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Can the Uncertainties of Madden–Jullian Oscillation Cause a
Significant “Spring Predictability Barrier” for ENSO Events?
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ABSTRACT

With the Zebiak-Cane model and a parameterized stochastic representation of intraseasonal forcing,
the impact of the uncertainties of Madden–Jullian Oscillation (MJO) on the “Spring Predictability Barrier
(SPB)” for El Niño–Southern Oscillation (ENSO) prediction is studied. The parameterized form of MJO
forcing is added physically to the Zebiak-Cane model to obtain the so-called Zebiak-Cane-MJO model and
then the effects of initial error, stochastic model error, and their joint error mode on the SPB associated
with El Niño prediction are estimated. The results show that the model errors caused by stochastic MJO
forcing could hardly lead to a significant SPB while initial errors can do; furthermore, the joint error mode of
initial error and model error associated with the stochastic MJO forcing can also lead to a significant SPB.
These demonstrate that the initial error is probably the main error source of the SPB, which may provide
a theoretical foundation of data assimilation for ENSO forecasts.
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1. Introduction

El Niño–Southern Oscillation (ENSO) is the most
prominent interannual signal in the climate system
and has large effects on global climate. Knowledge
about the ENSO cycle and the ability to forecast
its variations supply valuable information for agricul-
ture, public health and safety, fisheries, forestry, and
many other spheres of climate-sensitive human en-
deavor (Huang, 1999; Zhang et al., 2003). It is there-
fore very important to simulate and predict ENSO.

While significant progress has been made in
ENSO theories and predictions over the years, there
still exist considerable uncertainties in realistic ENSO
predictions (Tang et al., 2008; Luo et al., 2008). In
particular, for forecasts made before and throughout
the late spring–early summer, ENSO predictions tend

to be much less successful. This low predictability has
been related to the so-called “spring predictability bar-
rier (SPB)” of ENSO (Webster and Yang, 1992). The
SPB is a well-known characteristic of ENSO forecasts
(Webster and Yang, 1992; Lau and Yang, 1996; Moore
and Kleeman, 1996; Chen et al., 2004), which refers to
the phenomenon that most ENSO prediction models
often experience an apparent drop in prediction skill
across May and June (Latif et al., 1994). Considerable
efforts have been made in studying this phenomenon,
but its physical reason remains controversial. One pos-
sible cause is the rapid seasonal transition of monsoon
circulation during the boreal spring, which perturbs
the Pacific Ocean’s basic state when the east-west sea
surface temperature (SST) gradient is at its weakest
(Webster and Yang, 1992; Lau and Yang, 1996). An-
other notion, proposed by Webster (1995), is that SPB
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is caused by the fact that the ocean-atmosphere cou-
pling is the weakest during April and May in the
eastern Pacific. Other studies have argued that SST
anomalies (SSTA) in the boreal spring are relatively
small, making them difficult to detect and forecast in
the presence of atmospheric and oceanic noises (Chen
et al., 1995). Recently, Mu et al. (2007a) demon-
strated that the SPB may result from the combined
effect of the climatological mean equilibrium state, the
El Niño event itself, and initial error patterns.

Many studies have investigated the SPB of ENSO
from the perspective of initial error growth. Moore
and Kleeman (1996) utilized the approach of linear
singular vector (LSV) and revealed the impact of ini-
tial perturbation on ENSO predictability. Xue et
al. (1997) also used LSV and demonstrated that
the ENSO prediction level was dependent on the pre-
cision of initial fields of a numerical model. Chen
et al. (1995, 2004) reduced the SPB and enhanced
ENSO prediction skill of the Zebiak-Cane model by
improving the model initialization. Recently, Mu et
al. (2007a, b) and Duan et al. (2009a) further studied
the ENSO predictability and illustrated the effect of
the transient growth of initial perturbations caused by
nonlinear instability, concluding that the initial per-
turbations with specific spatial structure can lead to
significant SPB. Duan et al. (2009b) and Yu et al.
(2009) recognized two types of initial perturbations
using statistical and dynamical methods, respectively,
and demonstrated the dynamical mechanisms of error
growth related to SPB.

The above studies have mainly investigated the
effect of initial perturbations on the SPB of ENSO.
In general, the uncertainty of climate prediction is
caused by both initial perturbation and model per-
turbation (i.e., model error). The effect of model per-
turbation on ENSO predictability is also a meaning-
ful subject worthy of investigation. Duan and Zhang
(2010) compared the effects of initial perturbation
and model perturbation caused by parameter uncer-
tainties in the model on ENSO predictability with a
theoretical ENSO model. Their results showed that,
compared with the initial perturbation, the predic-
tion error yielded by parameter uncertainties related

to model error was relatively small and did not have a
significant impact on ENSO predictability. The uncer-
tainty of external forcing is also an important source
of model perturbation. How does the uncertainty of
external forcing affect the SPB of ENSO?

The intraseasonal oscillation or Madden–Jullian
oscillation (ISO/MJO) is one of the main external for-
cing of ENSO, but the relationship between MJO and
ENSO is still greatly disputable. One point of view
insisted that MJO was one of the mechanisms pro-
voking El Niño events and had a significant effect on
ENSO events (Sperber et al., 1997; McPhaden, 1999;
Zhang, 2001: Cravatte et al., 2003; Rong et al., 2011).
For example, Rong et al. (2011) proposed that the
winds of high frequency including MJO could rectify
the surface wind stress of low frequency on the in-
terannual timescale through nonlinearity, which could
significantly modulate the ENSO variability. However,
other studies argued that MJO had little influence on
El Niño (Zebiak, 1989; Hendon et al., 1999; Slingo et
al., 1999; Kessler and Kleeman, 2000). For example,
Slingo et al. (1999) and Hendon et al. (1999) demon-
strated that the correlativity between the interannual
variation of MJO and the SSTA of El Niño was very
weak. Therefore, it is necessary to further study the ef-
fect of MJO forcing on ENSO. Using the Zebiak-Cane
model and a parameterized form of the MJO forcing,
Peng et al. (2011) indicated that the uncertainties of
MJO had little effect on the maximum prediction error
for ENSO events caused by conditional nonlinear op-
timal perturbations. What about the effect on SPB?

In this paper, we will explore the effect of stochas-
tic MJO forcing on the SPB of ENSO and attempt
to compare the impacts of initial perturbation and
stochastic model perturbation caused by MJO uncer-
tainty on ENSO predictability quantitatively. The pa-
per is organized as follows. In Section 2, the Zebiak-
Cane model and the parameterized form of stochastic
MJO forcing are described and the approach called
Conditional Nonlinear Optimal Perturbation (CNOP)
is also introduced. In Section 3, we report the main
results of numerical experiments and show the effect
of MJO uncertainty on the SPB of ENSO. Finally,
conclusions and discussion are presented in Section 4.
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2. Model and methodology

2.1 Zebiak-Cane model

The Zebiak-Cane model (Zebiak and Cane, 1987)
was the first coupled ocean-atmosphere model to simu-
late the interannual variability of the observed ENSO
and has been a benchmark in the ENSO community
for over two decades. The Zebiak-Cane model has
been widely used in predictability studies and pre-
dictions of ENSO (Zebiak and Cane, 1987; Blumen-
thal, 1991; Chen et al., 2004; Tang et al., 2008). It
is composed of a Gill-type steady state linear atmo-
spheric model and a reduced-gravity oceanic model.
The Zebiak-Cane model depicts the thermodynamics
and atmospheric dynamics in the tropical Pacific with
oceanic and atmospheric anomalies about the mean
climatological state specified from observations (see
Zebiak and Cane, 1987).

In the model run, the atmospheric model is pre-
viously run with the specified monthly mean SST
anomalies to simulate monthly mean wind anomalies.
Then, the oceanic model is forced by surface wind
stress anomalies that are generated from a combina-
tion of the surface wind anomalies produced by the
atmosphere model and the background mean winds.

2.2 MJO forcing

In this paper, the effect of stochastic MJO forc-
ing on ENSO predictability is studied but this type
of forcing is not considered in the Zebiak-Cane model.
Therefore, it is necessary to introduce a rational fash-
ion of MJO forcing into the Zebiak-Cane model. Ze-
biak (1989) constructed a parameterized form of MJO
forcing according to the observation and investigated
the effect of MJO on ENSO prediction.

The rules of MJO are usually as follows: (1) the
low-level wind signal is dominantly zonal in the equa-
torial region; (2) the 30–60-day period band contains
most of the power; and (3) the disturbances are en-
ergetic in western Pacific, but weaker (at the surface)
in eastern Pacific. Therefore, the MJO fashion deter-
mined by Zebiak (1989) is as follows:

τ (x)(t) = A[R(t) + 2R(t − Δt) + R(t − 2Δt)]

·cos(ω0t + t0)
exp

[
−

( y

10

)2]

exp
[
−

(x − x0

10

)2] , (1)

where R is a normal random variable with zero mean
and unit variance, and t0 represents a uniform random
variable on (0, 2π). This forcing is evaluated at time
intervals of Δt, which for the Zebiak-Cane model is
10 days. The parameters ω0 and x0 were taken to be
2π/40 days and 146◦E, respectively, and the amplitude
A was set at 0.015 N m−2. The western Pacific region
(5◦N–5◦S, 163.125◦E–163.125◦W) was forced by the
MJO forcing.

Figure 1 shows the three 48-month realizations of
this forcing function. Anomalies as large as the clima-
tological mean stress (about 0.05 N m−2) occur fre-
quently; the model forcing is as strong as or probably
stronger than what is observed (Madden, 1988; see his
Fig. 3). Therefore, the parameterized form of MJO is
feasible.

The parameterized stochastic MJO forcing has a
large uncertainty. What is the evolution of the uncer-
tainty? Compared with initial perturbation, how will
it affect the SPB of ENSO?

2.3 Conditional Nonlinear Optimal Perturba-

tion

The CNOP is an initial perturbation that satisfies
a given constraint and has the largest nonlinear evo-
lution at the prediction time. The CNOP approach
is a natural generalization of the Linear Singular Vec-
tor (LSV) approach to the nonlinear regime. It has
been used to study the nonlinear dynamics of ENSO

Fig. 1. Three 48-month realizations of the stochastic

MJO wind stress forcing (N m−2).
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predictability (Mu and Duan, 2003; Duan et al., 2004;
Duan and Mu, 2006; Mu et al., 2007a, b; Peng et
al., 2011) and the sensitivity of ocean circulation (Mu
et al., 2004). Recently, the CNOP approach has also
been used to generate initial perturbations for ensem-
ble prediction (Mu and Jiang, 2008) and determine the
“sensitive area” in target observations for typhoons
(Mu et al., 2009). These studies have shown that
CNOP is a useful tool for studying weather and cli-
mate predictability.

In order to compare the initial perturbation with
model perturbation caused by stochastic MJO forc-
ing on ENSO predictability, we calculate the initial
perturbation which has the largest impact on El Niño
forecast at prediction time and can amount to a max-
imum prediction error with the CNOP approach (i.e.,
CNOP error). The CNOP error in this paper is calcu-
lated as follows:

We construct a cost function to measure the evo-
lution of initial perturbation. The aforementioned
CNOP, denoted by u0δ, can be obtained by solving
the following nonlinear optimization problem

J(u0δ) = max
‖u0‖�δ

‖T ′(τ)‖2, (2)

where u0 = (w1T
′
0, w2h

′
0) is a non-dimensional ini-

tial perturbation of the SSTA and thermocline depth
anomaly superimposed on the initial state of a pre-
determined reference-state El Niño event. Items
w1= (2℃)−1 and w2 = (50 m)−1 are the charac-
teristic scales of SST and thermocline depth, which
are used to make the initial errors T0 and h0 non-
dimensional. These characteristic scales are derived
by scale analysis and they agree reasonably wel1
with observations (Wang and Fang, 1996). The con-
straint condition ‖u0‖ � δ is defined by a pre-
scribed positive real number δ and the norm ‖u0‖ =√∑

i,j [(w1T
′
0i,j)2 + (w2h

′
0i,j)2], where T ′

0i,j and h′
0i,j

represent the dimensional initial perturbation of the
SSTA and thermocline depth anomaly at different grid
points and (i, j) is the grid point in the domain of the
tropical Pacific with latitude and longitude from 19◦S
to 19◦N by 2◦ and from 129.375◦E to 84.375◦W by
5.625◦, respectively. The evolution of the initial per-
turbation is measured by ‖T ′(τ)‖2 =

√∑
i,j(T

′
i,j(τ))2,

where T ′(τ) represents the prediction error of SSTA at
time τ and is obtained by subtracting the SSTA of the
reference state from the predicted SSTA at prediction
time τ .

3. Effects of MJO uncertainty on the SPB of
ENSO predictions

From the perspective of error growth, the SPB
phenomena in ENSO predictions mean two points.
One is that the error growth is maximum in some spe-
cial season and the other is that the error growth has
significant effect on the prediction results.

As stated above, MJO is one of the main external
forcing for ENSO events. However, the simulation of
MJO has great uncertainty internationally. Many re-
searchers use parameterized form of MJO such as the
stochastic form introduced in Section 2. The stochas-
tic MJO forcing is unpredictable because of its ran-
domness so it can be regarded as a stochastic model
perturbation. How do the stochastic model pertur-
bations evolve and what is their impact on the SPB
of ENSO? Compared with initial perturbation, which
one has a larger impact? In this section, we will adopt
the stochastic MJO fashion to address these questions.

3.1 Experimental design

Integrating the Zebiak-Cane model for 1000 yr,
we obtain a time series of SSTA, which provides a
great number of El Niño events. These El Niño events
tend to have a 4-yr period and phase-lock to the end
of the calendar year. In numerical experiments, we
choose many El Niño events and find that the results
depend on the intensities of El Niño events. There-
fore, two groups of El Niño events are used to describe
the results: one group consists of weak events with
Niño-3 index (the SSTA averaged over the Niño-3 re-
gion (5◦S–5◦N, 90◦–150◦W)) less than 2.5℃; the other
group include strong events, with Niño-3 index larger
than 2.5℃. Considering that there are different types
of El Niño events in nature, we choose four events in
each group with initial warming occurring in January,
April, July, and October.

For convenience, we call the Zebiak-Cane model
with MJO forcing the Zebiak-Cane-MJO model. We
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are able to investigate the model perturbations caused
by stochastic MJO forcing on ENSO predictability
with this Zebiak-Cane-MJO model to forecast the
above El Niño events. In fact, integrating the Zebiak-
Cane-MJO model with original states of El Niño
events as initial value can lead to the El Niño events
under the influence of model perturbations yielded by
stochastic MJO forcing. Comparing the uncertain El
Niño events with reference state events, their differ-
ence is the prediction error caused by stochastic MJO
forcing for El Niño events.

For each prediction, we calculate the CNOP-type
initial perturbations with optimization time length of
12 months. In order to investigate the impact of
CNOP-type initial perturbations on the SPB of ENSO
events, we explore the seasonal evolutions of predic-
tion errors. One year is divided into four seasons:
starting with January to March (JFM), followed by
April to June (AMJ), and so forth. The AMJ season
is the time when the SPB occurs in most ENSO pre-
diction models (Latif et al., 1994; Webster and Yang,
1992). Many studies used the error growth rate during
this season to measure the SPB (Moore and Kleeman,
1996; Mu et al., 2007a, b). In this paper, we also
use the error growth rate during the AMJ season to
study the SPB. We calculate the slope of the curve
defined by γ(t) = ‖T ′(t)‖2 in each season, where T ′(t)
denotes the SSTA component in the nonlinear evolu-
tion of CNOP-type initial perturbations. The slope
marked by κ shows the growth rate of CNOP-type
initial perturbations in each season. A positive value
of κ denotes increscent error growth and larger abso-
lute values mean faster error growth. Furthermore,
by adding the CNOP errors in the start month of El
Niño prediction and integrating Zebiak-Cane model
with the perturbed initial values, we obtain the pre-
diction errors caused by CNOP-type initial perturba-
tions for ENSO events. The prediction error is de-
noted by the Niño-3 index in the nonlinear evolution
of CNOP in the prediction time and marked by ENiño-3

(Xu, 2006). The negative (positive) values of ENiño-3

indicate an under-prediction (over-prediction) of the
event and larger absolute values mean less predictabil-
ity. In this paper, the condition of prediction obstacle
is |ENiño-3| > 0.5℃.

In the context, we use Year (0) to denote the year
when El Niño attains a peak value, and Year (–1) and
Year (1) to signify the year before and after Year (0),
respectively. For each El Niño event, we make predic-
tions for 12 months with different start-months. In
numerical experiments, the El Niño predictions are
made with start-months of Jul(–1) (i.e., July in Year
(–1)), Oct(–1), Jan(0), Apr(0), Jul(0), Oct(0), Jan(1),
or Apr(1).

3.2 Results

For convenience, the strong and weak events with
initial warming in January, April, July, and October,
are denoted by SRi (SR) and WRi (WR) (i = 1, 2,
3, 4). Figure 2 shows the time-dependent Niño-3 in-
dices for these 8 El Niño events. It is obvious that
the El Niño events with initial warming in January
and April such as SR1, SR2, WR1, and WR2 usually
reach peak values in the first year and those with ini-
tial warming in July and October such as SR3, SR4,
WR3, and WR4 reach the peak values in the second
year. The solid spots and triangles indicate the start-
months of the growth-phase predictions and decaying-
phase predictions, respectively. The period between
Apr(0) and Jul(0) is the spring of growth-phase and
that between Apr(1) and Jul(1) is the spring of
decaying-phase.
3.2.1 Characteristics of the seasonal evolutions of the

prediction errors caused by CNOP-type initial

perturbations
Yu et al. (2009) investigated the SPB problem

for El Niño events by tracing the evolution of CNOP.
Their results showed that the evolution of CNOP-type
errors had obvious seasonal dependence and yielded
a significant SPB. In addition, the growth-phase pre-
diction uncertainties caused by the CNOP-type errors
were larger than the corresponding uncertainties for
the decaying-phase prediction. Meanwhile, El Niño
predictions with a start-month in spring (i.e., from
Apr(0)) were relatively easier than those with a start-
month in other seasons (see details in their Fig. 5).
Our results are similar to them. For conciseness, we
only take an example. The seasonal growth rates and
Niño-3 prediction errors with start-month of Oct(–1)
for 8 El Niño events are given in Table 1. The maxi-
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Fig. 2. Two groups of reference-state El Niño events with

initial warming time in Jul(–1), Oct(–1), Jan(0), Apr(0),

respectively. (a) The time-dependent Niño-3 indices of 4

strong El Niño events denoted by SRi, i = 1, 2, 3, and 4;

and (b) those of 4 weak El Niño events denoted by WRi,

i = 1, 2, 3, and 4.

mum values of error growth rates for each event are
highlighted by overstriking and underlining and the
values of Niño-3 prediction errors are distinguished in
italics. It can be seen that the maximum error growth
rates are all greater than 7 and the prediction errors of
Niño-3 index are entirely larger than 1℃, which exceed
the condition of prediction barrier; besides, the maxi-
mum error growth rates for the reference events are al-
most in the AMJ season except the weak events with
initial warming in October. Apparently, the CNOP-
type initial perturbations can lead to severe spring pre-
dictability barrier for El Niño events predicted from

Table 1. The growth rates of initial perturbations

for 8 events predicted from Oct(–1)

Init OND JFM AMJ JAS ENiño3

WR1 1.7501 3.9987 8.0451 –2.8675 –1.1490

WR2 3.0809 3.7609 7.7913 5.2991 1.8479

WR3 1.2283 2.4731 7.7042 5.2004 1.5436

WR4 1.4885 2.4774 7.8240 9.0196 1.9719

SR1 4.1135 1.7457 9.3603 3.9173 –1.4659

SR2 2.7800 3.2787 9.4053 –0.3463 –1.2352

SR3 1.5973 2.4342 9.2742 5.8997 –1.6095

SR4 2.3112 4.3354 7.9843 2.2110 –1.1347

Oct(–1).
3.2.2 Seasonal evolution characteristics of model per-

turbations caused by stochastic MJO forcing
The MJO form depicted by Eq. (1) in Section 2

includes stochastic item. Owing to the randomness,
every numerical realization of the stochastic item will
have different results; thus, diverse realizations of the
MJO form of Eq. (1) will have diverse results. Similar
to Zebiak (1989), for each El Niño event, the stochastic
wind stresses of MJO forcing are numerically realized
for 9 times to get 9 different kinds of MJO forcing.
In the numerical experiments, we insert each one of 9
MJO realizations as external forcing into the Zebiak-
Cane model, and then explore the seasonal evolution
characters of model perturbation caused by stochas-
tic MJO forcing for El Niño events. The results show
that, for the 8 types of MJO forcing and 9 El Niño
events, the seasonal growth rates of stochastic model
perturbations predicted from Jul(–1), Oct(–1), Jan(0),
Apr(0), Jul(0), Oct(0), Jan(1), and Apr(1) lasting for
12 months are all on the small side and their predic-
tion errors of Niño-3 indices are almost less than 0.5℃.
The values of maximum error growth rate are nearly
less than 5 and the season-dependence is not obvious.
Therefore, the model perturbations caused by stochas-
tic MJO forcing basically cannot lead to significant
SPB. To illuminate the results more clearly, Table 2
lists the error growth rates and prediction errors for
8 events predicted from Oct(–1) for 12 months. All
of the predictions use the same numerical MJO forc-
ing. It is obvious that the absolute values of error
growth rate are almost less than 5 and the prediction
errors are less than 0.5℃ except for one event; thus, it
can be inferred that there is no predictability barrier.
Moreover, the maximum error growth rates come forth
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three times in OND season and twice in JFM and JAS
season, respectively, so the season-dependence of error
growth rates is not distinct. Hence, from the perspec-
tive of error growth, the model perturbations caused
by stochastic MJO forcing could not lead to the SPB
predicted from Jan(0) for El Niño events.

The results of Duan and Zhang (2010) indicate
that the parameter errors in model could not result
in significant SPB, uniting the results in this section.
Therefore, we can deduce that initial perturbations are
probably the main error source of SPB.

Table 2. The growth rates of stochastic model per-

turbations for 8 events predicted from Oct(–1)
Model OND JFM AMJ JAS ENiño3

WR1 0.6078 0.4776 1.0317 2.0969 0.0253

WR2 –0.2865 1.5528 0.1118 1.1017 –0.2662

WR3 0.5375 –0.6277 0.8042 0.0301 0.1227

WR4 1.2959 0.6671 0.4200 5.4320 0.5495

SR1 1.4420 0.1091 0.1488 0.7779 0.0027

SR2 –0.4418 2.1399 0.0343 –0.0307 0.1683

SR3 1.7079 0.1386 1.4967 0.2011 0.2673

SR4 1.9025 0.1285 –0.4826 1.8193 0.0724

3.2.3 Characteristics of the seasonal evolutions of the
prediction errors caused by joint mode of initial
perturbations and MJO uncertainties

In the actual ENSO forecast, the initial pertur-
bation and stochastic model perturbation exist at the
same time. Therefore, we further investigate the sea-
sonal evolution characteristics of the prediction er-
rors caused by joint mode of initial perturbation and
model perturbation caused by stochastic MJO forc-
ing. Considering the effect of CNOP errors in the
initial field of the Zebiak-Cane-MJO model and inte-
grating the model, we can produce the El Niño events
under the influence of the joint mode of CNOP-type
initial perturbations and model perturbations yielded
by stochastic MJO forcing. The differences between
these events and those generated by integrating the
Zebiak-Cane model represent the evolutions of joint
perturbation mode. After exploring the seasonal er-
ror growth rates and the prediction errors of Niño-
3 indices, we find that in terms of error growth, the
joint perturbation mode can lead to a significant SPB
and the season-dependence is comparatively obvious
but weaker than that of initial perturbation. In or-
der to compare with the aforementioned results of ini-

tial perturbation and stochastic model perturbation,
Tables 3–4 show the results of seasonal error growth
rates and prediction errors predicted from Oct(–1) and
Jan(0) for 12 months, respectively. All of the predic-
tions correspond to the same numerical MJO forcing.

It can be seen from Table 3 that the values of max-
imum error growth rates in all events are larger than
5, some even reach 11, and the absolute values of pre-
diction errors are entirely larger than 1℃, some even
attain 2, so the predictability barrier is clear. Further-
more, the maximum error growth rates mostly appear
in AMJ season except for the strong event with initial
warming in July and the weak event with initial warm-
ing in October. Hence the joint perturbation mode can
lead to a significant SPB for the El Niño events pre-
dicted from Oct(–1). The season-dependence is weaker
than that of initial perturbations, which is possibly
due to the disturbance of stochastic model perturba-
tion, but the results are considerably similar to those
of initial perturbation in general.

From Table 4, it is obvious that the error growth
rates are comparatively large and the prediction errors
are completely larger than 0.5℃, so the predictability
barrier could happen. Besides, the maximum error
growth rates almost appear in JAS season and the er-
ror growth rates in AMJ season have one maximum
value and 5 secondary values. For this situation, Mu
et al. (2007b) argued that although the largest growth
of initial errors occurs in JAS season, the error growth
during AMJ has become aggressively large and may
have caused the drastic decrease in El Niño forecast
skill across the spring. Therefore, we consider that
the joint perturbation mode could lead to SPB for El
Niño events predicted from Jan(0). In fact, the results
of initial perturbations predicted from Jan(0) are

Table 3. The seasonal growth rates of joint pertur-

bation mode for 8 events predicted from Oct(–1)

Join OND JFM AMJ JAS ENiño3

WR1 2.1887 5.0858 6.8802 –4.8951 –1.2181

WR2 2.5017 1.9534 8.3581 4.1918 1.6379

WR3 0.1449 2.7917 9.5892 5.4973 1.7325

WR4 0.9888 4.4941 8.1599 11.7583 2.3843

SR1 3.4477 1.9840 8.9405 4.8789 –1.4350

SR2 1.3172 2.4356 5.6193 2.2599 –1.0179

SR3 2.8446 2.8533 4.7334 6.9878 –1.4613

SR4 3.4896 5.3163 11.3255 6.3741 –2.1082
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Table 4. The seasonal growth rates of joint pertur-

bation mode for 8 events predicted from Jan(0)

Join JFM AMJ JAS OND ENiño3

WR1 2.2993 9.2758 10.6225 –4.9738 2.0861

WR2 1.1245 6.6403 10.1522 –4.0097 1.6258

WR3 2.0115 3.4337 4.9375 –0.0768 –0.8079

WR4 1.6789 2.3396 4.5639 3.4543 1.1686

SR1 1.7925 6.7274 9.3316 –2.5935 –1.1370

SR2 1.7476 0.9020 3.0141 1.8248 –0.6540

SR3 1.4106 6.8548 4.2088 –1.0742 –1.0742

SR4 3.8473 8.2800 8.9280 –3.8812 –1.6346

Note: bold numbers without underlines indicate the second

largest values.

mostly the same.
The results also indicate that the model pertur-

bations caused by stochastic MJO forcing contribute
little to SPB; thus, initial perturbations are likely the

main error source of SPB in ENSO prediction.
3.2.4 Comparison of seasonal evolutions of prediction

errors caused by initial perturbation, stochastic
model perturbation, and joint perturbation mode

In order to visually show more results, we con-
trast the characteristics of seasonal evolutions of pre-
diction errors caused by initial perturbation, stochas-
tic model perturbation, and joint perturbation mode,
and compare them in the same histogram. The er-
ror growth rates of 8 events are analogous, so we use
their ensemble mean to plot histograms. As for the
prediction errors of Niño-3 indices, we analyze them
with other histograms. The seasonal growth rates
of stochastic model perturbation, initial perturbation,
and joint perturbation mode with 4 types of numeri-
cal MJO forcing predicted from Jul(–1) are shown in

Fig. 3. The seasonal growth rates of stochastic model perturbation, initial perturbation, and joint perturbation mode,

with 4 (a, b, c, and d) of 9 types of numerical MJO forcing predicted from Jul(–1). The symbol “MOD” stands for

the prediction errors yielded by the stochastic MJO forcing; “INI” indicates those caused by initial perturbation; “JOI”

indicates those resulting from the joint mode of both initial perturbation and stochastic model perturbation.
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Fig. 3. It illustrates that, for all of the forcing, there
are two common conclusions. On the one hand, the
values of seasonal growth rates of initial perturba-
tion and joint perturbation mode are pretty near,
while those of stochastic model perturbation are com-
paratively far less. On the other hand, the season-
dependence of joint error growth rate is the same as
initial error growth rate and their maximum values
appear in AMJ season (i.e., spring), while the max-
imum growth rates of stochastic model perturbation
appear in JAS season. For different forcing, in the
same season, the error growth rates of initial pertur-
bation are uniform and joint ones are pretty much the
same, while model ones are discrepant; some even have
opposite signs such as the error growth rates of JFM
are plus in Fig. 3d but they are minus in Figs. 3a, 3b,
and 3c.

On the whole, seasonal error growth rates of dif-

ferent MJO forcing are similar (i.e., the 4 pictures in
Fig. 3 are similar), so we just contrast the results un-
der the same MJO forcing but predicted from differ-
ent months. Figure 4 shows the seasonal growth rates
of stochastic model perturbation, initial perturbation,
and joint perturbation mode with the same numerical
MJO forcing predicted from Jul(–1), Oct(–1), Jan(0),
and Apr(0). The common results of 4 pictures are as
follows: the error growth rates of initial perturbation
are close to those of joint ones while the model ones
are far less; moreover, the seasons during which the
maximum seasonal growth rates of joint perturbation
mode appear are the same as those of initial pertur-
bation, but those of stochastic model perturbation are
usually different with them. These results illustrate
that stochastic model perturbation could hardly yield
a significant SPB and their contribution to SPB caused
by joint perturbation mode is little. In fact, it further

Fig. 4. The seasonal growth rates of stochastic model perturbation, initial perturbation, and joint perturbation mode

with the same numerical MJO forcing predicted from (a) Jul(–1), (b) Oct(–1), (c) Jan(0), and (d) Apr(0).
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emphasizes that initial perturbation is the main error
source leading to SPB. For different initial predict-
ing months, the maximum growth rates of initial per-
turbation and joint perturbation mode predicted from
Jul(–1) and Oct(–1) are fully in AMJ season, while
those predicted from Jan(0) and Apr(0) are in JAS
season but those of stochastic model perturbation are
season inconstant. The results about initial perturba-
tion are consistent with former studies (e.g., Yu et al.,
2009).

As regards the prediction errors of Niño-3 index,
we do not use ensemble mean because the result of ev-
ery event has specific meaning. The prediction errors
for 8 events predicted from Jul(–1), Oct(–1), Jan(0),

and Apr(0) are displayed in Fig. 5, in which all predic-
tions correspond to the same numerical MJO forcing.
It can be seen that the CNOP-type initial perturbation
leads to large prediction errors for El Niño events but
the prediction errors caused by stochastic MJO forc-
ing are far less than those by initial perturbation. On
the condition that |ENiño-3| > 0.5℃ would cause pre-
dictability barrier, initial perturbation could yield se-
vere predictability barrier while stochastic model per-
turbation basically could not lead to such a result.
Besides, the prediction errors caused by joint pertur-
bation mode and initial perturbation have less distinc-
tion. This indicates that model perturbations caused
by stochastic MJO forcing contribute little to SPB;

Fig. 5. Prediction errors of Niño-3 indices of the 8 El Niño events with start-moths of (a) Jul(–1), (b) Oct(–1), (c)

Jan(0), and (d) Apr(0). All the predictions correspond to the same numerical MJO forcing. Wi denotes weak El Niño

events and Si denotes strong El Niño events.
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Fig. 6. Distribution patterns of two categories of CNOP errors. Left column is for the SSTA component, and right

column is for the thermocline depth anomaly. (a) Type-1 CNOP errors and (b) type-2 CNOP errors.

hence, initial perturbations are the main error source
of SPB.

What is more, since the negative (positive) val-
ues of ENiño-3 indicate an under-prediction (over-
prediction) of the event, from Fig. 5, we can see
that CNOP errors and joint perturbation mode almost
under-predict the El Niño events for strong events
while they mostly over-predict the events for weak El
Niño events. The reason is that the CNOP-type er-
rors related to these predictions can be classified into
two types. We refer to these two kinds of CNOP-
type errors as type-1 and type-2 CNOP errors, respec-
tively. The CNOP errors superimposed on the strong
El Niño events consist of the type-1 errors that pos-
sess an SSTA pattern with negative anomalies in the
equatorial central-western Pacific, positive anomalies
in the equatorial eastern Pacific, and a thermocline
depth anomaly (TDA) pattern with deepening ten-
dency along the equator (Fig. 6), which favors anoma-
lous westerly and warm upwelled subsurface water
and finally causes over-prediction of the corresponding
event. The type-2 errors superimposed on the weak El
Niño events are of SSTA and TDA patterns almost op-
posite to the former error patterns (Fig. 6), and they
easily cause anomalous easterly and cool upwelled sub-
surface water, which tend to cause under-prediction of
the event.

We also conducted an experiment to examine the
effect of different MJO intensities on SPB. In the ex-
periment, when the intensity is increased to triple of
the original, the model error could yield SPB. How-
ever, considering that the intensity of the MJO in this
paper is much accordant with the observation, we did
not emphasize the SPB caused by the unreasonably
strong MJO.

4. Summary and discussion

In this paper, a parameterized form of MJO for-
cing is introduced into the Zebiak-Cane model to ob-
tain the so-called Zebiak-Cane-MJO model and the
evolutions of initial perturbation, stochastic model
perturbation, and their joint perturbation mode based
on ENSO events are calculated. By investigating their
error growth rates and prediction errors of Niño-3 in-
dices, the main conclusions are as follows:

(1) The growth rates of joint perturbation mode
and initial perturbation are close but those of stochas-
tic model perturbation are clearly different with them.
The growth rates of model perturbation are not signifi-
cantly season-dependent while those of joint perturba-
tion mode are pretty well season-dependent and most
of them are the same as those of initial ones. Based on
ensemble mean of eight events, only the growth rates
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of model perturbation predicted from the same month
with different MJO forcing have obvious distinction
but those of joint ones are close.

(2) The CNOP-type initial perturbations could
lead to large prediction errors for El Niño events and
the results of joint perturbation mode are pretty much
near, whereas prediction errors caused by stochastic
MJO forcing are far less than those by initial per-
turbation. In terms of the prediction errors caused
by initial perturbation and joint perturbation mode,
strong events are underestimated while weak events
are overestimated.

(3) Model perturbations caused by stochastic
MJO forcing could not lead to a significant SPB and
their contribution to SPB is small, so initial perturba-
tions are probably the main error source causing SPB.

The results suggest that the precision of initial
field should be paid more attention in ENSO predic-
tion. We notice that the area of CNOP-type initial
perturbation is concentrated and has obvious charac-
teristic of locality. In fact, this CNOP error indicates
the sensitive area of ENSO prediction. If we increase
the observation in the sensitive area and reduce the
opportunity of CNOP error in actual ENSO forecast,
the forecast skill would possibly improve enormously.
Moreover, the dependency of ENSO predictability on
initial perturbation emphasized in this paper provides
a theoretical base for the adaptive data assimilation
of ENSO forecasts.

The work in this paper is not all-around and some
results need further discussion and investigation. For
example, if we use the actual observational MJO, do
the results also support those with the parameterized
MJO form in the paper? Besides, the Zebiak-Cane
model used in the paper to study the effect of MJO on
SPB in ENSO prediction is relatively simple and more
complicated air-sea coupled model is needed to tackle
the problem. Moreover, it is necessary to investigate
whether the results are model-dependent. To sum up,
the results of this study may be applied to improv-
ing the model and enhancing the ENSO forecast skill,
while further research of the problems revealed in this
paper is indispensable.
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