonlinear system. Considering this point, Mu
and Jiang (2008b) used CNOP to construct the ini-
tial perturbation fields for ensemble forecasting, in an
attempt to remedy the limitation of LSV and then im-
prove forecast skill.

Under a perfect model assumption, Mu and Jiang
(2008b) demonstrated that the ensemble forecast skill
when using CNOP may depend on the type of the anal-
ysis error. When the analytical error is a fast-growing
type, the CNOP initial perturbation field, which is
obtained by replacing the first SV of the perturba-
tion field yielded by SVs with CNOP, causes a better
ensemble mean forecast than the SV-type initial per-
turbation field composed of SVs. Furthermore, with
the reduction of the magnitudes of analysis error, the
ensemble mean skill caused by the CNOP-type initial
perturbation field approaches gradually that caused
by the SV-type initial perturbation field. This in-
dicates that a CNOP initial perturbation field could
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capture more effectively the characteristic of the fast-
growing type of analytical error, consequently making
the ensemble forecast better. When the analytical er-
ror is a slow-growing type, the Monte Carlo method
can provide a good forecast, whereas the ensembles
mean of the CNOP- and SV-type initial perturbation
field make the forecast worse.

3.1.3 Targeted observation

Targeted observation, which places observations in
specific regions (sensitive areas) according to weather
or climate events such as tropical cyclones, precipita-
tion, etc., is another important technique used to im-
prove predictability. Palmer et al. (1998) first applied
the LSV approach in targeted observation. Due to the
limitations of LSV approximation, the sensitive area
determined by LSV may be questionable. It is nec-
essary to use a nonlinear technique to determine the
sensitive area in targeted observation. Therefore, Mu
et al. (2007c) and Mu et al. (2009) respectively inves-
tigated primarily the application of CNOP in targeted
observation for precipitations and typhoons.

Results showed that the structures of CNOPs may
differ greatly from those of FSVs depending on the
constraint, the metric, and the basic state. CNOP
errors have larger impacts on the forecasts in the veri-
fication area as well as the tropical cyclones or the pre-
cipitations than the FSV errors. The results of sensi-
tivity experiments indicated that reductions of CNOP
errors in the initial states provide more benefits than
reductions of FSV errors. These results suggest that
it is worthwhile to use CNOP as a method to identify
the sensitive areas in adaptive observation for precip-
itation or tropical cyclone prediction.

Subsequently, Zhou and Mu (2011, 2012a,b), Qin
and Mu (2011, 2012), and Chen and Mu (2011) fur-
ther confirmed the utility of CNOP in targeted obser-
vations by investigating (1) the impact of verification
area design and (2) the impact of horizontal resolu-
tion on the CNOP-identified sensitive areas; (3) the
time-dependence issues of the CNOP sensitive areas;
(4) the influence of CNOP sensitivity on typhoon track
forecasts; (5) comparisons among the CNOP, SV, and
ensemble transform Kalman filter (ETKF)-identified
sensitive areas; and (6) the analysis of the structure
and distributions of the growth errors. Wang and Tan
(2009) developed a fast algorithm to solve CNOP and
then use the CNOP to identify the sensitive areas of
typhoon precipitations. The results were inspiring be-
cause the forecast of typhoon precipitation had been
largely improved by assimilating the observations in
the sensitive areas.

For typhoon-targeted observations, another dy-
namic method was proposed by Gao et al. (2009), in

which the sensitive areas were determined by invoking
the negative anomalies of moist potential vorticity.

3.1.4 Sensitivity analysis of ecosystem
CNOP has been applied in sensitivity and stability

analyses of baroclinic unstable flow and ocean circula-
tion. Mu and Wang (2007) extended the application of
CNOP to the sensitivity analysis of grassland ecosys-
tem, in an attempt to reveal the effect of nonlinearity
on the transition between grassland and desert states.
Previously, a three-variable theoretical model devel-
oped by Zeng et al. (1994) and Zeng and Zeng (1996)
had been adopted.

The results showed that the moisture index µ plays
an essential role in the grassland ecosystem. When µ
is less than the first bifurcation point µ1, desert equi-
librium state (DES) is nonlinearly stable, even for the
large initial finite-amplitude perturbations, which im-
plies that the ecosystem is droughty and nonlinearly
stable. It is impossible to change the desert state into
a grassland state just by planting grass or irrigating.
When the moisture index µ is larger than the second
bifurcation point µ2, the grassland equilibrium state
(GES) is conditionally nonlinearly stable. That is,
there exists a threshold value of initial perturbation
(denoted by δ), δ = 1.04795, which represents the mass
density of living grass (x̄) in the grassland equilibrium
state. When the magnitude of an initial perturbation
δ is smaller than x̄, there is no initial perturbation to
cause a transition to DES; but for the case of δ > x̄, if
a destructive action is made such that the value of the
living grass component of the initial perturbation is
null, the ecosystem will evolve to DES. This case sug-
gests that it is still important to keep the balance for
the ecosystem even if the soil is washy and the natural
condition is feasible. When µ is between µ1 and µ2,
the grassland ecosystem is fragile, GES or DES is lin-
early stable but nonlinearly unstable, meaning that a
large enough initial finite-amplitude perturbation can
induce a transition from GES to DES or DES to GES,
respectively. The management of human activities is
important when moisture index µ is in (µ1, µ2).

To explore the nonlinear features of the ecosystem,
Mu and Wang (2007) also calculated LSVs of GESs
and DESs. Comparisons between their nonlinear evo-
lutions demonstrated that for the same magnitude us-
ing CNOP and LSV, CNOP is more likely to yield a
transition than LSV.

These studies applied CNOP to estimate the sen-
sitivity of ecosystem. Especially, CNOP was used to
tackle the problem of the transition between equilib-
rium states. The transition between equilibrium states
is a typical nonlinear property. A finite amplitude
initial perturbation superimposed on an equilibrium
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state will cause the state transition to another equi-
librium state. The application of CNOP to this field
could help elucidate the mechanism of the transition
between equilibrium states.

3.2 New approaches in predictability

3.2.1 An extension of CNOP and its applications
The CNOP approach was proposed by Mu et al.

(2003) to study predictability from the viewpoint of
error growth. Previously, CNOP was used to deter-
mine the optimal initial perturbation (CNOP-I) in a
given constraint, and it was used to investigate the first
predictability problem for weather and climate (Mu et
al., 2007a, b; Duan et al., 2009). However, the exist-
ing numerical models have not yet precisely described
atmospheric and oceanic motion without model errors
(Williams et al., 2005; Orrell, 2003). Effect of model
errors on predictability is related to the second kind
of predictability (Lorenz, 1975). One important as-
pect in this field is the study of the effect of the uncer-
tainties of model parameters on predictability (Lu and
Hsieh, 1998; Mu, 2000; Mu et al., 2002). Some scien-
tists investigated the effect of model parameter errors
on the predictability of a numerical model by choos-
ing a control parameter and considering the different
perturbations on this control parameter (e.g., Chu,
1999) or by taking different values of each model pa-
rameter and exploring the effect of the uncertainties of
the parameters on climate simulation (e.g., Zebiak and
Cane, 1987; Orrell, 2003). However, in realistic predic-
tions, multiple parameters of models may simultane-
ously have uncertainties; moreover, model parameter
errors may be accompanied by initial errors. Estimat-
ing the predictability limit caused by these combined
error modes has far-reaching consequences for the at-
mospheric study and forecast and should be pursued
urgently.

Mu et al. (2010) established an objective function
consisting of initial perturbation and model parame-
ter perturbation, and they extended the CNOP ap-
proach to search for the optimal combined mode of
initial perturbations and model parameter perturba-
tions. This optimal combined mode, also named as
CNOP, has two special cases: CNOP-I only links with
initial perturbations and has the largest nonlinear evo-
lution at prediction time; whereas CNOP-P is related
to parameter perturbations that cause the largest de-
parture from a given reference state at prediction time.
The CNOP approach facilitates the exploration of not
only the first kind of predictability related to initial
errors but also the second kind of predictability asso-
ciated with model parameter errors. Moreover, CNOP
can be used to address the predictability problems of
the coexistence of initial errors and parameter errors.

CNOP was used to study ENSO predictability in a the-
oretical ENSO model. The results demonstrated that
the prediction errors caused by the CNOP errors are
only slightly larger than those yielded by the CNOP-I
errors and that model parameter errors may play a mi-
nor role in producing significant uncertainties in ENSO
prediction. Therefore, CNOP errors and their resul-
tant prediction errors illustrate the combined effect
on predictability of initial errors and model param-
eter errors. They represent the relative importance of
initial errors and parameter errors in yielding consid-
erable prediction errors and they can help to identify
the dominant source of the errors that cause prediction
uncertainties.

3.2.2 New strategies of solving a class of optimization
problems related to predictability

In 1975, Lorenz classified two kinds of predictabil-
ity problems (Lorenz, 1975): Initial error with an as-
sumption of perfect model is referred to as the first
kind of predictability. Model errors with a perfect
initial field comprise the second kind of predictabil-
ity. The former has been extensively investigated, and
many theories and methods have been proposed or in-
troduced (e.g., Lorenz, 1965; Toth and Kalnay, 1997;
Mu et al., 2003; Mu and Zheng, 2006; Riviere et al.,
2008) in which optimal methods are important for
estimating the limit of the predictability of weather
and climate events (e.g., Lorenz, 1965; Fan and Chou,
1999; Smith et al., 1999; Mu, 2000; Mu et al., 2003).
According to the practical demands of weather and
climate predictions, Mu et al. (2002) classified three
predictability problems: the maximum predictability
time, the maximum prediction error, and the maxi-
mum allowable initial error and parameter error.

The second predictability problem, i.e., maximum
prediction error, can be solved using an existing highly
efficient solver for computing CNOPs. However, for
the first and third predictability problems, although
Mu et al. (2002) and Duan and Mu (2005) solved these
using a filtering method with two very simple ordinary
differential equation models of two or three dimen-
sions, it was impossible to solve them when a large-
scale system of high dimensionality was considered.
To effectively solve these two predictability problems,
Duan and Luo (2010) introduced a strategy for solv-
ing for the lower bounds of the maximum predictable
time and the maximum allowable initial errors of the
first kind of predictability. This strategy was com-
pared to an existing filtering method. A series of com-
parisons showed that the results of the new strategy
were almost the same as those of the old method; fur-
thermore, the new methods saved a large amount of
computation time. The most advantageous aspect of
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the new strategy was the computation of the largest
prediction errors caused by initial errors in a given
constraint. The largest prediction error in the new
strategy was calculated using an existing optimization
solver, which had been verified to be highly efficient,
whereas in the old method, the largest prediction er-
ror was filtered out by comparing the prediction errors
caused by the initial errors in the given constraint.
Therefore, using the old filtering method was impossi-
ble for solving the above two predictability problems
in a complex and realistic model, but the new strat-
egy provided the opportunity to study and possibly
solve these two predictability problems for a realistic
weather and climate models.

3.2.3 Ensemble forecast experiments of ENSO events

Although significant progress has been made in
ENSO theories and predictions in recent years, there is
considerable uncertainty in ENSO prediction, even at
relatively short lead times, due to the chaotic or irregu-
lar aspects of climate variability. As a result, forecasts
must necessarily include some quantitative assessment
of this uncertainty, to make up the deficiency of the
deterministic forecast.

A new large size (i.e., 100 members) ensemble pre-
diction system (EPS) has been developed recently to
make ensemble ENSO forecast routinely in real time
with useful skills reaching up to 2 years (Zheng et
al., 2006, 2007, 2009a; Zheng and Zhu, 2008, 2010a).
To minimize forecast uncertainties for ENSO predic-
tions, the EPS is primarily based on an intermedi-
ated coupled model (ICM) and is secondarily based on
the ensemble Kalman filter (EnKF) data assimilation
method. This coupled method was adopted to gener-
ate the initial ensemble conditions for the EPS through
assimilating all available atmospheric and oceanic ob-
servations using a developed coupled data assimilation
scheme (Zheng and Zhu, 2010a). In addition, a lin-
ear, first-order Markov stochastic model-error model
was embedded within the EPS to represent the model
uncertainties during the 12-month ensemble forecast
process (Zheng et al., 2009a).

A 16-year retrospective forecast experiment
(November 1992 to October 2008) showed the deter-
ministic prediction skill of the EPS had been signif-
icantly improved compared to the original determin-
istic forecast scheme (Zhang et al., 2005). This im-
provement occurred because the advanced assimilation
method can provide more dynamically consistent and
accurate initial conditions than the original initializa-
tion method (Zheng and Zhu, 2010a), and the ensem-
ble mean can remove some unpredictable stochastic
information (Zheng et al., 2009b). At the same time,
the spring predictability barrier (SPB) can be allevi-

ated in a probabilistic sense through reasonably con-
sidering the impacts of model uncertainties on ENSO’s
seasonal predictability (Zheng and Zhu, 2010b).

3.3 Nonlinear local Lyapunov exponent
(NLLE) and its application in predictabil-
ity

The approach of the nonlinear local Lyapunov
exponent (NLLE) was introduced to study the pre-
dictable time in atmospheric predictability from the
view of nonlinear error growth dynamics (Li et al.,
2006; Chen et al., 2006; Ding and Li, 2007). Based
on the NLLE, Ding and Li (2007) obtained the sat-
uration theorem of the mean relative growth of ini-
tial error (RGIE). Using the saturation theorem, the
NLLE and its derivatives can be used to quantify
the predictability limit of chaotic dynamical system.
For systems whose equations of motion are explicitly
known, such as the Lorenz system, the mean NLLE
via numerical integration of the system and its error
evolution equations can be directly calculated (Ding
and Li, 2007; 2008a). The NLLE approach has been
used to investigate some predictability problems of the
Lorenz system, such as relative effects of the initial er-
ror and the parameter error on predictability (Ding
and Li, 2008b), the relationship between the limit of
predictability and initial error (Li and Ding, 2011a),
and the predictability limits of different variables in
multidimensional chaotic systems (Li and Ding, 2009).

Atmospheric observation data contain almost all of
the real information regarding the day-to-day move-
ment and evolution of weather systems. Given that
the precise dynamical equations of atmospheric mo-
tion are explicitly unknown, it is more appropriate to
investigate atmospheric predictability based on obser-
vation data. To apply the NLLE in studies of actual
atmospheric predictability, an algorithm based on lo-
cal analogues was devised to enable the estimation of
the NLLE and its derivatives using experimental or ob-
servation data (Ding et al, 2008; Ding and Li, 2009a; Li
and Ding, 2011b). The general idea of the algorithm is
to find local analogs of the evolution pattern from ob-
servational time series. The local analogs are searched
for based on the initial and evolutionary information
at two different time points in the time series. If the
initial distance at two different time points is small
and if their evolutions are analogous over a very short
interval, it is highly likely that the two points were
analogous at the initial time. This analog is referred
to as a “local dynamical analog”.

As noted by Lorenz (1969b), a sufficiently long
time series is required when using historical analogs
to study atmospheric predictability. It is almost im-
possible to find good natural analogs within current
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libraries of historical atmospheric data over large re-
gions such as the Northern Hemisphere. However, it
should be noted that the “local dynamical analog”
searches the observational time series for a small lo-
cal region, for which the small number of spatial de-
grees of freedom makes it possible to find good lo-
cal analogs within current libraries of historical atmo-
spheric data, which allows an ensemble average (van
den Dool, 1994). In contrast to a “global analog” or
“spatial pattern analog” over a large region, the “lo-
cal dynamical analog” yields information on local pre-
dictability, thereby providing the spatial distribution
of the limit of local predictability.

One example of the NLLE algorithm from the
Lorenz96 40-variable model (a low-order proxy for an
atmospheric model; Lorenz, E. N.) reveals that the al-
gorithm is entirely applicable in estimating the mean
error growth from an experimental time series (Li and
Ding, 2011b). The NLLE algorithm can be further ap-
plied to studies of atmospheric predictability because
the global attractor exists in the atmosphere (Li and
Wang, 2008). Based on atmospheric observation data,
the NLLE approach has been used to investigate the
temporal–spatial distributions of weather predictabil-
ity (Ding and Li, 2009b), decadal changes in weather
predictability (Ding et al, 2008), the spatio-temporal
distribution of the predictability of monthly and sea-
sonal means of climate variables (Li and Ding, 2008),
the predictability limit of the MJO (Ding et al, 2010,
2011), and the spatio-temporal distribution of the pre-
dictability of sea surface temperature (SST; Li and
Ding, 2011c).

For weather predictability, the results show that for
the daily 500-hPa geopotential height field, the limit
of weather predictability appears to have a zonal dis-
tribution, with a maximum limit of 10–14 days over
the tropics and Antarctic, followed by 8–11 days over
the Arctic, 6–11 days over the middle to high lati-
tudes of the Northern Hemisphere; the lowest limit of
4–6 days is in the mid-latitude of the Southern Hemi-
sphere. The vertical distributions of the predictabil-
ity limit of the daily geopotential height show an in-
crease in predictability limit with height. The fact that
the predictability limit is <3 weeks in the troposphere
and is ∼1 month in the lower stratosphere indicates
that the stratosphere may be used as a potential pre-
dictability source (Ding and Li, 2009b).

For decadal changes in weather predictability, the
results show that significant decreasing trends in the
weather predictability limit (WPL) could be found in
most regions of the northern mid-latitudes and Africa,
while significant increasing trends in WPL lie in most
regions of the tropical Pacific and southern middle-
to-high latitudes. Trends and interdecadal changes

of the WPL are found to be well related to those of
atmospheric persistence, which in turn are linked to
the changes of atmospheric internal dynamics. Fur-
ther analyses indicate that the changes of atmospheric
static stability due to global warming might be one
of main causes responsible for the trends and inter-
decadal changes of atmospheric persistence and pre-
dictability in the southern and northern middle-to-
high latitudes (Ding et al, 2008).

For climate predictability, the results show that
the predictability limit of monthly and seasonal means
have obvious differences between the tropics and mid-
dle to high latitudes. The predictability limit of
monthly and seasonal means is the largest in the trop-
ics, and it decreases quickly from the tropics to the
middle-to-high latitudes of the Southern and Northern
hemispheres. In the tropics, the predictability limit
of monthly means is >6 months, with the maximum
value >9 months, and the predictability limit of sea-
sonal means is >8 months, with the maximum value
>11 months. However, in middle-to-high latitudes,
the predictability limit of monthly means is only 2–3
months, and the predictability limit of seasonal means
is only 4–5 months (Li and Ding, 2008).

For the predictability of the MJO, the results show
that the predictability limit of the MJO, as determined
by the NLLE approach, is ∼5 weeks, which exceeds
the performance of most numerical and statistical pre-
diction models (Ding et al, 2010). The potential pre-
dictability limit of the boreal summer intraseasonal
oscillation (BSISO) is close to 5 weeks, comparable to
that of the boreal winter MJO. Despite the similar-
ity between the potential predictability limits of the
BSISO and MJO, the spatial distribution of the po-
tential predictability limit of the TISV during winter
is approximately opposite that during summer. The
error growth is rapid when the BSISO and MJO enter
the decaying phase (i.e., when ISO signals are weak),
whereas it is slow when convection anomalies of the
BSISO and MJO are located in upstream regions (i.e.,
when ISO signals are strong) (Ding et al., 2011).

For the predictability of the monthly SST, results
show that the annual mean limit of SST predictability
is the greatest in the tropical central–eastern Pacific
(>8 months). Relatively high values were also ob-
tained for the tropical Indian and Atlantic Oceans (5–8
months). In the northern and southern middle-to-high
latitude oceans, the limit of SST predictability is <6
months, with a minimum value of only 2–3 months.
The limit of SST predictability in different ocean ar-
eas shows significant seasonal variations, related to the
persistence barriers that occur during particular sea-
sons. These seasonal persistence barriers cause a rela-
tively low limit of SST predictability when predictions
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are made across the season in which the barriers oc-
cur. In contrast, when predictions are initiated from
the season with a persistence barrier, the SST errors
show rapid initial growth but slow growth in the fol-
lowing seasons, resulting in a relatively high limit in
predictability (Li and Ding, 2011c).

4. Discussion and conclusions

Progress in the study of nonlinear atmospheric
dynamics and related predictability in China during
2007–2011 were summarized in this article. For non-
linear atmospheric dynamics, Chinese scientists devel-
oped a weakly nonlinear NAO model, explained why
synoptic-scale eddies can reinforce a NAO event with a
time scale of 10–20 days, and investigated what dom-
inates the phase of a NAO event. In addition, the op-
timal precursors for blocking onset were indentified by
a quasi-geostrophic model using the CNOP method.
In addition, Chinese scientists made contributions in
nonlinear analyses of fluctuation and wave dynamics
related to atmospheric motions and in understand-
ing the record-breaking temperatures events in climate
changes, long-range correlation of extreme events, and
dynamical abrupt change within time series. For pre-
dictability studies, CNOP was extended to consist of
not only initial perturbation but also parameter per-
turbation, and CNOP can be used to explore both
the first kind of predictability and the second kind of
predictability. Several applications of the CNOP were
reviewed, such as the SPB for El Niño events, ENSO
irregularity, the ensemble forecast, the targeted obser-
vations, and the sensitivity of the ecosystem. A new
nonlinear technique NLLE was developed and used in
predictability studies, revealing the predictability limit
for several weather and climate phenomena. In addi-
tion, a new strategy was developed to solve the non-
linear optimization problems of maximum predictable
time and maximum allowable initial errors and param-
eter errors, suggesting the possibility of studying these
two predictability problems in a realistic model.

As shown, Chinese scientists have conducted many
studies of nonlinear atmospheric dynamics and related
predictability studies during the period of 2007–2011.
The results of these studies can be applied to guide
scientists to improve numerical modeling and to in-
creasingly understanding the dynamics of atmospheric
and oceanic motions. The combination of theoretical
studies and practical applications can lead to the im-
provement of forecast skill for weather and climate, in
particular, extreme weather and climate events.

However, we are still far away from exposing the
nature or cause of complex nonlinear phenomena.
Some important problems remain for future study and

improvement. For example, in the study of NAO,
blocking, and ENSO prediction, current results are
based on simple models; whether the results hold in
more complex systems is also an interesting issue. In
those studies related to the applications of CNOP, the
optimization algorithm needs to be improved to more
efficiently calculate CNOP. In targeted observation for
tropical cyclone prediction, the design of a proper cost
function is urgent. In the study of the second kind of
predictability, the approaches associated with model
errors need improvements. In the NLLE studies, fur-
ther work is required to examine broader applications
of the NLLE method in predictability studies of ex-
treme weather and climate events, the prediction of
the predictability, and ensemble forecast, and so on.
Much more progress is expected in the future.
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