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[11 With the Zebiak-Cane model, the contribution of the location and spatial pattern of
initial error in sea surface temperature anomalies (SSTA) to uncertainty in El Nifio
predictions is investigated using an approach based on conditional nonlinear optimal
perturbation (CNOP), which seeks to find the initial error (i.e., the CNOP error) that
satisfies a given constraint and that causes the largest prediction error at the prediction time.
The computed CNOP error of SSTA has a dipole pattern in the equatorial central and
eastern Pacific. The initial error from the equatorial central and eastern Pacific tends to
grow more significantly than those from other locations. Because of the contribution of
annual mean states the location of the initial error plays an important role in the error
evolution; e.g., the shallow annual mean thermocline in the eastern Pacific favors feedback
between the thermocline and sea surface temperature. Meanwhile, the specific dipole
structure of the initial error is also crucial for optimal error growth. Even with the same
magnitude as the CNOP error, random initial error in the equatorial central and eastern
Pacific does not evolve significantly over time. Initial errors of SSTA with a similar spatial
pattern to the CNOP error (i.e., the dipole pattern of SSTA error) give rise to larger
prediction errors than those without similar spatial pattern do. Consequently, the magnitude
of the prediction error at the prediction time depends on the combined effects of the
location and spatial pattern of the initial error. If additional observation instruments are
deployed to observe sea surface temperature with limited coverage, they should
preferentially be deployed in the equatorial central and eastern Pacific.
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1. Introduction

[2] Significant progress has been made in ENSO theories
and predictions in recent decades [Wang and Picaut, 2004],
but there remains considerable uncertainty in realistic ENSO
predictions [Jin et al., 2008; Luo et al., 2008], possibly due
to the uncertainty in initial conditions and model parameters,
the inherent nonlinear feature of ENSO, the atmospheric
noise and other high-frequency variations [Jin et al., 1994;
Kleeman and Moore, 1997; Chen et al., 2004; Moore et al.,
2006; Gebbie et al., 2007; Chen and Cane, 2008; Tang et al.,
2008]. The predictability of ENSO in relation to the initial
error has attracted much attention, resulting in various
approaches such as the linear singular vector (LSV) [Moore
and Kleeman, 1996, Chen et al., 1997; Xue et al., 1997a,
1997b; Tang et al., 2006; Zhou et al., 2008; Cheng et al.,
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2010a, 2010b], bred vector [Cai et al., 2003; Tang and
Deng, 2011] and conditional nonlinear optimal perturbation
(CNOP) [Mu and Duan, 2003; Mu et al., 2003], which is an
extension of a singular vector in the nonlinear regime.

[3] The application of CNOP, in the context of the
Zebiak—Cane model [Zebiak and Cane, 1987] (hereinafter
referred to as the ZC model), has shown that under the
constraint of the magnitude measured by the L2 norm, a
special kind of initial error (referred to as the CNOP error)
with two components (sea surface temperature anomalies
(SSTA) and thermocline depth anomalies) generates the
largest prediction error; whereas some other initial errors
with the same magnitude as the CNOP error give rise to
negligible errors [Mu et al., 2007]. Yu et al. [2009] investi-
gated the characteristics of the CNOP errors and identified
two types of errors, with nearly opposite signs and similar
spatial patterns, which could cause significant prediction
errors. Error type-1 possesses an SSTA dipole pattern with
negative anomalies in the equatorial central Pacific and
positive anomalies in the equatorial eastern Pacific, plus
positive thermocline depth anomalies in the entire equatorial
Pacific; type-2 shows nearly opposite sign to type-1. The
dipole pattern of initial error of SSTA, which tends to cause
a significant prediction error, has also been identified by
Duan and Wei [2012] with a coupled general circulation
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model and by Duan et al. [2009] with other statistical
methods. Yu et al. [2009] pointed out although both the
CNOP error and LSV error of the ZC model with the same
magnitude possess a SSTA dipole pattern, the CNOP error
covers a broader area and causes an obviously larger pre-
diction error than LSV error does in the context of the
nonlinear model [Yu ef al., 2009, Figure 6]. A localized
region of the SSTA component of CNOP errors with large
values, which always arises in the equatorial central and
eastern Pacific, is likely to help us capture the sensitive area
of ENSO predictions, thereby guiding efforts to decrease the
initial analysis error in this area and ultimately improve the
accuracy of ENSO predictions. Although these previous
studies mentioned the location of large values of the initial
error that tends to trigger a large prediction error, might be a
sensitive area for ENSO prediction, they have not defined a
sensitive area or compared the sensitive area with other areas
in terms of their effects on prediction errors. Furthermore, it
is unknown that if decreasing initial error in sensitive area
will indeed provide more benefit than other areas, which will
be addressed in this study using initial conditions from
operational ENSO forecast.

[4] The accuracy of SST is far from perfect though current
generation of infrared and passive microwave satellite
provides highly complementary information enabling sig-
nificant advancement in our ability to monitor SST [Castro
et al., 2008]. The accuracy of infrared data is about 0.3—
0.4°C RMS [Kearns et al., 2000; Harris and Saunders,
1996], but the retrievals can be completely obscured by
clouds; the microwave data provide coverage through
nonprecipitating clouds but have coarser spatial resolution
(~50 km) and generally poorer accuracy (0.5-0.6°C RMS
[Gentemann et al., 2004]). In addition, the analysis errors
of SSTA along the equator possess a standard deviation of
0.2°C [Kaplan et al., 1998], larger than the maximum of
CNOP error in all the grids 0.08°C [Yu et al. 2009, Figure 2].
It means that a CNOP error might exist in the analysis error of
SSTA, and could trigger a non-negligible prediction error.
Therefore, considering the initial error of SSTA and trying to
improve the accuracy of SSTA in a sensitive area is of
practical use, and could be considered as a preliminary study
of targeted observation in ENSO prediction with CNOP
method.

[5] In the past decade, the use of targeted observations to
improve numerical forecasts of high-impact weather events
has been examined in a series of field programs (see
Langland [2005] for an overview of targeting programs and
relevant references). Given the high cost of observations
over ocean, a focus on a localized sensitive area may rep-
resent an economical and efficient strategy in terms of tar-
geted observations with the aim of improving prediction
skill of ENSO. Morss and Battisti [2004a, 2004b] suggested
that for forecasts longer than a few months, the most
important area for observations is the eastern equatorial
Pacific, south of the equator; a secondary region of impor-
tance is the western equatorial Pacific. These areas corre-
spond to those where the LSV of their model has large
amplitude, and also show some similarities to the locations
for CNOP errors in current study (Note that the initial errors
from the thermocline depth are not considered here because
of the relatively zonally spread and uniform structure of its
CNOP in the whole equatorial region, as well as its
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independence of the SSTA error). For the obtained CNOP
errors, there raises several interesting questions. For
instance, how much prediction error can be caused by initial
error from a non-sensitive area? Whether the maximum
prediction error caused by initial error from a non-sensitive
area is smaller than that caused by initial error from a sen-
sitive area? Could initial errors existing in the sensitive area
but without a dipole pattern induce a non-negligible pre-
diction error? We aim to address these questions by
performing a series of experiments with the ZC model.
Results of this study demonstrate that both the location and
the spatial pattern of the initial errors account for large pre-
diction errors. Thereafter, we also evaluate the improvement
of forecast skill by eliminating initial error in the sensitive
area identified by CNOP method.

[6] The remainder of this paper is organized as follows.
Section 2 describes the design of prediction experiments for
model El Nifio events, and computes the CNOP error and its
evolution for each experiment. Section 3 calculates the
individual CNOP errors in six sub-areas, including a defined
sensitive area, and shows the contribution of the location
of the initial error to uncertainty in El Nifio predictions.
Section 4 tests the contribution of the spatial pattern of initial
errors to the prediction uncertainties by estimating the pre-
diction errors caused by initial random errors and other initial
errors with certain spatial patterns superimposed on the pre-
determined sensitive area. Section 5 examines the effect of
targeted observations in terms of improving forecast skill,
based on a set of ideal numerical experiments. Finally,
Section 6 provides a discussion and a summary for the main
results.

2. Conditional Nonlinear Optimal Perturbation

[7] The present numerical experiments employ the ZC
model, which is a nonlinear anomaly model of intermediate
complexity that describes anomalies about a specified sea-
sonally varying background, avoiding the “climate drift”
problem [Zebiak and Cane, 1987]. The atmosphere model
and the prognostic equation of SSTA are run at a horizontal
resolution of 5.625° x 2.0°. The ocean model is a grid point
model with a horizontal resolution of 2.0° x 0.5°.

[8] Integrating the ZC model for 1000 years, we obtain a
time series of SSTA, as well as many El Nifio events that
tend to have a 4-yr period and phase-lock to the end of the
calendar year. Eight El Nifio events with various intensities
and onset times were selected for the numerical experiments.
Figure 1 shows time-dependent Nifio-3 indices for these
eight El Niflo events. Note that the selected reference-state
El Nifo events are considered as “true” states and that our
research is based on the assumption of a perfect model. For
each El Niflo event, we make predictions for 1 year (i.e., a
lead time of 1 year) with different 12 start months by
superimposing initial errors on the “true” state at different
start months. The initial errors are described in details below.
We use Year (0) to denote the year when El Nifio attains a
peak value, and Year (—1) to signify the year before Year (0).
In the numerical experiments, El Nifio predictions are made
with starting months from July (—1) (i.e., July in Year (—1))
to June (0). Because the duration of each prediction is 1 year,
error evolution occurs mainly during the growth phase of
El Nifio events. We focus on the growth-phase predictions,
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Figure 1. Time-dependent Niflo-3 indices of eight El Nifio reference states, denoted by Ri(i=1, 2, ..., 8).
Start months of predictions for these El Nifio events range from July (—1) to June (0).

which could provide the most important information (e.g.,
the onset times and strengths of the El Nifio events).

[9] For each prediction experiment, we seek the initial
error (i.e., CNOP error) that causes the largest departure
from the “true” state at the prediction time, using the CNOP
method. Assuming that initial errors exist only in SSTA, the
computed CNOP error consists of only one component:
SSTA. To obtain the CNOP error, a cost function is con-
structed to measure the evolution of the initial error of
SSTA. The CNOP error, denoted by Tjs, is obtained by
solving the following nonlinear optimization:

J(Ths) = max ||T"(7)]|2, )

I75]1,=6

where T} is the initial error of the SSTA superimposed on the
initial state of a predetermined reference state El Nifio event.
|Toll> < & is the constraint condition defined by a prescribed
= \/Zi,jT(,)%,j 5
where Ty, ; represents the initial error of the SSTA at dif-
ferent grid points and (7, ;) is the interior grid point in the
domain of the tropical Pacific (135°E-90°W at an interval of

5.625°; 17°S—17°N at an interval of 2°). The cost function is
the evolution of the initial error at time 7, measured by

17" (T)ll2 = /2T, {7_i(7)2. T’ (1) represents the prediction

error of SSTA at time 7, obtained by subtracting the SSTA
of the reference state from the predicted SSTA at prediction
time 7.

[10] The initial times are the predetermined start months of
the El Nifo prediction and the time interval is 12 months
(i.e., 7 = 12 months, corresponding to a lead time of
12 months for El Niflo predictions). The constraint bound
related to the CNOP error was predetermined experimen-
tally to be 1.2, indicating that the errors of SSTA measured
by the chosen norm do not exceed 1.2°C. We chose other

positive real number § and the norm ||T|>

constraint bounds to calculate the corresponding CNOP
errors. The results show that the spatial patterns of opti-
mized CNOP errors are similar, and that differences exist
mainly in magnitude, which do not influence the conclu-
sions of this study. As a result, CNOP errors related to other
constraint bounds are not presented.

[11] To solve the optimization problem (equation (1)), we
used the solver Spectral Projected Gradient 2 (SPG2) [Birgin
et al., 2000] to minimize the negativity of the cost function
(for details, see Yu et al. [2009]). Consequently, a total of
96 CNOP errors are obtained from various combinations
of 12 start months and 8 El Nifio events. These CNOP errors
represent the initial errors of SSTA under a constraint, which
caused the largest prediction errors in the 96 prediction
experiments. The CNOP errors have a dipole pattern in the
tropical Pacific, and can be classified into two categories
according to the sign of the resultant prediction error of the
Nifo-3 index at the prediction time. All CNOP errors that
induce positive prediction errors of the Nifio-3 index at
prediction time are composited as type-1 CNOP error; the
other CNOP errors are composited as type-2 CNOP error.
The composite CNOP errors are scaled to have equivalent
magnitudes to ¢. Figure 2 shows these two composite CNOP
errors. Type-1 CNOP error comprises negative errors of
SSTA in the equatorial central Pacific and positive errors in
the equatorial eastern Pacific, resulting in a positive predic-
tion error of the Niflo-3 index, while type-2 CNOP error has
a sign almost opposite to the former, causing a negative
prediction error of the Nifio-3 index. For both composite
CNOP errors, large SSTA errors occur mainly in the equa-
torial central and eastern Pacific.

[12] CNOP is the initial perturbation whose nonlinear
evolution attains the maximal value of the cost function.
Mathematically, it is the global maximum of the objective
function in the phase space. In some cases, there exists local
maximum of the objective function. And the corresponding
initial perturbations are referred to local CNOP. The local
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Figure 2. (a, b) Two types of CNOP error shown in six rectangular domains denoted by Domain i
(i=1, ..., 6). Large values of both types of CNOP error occur mainly in Domain 5.

CNOP error for a given optimization experiment, which
causes the second-largest prediction error, has a spatial pat-
tern similar to that of the CNOP error, but with the opposite
sign. Note that the local CNOP error and CNOP error for a
given optimization experiment are both related to one par-
ticular El Nifo event and one particular start month, but that
two types of CNOP errors in Figure 2 are composited from
many CNOP errors obtained from various combinations of
8 El Nifio events and 12 start months. Meanwhile, the CNOP
also possesses clear physical meanings [Duan and Mu,
2009]. Apart from acting as an initial error that has the
largest negative effect on the prediction result at the pre-
diction time, CNOP can also be used to be superimposed on
the climatological basic state acts as the initial anomaly
mode that is most likely to evolve into an El Nino event and
represents the optimal precursor of El Nino [Duan et al.,
2004; Duan and Mu, 2006; Duan et al., 2008]. In sensi-
tivity analysis studies, CNOP may represent the most
unstable mode [Mu et al., 2004; Sun et al., 2005; Wu and
Mu, 2009; Terwisscha van Scheltinga and Dijkstra, 2008].
[13] To further investigate the evolution of the CNOP
error, Figure 3 shows snapshots of the prediction errors
of SSTA, zonal wind anomalies, and thermocline depth
anomalies with lead times of 3, 6, 9, and 12 months for El
Niflo event RS and a start month of October (—1), which are
caused by the corresponding CNOP error. The CNOP error
of this prediction experiment belongs to the type-2 CNOP
error in Figure 2, with one negative pole in the equatorial
eastern Pacific and one positive pole in the equatorial
central Pacific. The error evolution of SSTA in Figure 3a
shows that the negative pole develops strongly, while the
positive pole decays gradually and disappears after 6 months,
replaced by the intensified negative SSTA error. The dra-
matic increase in the magnitude of the negative SSTA error
can be traced back to the significantly large error of the wind
anomaly over the equatorial Pacific. In fact, at a lead time of
6 months, an obvious error in the easterly wind anomaly

appears at around 120°W-140°W (Figure 3b). This error can
be considered as an easterly wind perturbation, and it influ-
ences the thermocline depth anomalies and upwelling in the
eastern Pacific via the propagation of equatorial oceanic
waves and Ekman pumping, consequently influencing SSTA
by means of thermocline depth feedback and upwelling
feedback [Dijkstra, 2005].

[14] Figure 3c shows the response of thermocline depth
anomalies to the wind perturbation. The signals located west
and east of the wind perturbations are attributed to the
Rossby waves and Kelvin waves, respectively. The shoaling
of thermocline depth anomalies in the eastern Pacific is
favorable for the entrainment of colder subsurface water,
leading to an enhanced negative error of SSTA in this area.
Figure 3 shows that the evolution of CNOP error can be
explained by Bjerknes feedback. To a certain extent, the
CNOP error enhances this feedback because it leads to the
largest prediction error at the prediction time

3. The Location of Initial Errors

[15] The CNOP error comprises relatively large values of
initial SSTA error in the equatorial central and eastern
Pacific and small values in other regions, and it causes the
largest prediction error at the prediction time, according to
the definition of CNOP. Prior to assessing the effect of the
initial error in the equatorial central and eastern Pacific, the
domain of the ZC ocean model is divided into six parts with
equal numbers of grid points (Domain i (i = 1, ..., 6) in
Figure 2). Domain 5, where the dipole pattern of SSTA error
with large values is mainly located, is defined as the sensi-
tive area (157.5°W—90°W, 5°S—5°N) covering the equatorial
central and eastern Pacific. It is supposed that initial errors in
Domain 5 evolve more significantly than those in other
domains. To test this assumption, we compute the maximal
predication errors caused by initial error confined within
each of the six domains. The cost function is still defined as
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(c) Thermocline Depth Anomalies
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Figure 3. Prediction errors of (a) SSTA, (b) zonal wind anomalies, and (c) thermocline depth anomalies
caused by CNOP error for El Nifio event R5 and a start month of October (—1).

equation (1) to measure the evolution of the initial error of
SSTA at the prediction time, but the constraint condition
|To|l2 < & is defined by another positive real number § and
\/ Zi,jT(')%j’
error of the SSTA and (7, j) the interior grid point in the one
of six domains. Because the number of grid points in each
domain is 1/6 of the total grid points in section 2, the ¢ is
determined as 0.49 in this section. For 8 El Nifio events and
12 start months, we make 576 (12 x 8 x 6) optimization
experiments. Figure 4 shows the obtained 6 CNOP errors
and their corresponding cost functions for El Nifio RS and a
start month of October (—1). It can be seen that clearly
dipole patterns of SSTA errors are found in Domain 4,
Domain 5, and Domain 6, which are all located in the eastern
Pacific. This implies that the dipole pattern of SSTA error is
more likely to appear in the eastern Pacific other than
western Pacific. Furthermore, it is the CNOP error in
Domain 5 that causes the maximum value of the cost

the norm ||7p||, = where T}, ; represents the initial

function among these 6 CNOP errors. The averaged cost
functions for 96 (12 x 8) optimization experiments for each
domain are listed in Table 1, which also confirms the above
result.

[16] The initial errors evolve more strongly in the sensitive
area (Domain 5) than in other regions, which can be
explained as follows. Yu et al. [2009] reported that the
mechanism of the evolution of the ENSO signal could be
used to explain the error growth, and that Bjerknes positive
feedback is responsible for error growth. Therefore, it is
supposed that the reason for the strongest ENSO signal
occurs in the equatorial central and eastern Pacific may also
explain why the location of the sensitive area of error growth
is in this region. Because of the easterly trade wind along the
equator and the resultant mean upwelling in the eastern
Pacific, the thermocline is shallower in this region than
within the equatorial western Pacific. The shallower ther-
mocline in the equatorial eastern Pacific favors the influence
of a variable thermocline on the development of SSTA by
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Figure 4. (a—f) For El Nifio R5 and a start month of October (—1), 6 CNOP errors located in 6 domains
are shown respectively, together with 6 values of cost functions.
means of upwelling or downwelling. The importance of the the random error at a particular grid point 77; ;, where the

location of initial errors represents the effects of reference
states, and in this context it is the space-dependent climato-
logical mean thermocline depth that affects the error evolu-
tion. The dipole pattern of CNOP error located in the
equatorial central and eastern Pacific acts as a trigger of
Bjerknes positive feedback. Weaker (stronger) easterly trade
wind over the dipole induces downwelling (upwelling)
Kelvin waves that act to weaken (intensify) the upwelling in
the equatorial eastern Pacific, where the shallow thermocline
favors thermocline—SST feedback. Consequently, the posi-
tive (negative) initial error of SSTA in the Nifio-3 region is
amplified, causing a significant prediction error of Nifio-3
indices and resulting in overestimation (underestimation) of
the strength of El Niflo events.

4. The Spatial Pattern of Initial Errors

[17] As can be seen in the previous section, the equatorial
central and eastern Pacific is the most important locations for
initial error growth. In this section, we examine the effect of
the spatial pattern of initial errors on El Nifio prediction.

[18] First, we consider initial random errors that spread
over the sensitive area with the same magnitude as the
CNOP error in this area, assuming that the initial random
error at each grid point is unbiased. For a particular El Nifio
event and start month, one initial random error field is con-
structed within the sensitive area (Domain 5). The value of

subscript i, j denotes the grid point within Domain 5, is
chosen from a random sequence of real numbers with a
normal distribution and a randomly given variance. The
values of this initial field at different grid points are chosen
from different random series with various variances. The
magnitude of the random field should be scaled to be equal
to that of the corresponding CNOP error within Domain 5
for fair comparison. The magnitude of the random error is

measured by the L2 norm Hi’HZ =, /Ziﬂ}’ ;2. Hence, we

scale the random error field 7:,' with UH;'—,H,

rll2
positive real number. We make o identical to the magnitude
of the corresponding CNOP error within this domain, and

then obtain a scaled random initial error 7, = UHY;—:—,” with
ril2

the magnitude ||7o||» = 0. This scaled random error is then
superimposed on the corresponding El Nifio event at the
start month, and the ZC model is integrated for 1 year.
[19] For 8 El Nifo events and 12 start months, a total of 96
prediction experiments are performed, and the averaged
absolute value of the prediction error of Nifio-3 indices at the
prediction time, as caused by the random initial errors, is
0.052°C, much smaller than the averaged absolute values of
prediction errors caused by CNOP errors within Domain 5,
which is 0.621°C. It is clear that the random initial errors
located in the sensitive area (Domain 5) yield small

where o is a

Table 1. Averaged Cost Functions Among 96 Optimization Experiments in Domain i (i=1, ..., 6)
Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Domain 6
Averaged cost function 1.06 2.47 1.50 1.27 3.24 2.19
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the CNOP error for El Niflo event RS and a start month of
October (—1).

prediction uncertainties compared with those resulting from
the CNOP error within the same area. Given the lack of a
particular dipole pattern of SSTA, random initial errors with
the same magnitude as the CNOP error will not evolve sig-
nificantly, even when located in the sensitive area defined by
large values of CNOP error.

[20] In real operational predictions, the initial error is not
simply a random error: it possesses a particular spatial pat-
tern due to initialization of the model and may differ in
magnitude from the CNOP error. Consequently, we con-
sidered other initial errors with a given spatial pattern
derived from analysis data sets, to evaluate the impact of the
spatial pattern of the initial error on the prediction error.
Differences within the sensitive area (Domain 5) between
two monthly mean data sets—the initial conditions of SSTA
used in the hindcast experiment of LDEOS (the latest
version of the ZC model) [Chen et al., 2004] and Kaplan
extended version2 SSTA [Kaplan et al., 1998; Reynolds
and Smith, 1994]—from January in 1980 to December in
1999 are considered as 240 initial analysis errors, and sub-
sequently are superimposed on each predetermined model
El Nifio event at each start month. After calculating the
prediction errors caused by these initial errors at the pre-
diction time, we note that for a given El Nifio event and
start month, some initial errors cause non-negligible pre-
diction errors, whereas others induce trivial errors. It is
supposed that the spatial pattern of the former initial errors
is similar to that of the corresponding CNOP error related to
the El Nifio event and start month. Thus, we calculated the
similarity coefficient between each initial error and the
CNOP error within the sensitive area.

[21] Figure 5 compares the similarity coefficient and pre-
diction errors of Nifo-3 indices for El Nifio event R5 and a
start month of October (—1), revealing that the initial errors
that possess similar spatial patterns to the CNOP error tend
to cause larger prediction errors. Other El Nifio events and
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start months yield similar results (data not shown). In the
case that the similarity coefficients are negative, the larger
absolute value of similarity coefficients coincide with larger
prediction errors, due to the existence of local CNOP error.
The CNOP error for this El Nifio event and start month
corresponds to a type-2 CNOP error (see Figure 2), causing
a negative prediction error for the Niflo-3 index. The
corresponding local CNOP error for this El Nifio event and
start month is similar to the type-1 CNOP error in Figure 2.
When the initial error is similar to the local CNOP error, the
similarity coefficient between the initial error and the CNOP
error is negative, but it could still cause a non-negligible
prediction error.

[22] Our analysis of the error evolution of an initial
random error and an initial error with various spatial patterns
(as obtained from analysis data sets) reveals that the spatial
pattern of the initial error plays an important role in deter-
mining the prediction error: the initial error evolves more
strongly in the case that it possesses a similar spatial pattern
to that of the CNOP error, which possesses a dipole pattern
of SSTA in the central and eastern equatorial Pacific
(Domain 5). To further investigate how essential the dipole
pattern of CNOP error is, we present the evolution of central
part and eastern part of the dipole separately for El Nifio R5
and a start month of October (—1) in Figure 6. In the left
column, it is shown that the positive central part of the dipole
disappears after 6 months, while a negative prediction error
appears to the east of the original central part at the lead time
of 6 months and evolves stronger gradually. The prediction
error attains —0.6°C at the lead time of 12 months. In the
middle column, it can be seen that the negative eastern part
of the dipole grows much stronger and faster, attaining
—1.0°C after 12-month evolution. For this case, the eastern
part evolves more significantly than the central part. When
both two exist, the prediction error could attain —2.5°C,
much stronger than the linear combination of prediction
errors caused by central part and eastern part separately. It
means that the nonlinearity plays a non-negligible role in the
error evolution in this case. However, the nonlinearity could
be neglected for some cases, especially when the magnitude
of prediction error is small. Figure 7 presents a case which
corresponds to El Nifio R7 and a start month of July (—1).
For this case, the prediction error caused by the dipole pat-
tern is approximately equal to the linear combination of
prediction errors caused by two parts separately. Besides, the
prediction errors are significantly smaller than that of the
case in Figure 6. It should be noted that although the positive
central part disappears after 3 months with a negative pre-
diction error appearing to the east, its evolution after
12 months is larger than the prediction error evolved from
the eastern part directly, which is also different from the case
in Figure 6. The relative importance of the central part and
the eastern part remains unclear and needs further study in
the future.

5. Implications for Targeted Observations

[23] Section 4 showed that the initial error in the sensitive
area (Domain 5) causes a larger prediction error if it pos-
sesses a similar spatial pattern to that of the corresponding
CNOP error related to the given El Nifio event and start
month. We infer that when an initial error, considered as a

7 of 13



C06018

SSTA evolution of central pole

YU ET AL.: LOCATION AND PATTERN OF INITIAL ERROR

C06018

SSTA evolution of eastern pole SSTA evolution of dipole pattern

0-month lead
20N 3 \\\% 3 \\% 3 \,JL
10N \\
EQ fie v Qs R .
108 ~ - %
20S - - - - - - - - - - - - - - - - - - -
140E  160E 180 160W 140W 120W 100W 140E  160E 180  160W 140W 120W 100W 140E  160E 180 160W 140W 120W 100W
3-month lead
20N 5 \\% \\% \\J\L
10N
EQ {xys = N R 3 Qe
10S w ] o -
140E  160E 180  160W 140W 120W 100W 140E  160E 180 160W 140W 120W 100W 140E  160E 180 160W 140W 120W 100W
6-month lead
20N 3 \\\<§ % \,JL
10N
EQ i o 2 . B |- -
e e IS
108 = o B
208 - - - - - - - - - B - -
140E  160E 180 160W 140W 120W 100W 140E  160E 180 160W 140w 120W 100W 140E  160E 180 160W 140W 120W 100W
9-month lead
20N g %L‘ 3 *{q g \uﬂ{
10N N
EQ{xs T W . ;
105 - o -
s SN SN
208 ’ : = ; .
140E  160E 180  160W 140W 120W 100W 140E  160E 180  160W 140W 120W 100W 140E  160E 180 160W 140W 120W 100W
12-month lead
20N 3 \\’J\L 3 <z
10N
EQ{ios 0 {xs T
108 - o R
[y, v e : SN i B BSRrE
208 T T T T T T T T T T
140E  160E 180 160W 140W 120W 100W 140E  160E 180  160W 140W 120W 100W 140E  160E 180 160W 140W 120W 100W

Figure 6. The time-dependent prediction error of SSTA evolved from (left) central pole, (middle) eastern
pole, and (right) dipole pattern of CNOP error related to El Nifio R5 and a start month of October (—1).

vector, is decomposed into two vectors—one parallel to the
direction of the CNOP error (i.e., the projection of the initial
error onto the CNOP error) and the other orthogonal to it,
denoted by Component I and Component II, respectively.
LetE,, E., E1, E, be the undecomposed initial error, CNOP
error, Component I and Component II, then £, = %Ec,

c c
E,=E, — E|. Here, we decompose each of the initial errors
which are constructed from Kaplan extended version2 SSTA
and initial condition of SSTA used in the hindcast of
LDEOS as in Section 4, except covering the whole model
domain, into the two components and compute their
respective evolutions.

[24] Figure 8 shows the root-mean-square error (RMSE)
in the Niflo-3 region caused by these two components of
initial errors, revealing that although the magnitude of the
projection of the initial error onto the CNOP error (i.e.,
Component I) is significantly smaller than that of the other
component at the initial time, the growth rate is much higher;
consequently, the two prediction errors are comparable in

magnitude after 1 year. Also shown in Figure 8 is the RMSE
in the Nifio-3 region caused by the undecomposed initial
error. The significant growth of the undecomposed error
during the first 6 months can be attributed to the obvious
growth of Component I. Therefore, we conclude that it is
Component I, as a fraction of initial error at start month, that
accounts for the error growth.

[25] Although it appears that eliminating the projection of
the initial error on the CNOP error (i.e., Component I) would
be helpful in improving the prediction skill, in the realistic
predictions it is not possible to identify the true initial error;
consequently, it is not possible to eliminate Component |
from the initial error. A compromise strategy would be to
prevent the occurrence of the CNOP error in the initial
condition. We have shown that large values of CNOP error
in the equatorial central and eastern Pacific result in signif-
icant prediction errors. This finding raises the possibility of
improving the forecast skill by reducing the initial error
within the sensitive area, which could be achieved by addi-
tional targeted observations in this area. In this section,
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Figure 7. The same as Figure 6 but for El Nifio R7 and a start month of July (—1).

we examine the extent to which the prediction results are
improved by eliminating the initial error in several pre-
determined areas, including the sensitive area.

[26] A set of initial errors, consisting of 240 members
(referred to as original initial errors in this context), was
constructed in the same way as in the previous section,
except covering the entire domain of the ZC model, repre-
senting the differences between the two monthly mean data
sets from January 1980 to December 1999. These initial
errors are superimposed on each predetermined El Niflio
event at each start month, followed by computation of the
prediction errors of SSTA during a calendar year caused by
these initial errors. Hence, a total of 240 x 96 prediction
experiments were performed. Note that the reference “true”
states are still the eight El Nifio model events described in
Section 2; no observational data are used as “true” states.

[27] Figure 9 shows the time-dependent RMSE of SSTA
in the Nifio-3 region over all the prediction experiments
(black line). The initial errors develop gradually and cause
non-negligible prediction errors after 1 year, despite

damping during the first month due to imbalance among the
different model variables (e.g., SSTA, thermocline depth
anomalies, and wind anomalies).

[28] To examine the effect of reducing initial errors in
different areas on prediction errors, for each original initial
error field, six subsets are generated by eliminating its
component in domaini(i=1 ... 6, as described in section 3)
from the full initial error. Six sets of ideal numerical
experiments are then performed with these new initial error
fields, accordingly they are denoted by Exp i. For each
subset, there are totally 240 original initial error fields,
which are derived as the differences between two monthly
mean data sets (see section 4). Prediction errors caused by
these each set of new initial errors are computed in Exp i,
and the RMSE of the Niflo-3 SSTA for each set of new
initial errors is plotted in Figure 9. By eliminating the initial
errors of SSTA in the sensitive area (Domain 5), without
changing the initial errors of SSTA in other regions, the
prediction results are improved after 1 year in Exp 5 (purple
line). Because the Nifio-3 region is located in Domain 5,
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Figure 8. Root-mean-square error for Nifio-3 SSTA caused
by undecomposed initial errors and their two components.
Component I denotes the projection of the initial error on
the direction of the CNOP error, and Component II is unde-
composed initial error minus Component I.

eliminating the initial error in Domain 5 means that the
RMSE in the Nifo-3 region is zero at the initial time.
Eliminating the initial errors of SSTA in Domain 6 also
enhances the prediction skill within 6 months, but the effects
become increasingly weak over time. It might seem sur-
prising that eliminating the initial errors in any one of the
other four areas does not enhance the prediction skill obvi-
ously. We suppose that the initial errors in the sensitive area
account for the bulk of the prediction errors. If the initial
errors in the sensitive area are not changed at the initial time,
they will generate large prediction errors, regardless of
whether the initial errors are eliminated in any of the other
areas.

[29] Specially, removing the initial SSTA errors in the
equatorial western Pacific (i.e., Exp 2) actually worsen the
prediction significantly, causing larger RMSE than that of
the original case in which all initial error components are
retained (green line and black line). This could be attributed
to the opposite effects of initial errors in equatorial western
Pacific and eastern Pacific on the signs of prediction errors
of Nifio-3 indices. To focus on only the worst prediction
cases in Exp 2, we narrow down the total 240*96 samples to
500 forecast members, which lead to the largest 500 values
of RMSE in the forecasts. The corresponding prediction
errors of Nifio-3 indices for the selected 500 tests from Exp 2
are examined. We also look at the prediction errors of
Nifio-3 indices for the same 500 initial error patterns but
excluding their components in sensitive area Domain 5 this
time. The scatter points of prediction errors of Nifio-3
indices for the 500 selected samplings in Exp 2 and Exp 5
are plotted in Figure 10. For selected Exp 2 tests, the pre-
diction errors of Nifio-3 indices range from —3°C to —1°C.
Meanwhile, the majority of the scatter points show positive
values in Exp 5 case, which suggests that given the same

lead time (month)

Figure 9. Root-mean-square error for Nifio-3 SSTA caused
by the original initial errors (black line) and six other sets of
initial errors. Each set of new initial errors is generated by
eliminating errors in one of the six domains from the original
initial errors.

initial error field, Domain 2 initial errors may cancel the
effect by Domain 5 initial errors on predictions by some
amount. Therefore, keeping the full initial errors actually
reduces the predictions errors than Exp 2 case, since the
initial errors in equatorial western Pacific and eastern Pacific
cause competing effects on El Nifio prediction. We try to
present a scenario accompanying Figure 10 to describe the

Prediction error in Exp5
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Figure 10. Scatterplot of prediction errors of Nifio-3
indices for the 500 selected samplings in Exp 2 and Exp 5.
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above explanation more clearly. It is supposed that there is a
dipole pattern of initial error of SSTA in Domain 5 with a
positive part in the central equatorial Pacific and a negative
part in the eastern equatorial Pacific, which will cause east-
erly anomalies and a significant negative prediction error in
Nifo-3 area after 1-year evolution according to our discus-
sion in Section 4; there is also a negative value of SSTA
error in the Domain 2, which will cause westerly anomalies
in central Pacific and subsequent positive prediction error of
SSTA in Nifio-3 region. Because the initial error in Domain
5 grow more significantly than initial error in Domain 2, as
we discussed in Section 3, the sign of prediction error by
coexisting initial errors in both domains is negative and the
magnitude of prediction error is smaller than that caused by
initial error in Domain 5. Of course, this is only one expla-
nation for the occurrence of worse forecast skill caused by
more accurate information in Domain 2, it might also be due
to the imbalance of different variables after elimination of
initial error in Domain 2.

[30] As we stated in the introduction, the accuracy of SST
data is far from perfect although advances in technology in
recent years greatly improved the performances of the sat-
ellite sensors observing the ocean temperature. There are
some limitations to the accuracy of these satellite observa-
tions. One way of improving accuracy of satellite SST data
is to increase in situ observations. For example, SST algo-
rithm coefficients of infrared satellite are often found by
regression of the satellite radiances against in situ bulk SST
(0.5 to 5 m below the sea surface). To improve the accuracy
of satellite SST, Emery et al. [2001] suggested that in situ
skin SST (approximately 10 pm within oceanic skin layer) is
more appropriate than in situ bulk SST for calculating sat-
ellite SST algorithm coefficients; while a lack of measure-
ments of in situ skin SST had led to the common SST
estimation practice to adjust the satellite SST to match a
selection of in situ bulk SST. They claimed that more
simultaneous measurements of in situ skin and bulk SST by
ships of opportunity, moored and drifting buoys could be
provided to validate and modify satellite SST measurements;
with these validation measurements, it should be possible to
achieve an SST accuracy of 0.1-0.3 C for both bulk and skin
SST. Donlon et al. [2007] also suggested that a combination
of independent SST retrievals from in situ and space-based
sensors using different methodology is one effective way to
reduce the scientific limitations on SST retrievals and
increase their accuracy. They tried to achieve one of the
objectives of Global Ocean Data Assimilation Experiment
High-Resolution SST Pilot Project, which is to develop a
new generation of SST data obtained by blending multi-
sensor retrievals. All these studies demonstrate that more
observations by ships of opportunity, moored and drifting
buoys could contribute to obtain a more accurate SST data.
The results of our numerical experiments indicate that
reducing the initial errors of SSTA in the sensitive area
would improve the forecast skill in El Nifio predictions to
some extent. Due to the expensive cost of deploying moored
and drifting buoys in ocean, in the case that additional
observation instruments are made available to increase the
accuracy of SST within a limited area, they should be
deployed in the sensitive area rather than elsewhere. Note
that there are circumstances that additional observational
data in some regions might decrease the forecast skill. This
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suggests that additional observations should be deployed
more carefully in the case that initial errors in different areas
play opposite effects on prediction errors systematically in
forecast experiments.

6. Summary

[31] Given the location of large CNOP errors in the
equatorial central and eastern Pacific and the dipole pattern
of SSTA, we investigated the contribution of the location
and spatial pattern of this type of initial error to the error
evolution in El Nifio prediction experiments. The equatorial
central and eastern Pacific (Domain 5) was compared with
five other regions in terms of the effects of initial errors
confined in each of regions on prediction errors. Through the
calculation of the maximal cost functions measuring pre-
diction errors caused by initial errors from different domains,
we find that initial errors in Domain 5 evolve more signifi-
cantly than those in other domains. It is supposed that the
reason for the strongest ENSO signal occurs in the equatorial
central and eastern Pacific may also explain why the location
of the sensitive area of error growth is in this region. The
shallow thermocline depth in this region enhances the
influence of subsurface water on SSTA by means of vertical
advection. The importance of the location of the initial error
demonstrates the effect of the climatological mean state on
error evolution.

[32] The spatial pattern of initial errors also plays an
important role in the error evolution. An initial random error
in the predetermined sensitive area cannot trigger non-
negligible prediction errors. We also considered initial errors
with certain spatial patterns, as obtained from the initial
conditions of the LDEOS hindcast experiment and reanalysis
data. An initial error with a spatial pattern similar to that of
the CNOP error tends to cause a larger prediction error. The
dipole pattern of the initial error of SSTA in the eastern
Pacific acts to trigger Bjerknes positive feedback. The
central part of the dipole disappears after several month
evolution, and it cause a prediction error of SSTA with
opposite sign to the east, which grows gradually afterwards.
The eastern part of the dipole grows all the time and doesn’t
change its sign. If the magnitude of prediction error is large,
the prediction error caused by the dipole pattern cannot be
considered as a simple linear combination of prediction
errors caused by each part of dipole separately, which
means nonlinearity plays an important role in the error
evolution.

[33] Considering the importance of the similarity coeffi-
cient between the initial error and the CNOP error, we
decomposed the initial error into two components (one par-
allel to the direction of the CNOP error and the other
orthogonal to it) and assessed their respective influences on
the prediction errors. The projection of initial error on the
direction of the CNOP error at the start month, just only a
small fraction of initial error, accounts for the error growth in
the following 12 months. However, in practical predictions
it is not possible to eliminate this small fraction from the
initial error.

[34] A compromise strategy is to prevent the occurrence of
CNOP error in the initial conditions. Additional observa-
tions of SST in the sensitive area could reduce the initial
error of SST, and is expected to improve forecast skill. Our
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experiment results confirm that this method could reduce
prediction errors to some extent. In the case that additional
observation instruments are only capable of covering a
limited area, they should be implemented in the sensitive
area rather than other regions. Note that there are circum-
stances that additional observational data in some regions
might decrease the forecast skill. It could be attributed to the
systematically opposite effects of initial errors located in two
areas on prediction errors in forecast experiments. Removing
initial error in one area that is not the most sensitive area
could actually worsen the prediction results. This shows the
importance of finding the most sensitive area and suggests
that additional observations should be deployed more care-
fully in this case.

[35] This paper presents the results of a preliminary study
of targeted observations related to ENSO predictions, using
information provided by the CNOP error. Of course, the
model adopted here may be relatively simple and may not
consider the complete physics of a coupled ENSO. The
results may therefore be limited in regards to the model’s
ability to simulate a real system. Hence, the understanding
gained from the present study needs further verification
using models with more complete physics. The application
of more complex models for ENSO prediction would enable
the delineation of a 3-D sensitive region, which would be an
advance on analyses of a 2-D region. It will provide a more
accurate sensitive area, including subsurface information,
other than our current simple sensitive area defined as a
rectangle in the eastern equatorial Pacific. In that case, it will
help to implement subsurface observation to improve our
forecast skill. In addition, one of the challenges in ENSO
forecasting is also in avoidance of false predictions of
El Nifio events. This work is focused on the analysis of
El Niflo events that do occur, from the view of hindcast
experiments. Whether the targeted observation will reduce
the occurrence of false prediction of El Nifio event needs
further studies.
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