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ABSTRACT

Within the framework of the Zebiak–Cane model, the approach of conditional nonlinear optimal pertur-

bation (CNOP) is used to study the effect of model parameter errors on El Niño–Southern Oscillation

(ENSO) predictability. The optimal model parameter errors are obtained within a reasonable error bound

(i.e., CNOP-P errors), which have the largest effect on the results of El Niño predictions. The resultant

prediction errors were investigated in depth. The CNOP-P errors do not cause a noticeable prediction error of

the sea surface temperature anomaly averaged over the Niño-3 region and do not show an obvious season-

dependent evolution of the prediction errors. Consequently, the CNOP-P errors do not cause a significant

spring predictability barrier (SPB) for El Niño events. In contrast, the initial errors that have the largest effect

on the results of the predictions (i.e., the CNOP-I errors) show a season-dependent evolution, with the largest

error increase in spring, and also cause a large prediction error, thereby generating a significant SPB. The

initial errors play a more important role than the parameter errors in generating a significant SPB for El Niño

events. To further validate this result, the authors investigated the situation in which CNOP-I and CNOP-P

errors are simultaneously superimposed in the model, which may be a more credible approach because the

initial errors and model parameter errors coexist under realistic predictions. The combined mode of CNOP-I

and CNOP-P errors shows a similar season-dependent evolution to that of CNOP-I errors and yields a large

prediction error, thereby inducing a significant SPB. The inference, therefore, is that initial errors play a more

important role than model parameter errors in generating a significant SPB for El Niño predictions of the

Zebiak–Cane model. This result helps to clarify the roles of the initial error and parameter error in the

development of an SPB, and highlights the role of initial errors, which demonstrates that the SPB could be

markedly reduced by improving the initial conditions. The results provide a theoretical basis for improving

data assimilation in ENSO predictions.

1. Introduction

The El Niño–Southern Oscillation (ENSO) cycle has

attracted the attention of scientists in recent decades

because its environmental and socioeconomic impacts

are felt worldwide (e.g., McPhaden et al. 2006). Knowl-

edge of the ENSO cycle and forecasts of its variations are

valuable for the agricultural sector, public health and

safety, and many other climate-sensitive human en-

deavors.

Since the development of the Zebiak–Cane model

(Zebiak and Cane 1987: hereafter the ZC model), which

for the first time demonstrated the possibility of ENSO

prediction by forecasting the 1986/87 El Niño event in

real time, a suite of models with varying degrees of

complexity has been developed for ENSO predictions

(Neelin 1990; Kleeman 1991; Latif et al. 1993; Penland

and Magorian 1993; Luo et al. 2008). Significant ad-

vances in ENSO theories and predictions have been

made in recent decades, particularly through the Trop-

ical Ocean Global Atmosphere (TOGA) program [see

the review by Wang and Picaut (2004)]; however, there

remain considerable uncertainties in realistic ENSO

predictions (Jin et al. 2008). In particular, if forecasts are

made before and across the boreal spring season, the
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forecast skill tends to show a significant drop during this

season, which has been termed the ‘‘spring predictability

barrier’’ (SPB) of ENSO (Yu and Kao 2007).

The SPB is a well-known characteristic of ENSO

forecasts (Webster and Yang 1992; Lau and Yang 1996;

McPhaden 2003) and exists in both coupled and statis-

tical models. In some cases, the SPB is even stronger in

statistical models than in general circulation models

(GCMs) (van Oldenborgh et al. 2005). Previous studies

have investigated the SPB phenomenon from the view-

point of initial error growth, revealing that the SPB

phenomenon in ENSO forecasting is related to a large

prediction error; in particular, prominent error growth

occurs during spring in the case when the prediction is

made prior to this season (Mu et al. 2007a,b; Duan et al.

2009; Yu et al. 2009). Moore and Kleeman (1996) in-

vestigated the SPB by tracing the evolution of the linear

singular vector (LSV) (Lorenz 1965), which has also been

used to investigate other problems of ENSO predic-

tability (Blumenthal 1991; Xue et al. 1997; Thompson

1998). Chen et al. (1995, 2004) showed that the SPB could

be greatly reduced by improving the model initialization

and Mu et al. (2007b) used a nonlinear technique of

conditional nonlinear optimal perturbation (CNOP) to

investigate the SPB for ENSO events in the ZC model,

revealing that the CNOP initial (CNOP-I) errors cause

a significant SPB for El Niño events. Duan et al. (2009)

and Yu et al. (2009) identified two types of CNOP-I er-

rors that induce a significant SPB and proposed two dif-

ferent dynamical mechanisms of error growth related to

the SPB for El Niño events. Furthermore, Yu et al.

pointed out that the CNOP-I errors possess a large-scale

zonal dipolar pattern of the sea surface temperature

anomaly (SSTA) component similar to LSV errors, but

the former covers a broader region than the latter, which

leads to a significant difference in their resultant pre-

diction errors and then indicates that the sensitivity of the

prediction results to initial uncertainties. Yu et al. (2009)

also showed that random initial errors without particular

spatial patterns fail to cause a SPB. Based on these pre-

vious works, it can be inferred that the occurrence of

the SPB is closely related to the spatial pattern of initial

errors.

Prediction uncertainties are generally caused by ini-

tial errors and model errors. In realistic predictions of

ENSO, the SPB phenomenon commonly appears when

both initial and model errors occur in the model. Fur-

thermore, an increasing number of studies have in-

dicated that model errors influence the ability to

forecast ENSO (Wu et al. 1993; Hao and Ghil 1994;

Blanke et al. 1997; Flugel and Chang 1998; Latif et al.

1998; Liu 2002; Zhang et al. 2003; Zavala-Garay et al.

2004; Williams 2005). The model errors may arise from

various schemes of physical parameterizations (Syu and

Neelin 2000), atmospheric noise, or other high fre-

quency variations such as westerly wind bursts and the

Madden–Julian oscillation (Gebbie et al. 2007; Tang and

Yu 2008; Marshall et al. 2009). Some of these processes

are omitted in intermediate-complexity models (Zebiak

and Cane 1987; McCreary and Anderson 1991).

Another important source of model errors are uncer-

tainties in empirical model parameters (Mu et al. 2002).

Previous studies have investigated the effect of such un-

certainties on the modulation of ENSO events by sys-

tematically varying the values of relevant parameters in

controlled experiments. For example, Zebiak and Cane

(1987) explored the sensitivity of ENSO irregularity to

parameter perturbations, revealing the importance of

accurate values of parameters for ENSO simulations.

Kirtman (1997) found that the ratio of the atmospheric

to oceanic Rossby radii of deformation has a strong effect

on the meridional structure of oceanic Rossby waves,

thereby influencing the period of ENSO. MacMynowski

and Tziperman (2008) also reported the sensitivity of

ENSO’s period to various parameters.

The results of these studies indicate that parameter

uncertainties have an effect on ENSO simulations. ENSO

simulations are generally described by a long-term in-

tegration of the given model; however, in recent studies,

realistic ENSO predictions have focused on short-term

climate predictions with lead times from one month to

one year, although several ENSO hindcast experiments

employed a lead time of 2 yr (Kirtman et al. 2002; Jin

et al. 2008). In this context, it is natural to assess 1) the

effect of model parameter errors on El Niño predictions,

2) whether the model parameter errors cause a significant

SPB, and 3) which errors (i.e., initial or model para-

metric) contribute most to the generation of a significant

SPB.

Mu et al. (2010) extended the CNOP approach to

include both optimal initial perturbations (CNOP-I) and

optimal model parameter perturbations (CNOP-P).

This renewed CNOP approach can be used to study not

only the predictability associated with initial errors but

also that related to model parameter errors. Further-

more, it enables investigations of the relative effects of

initial errors and model parameter errors on prediction

uncertainties and of the dominant source of the un-

certainties that have a large influence on predictability

(Duan and Zhang 2010). In the present study, we use the

CNOP approach to identify the errors that play a dom-

inant role in the generation of SPB for El Niño events.

The remainder of this paper is organized as follows. In

section 2, we briefly describe the CNOP approach and,

in section 3 calculate the CNOP-P error, investigate the

seasonal evolution of the prediction errors caused by the
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CNOP-P error, and study the effect of parameter errors

on the development of a significant SPB for El Niño

events. In section 4, we compare the prediction errors

caused by CNOP-I and CNOP-P errors and identify the

errors that play a dominant role in generating a signifi-

cant SPB. Finally, a discussion and summary are pre-

sented in section 5.

2. Conditional nonlinear optimal perturbation

The CNOP approach, developed to identify the op-

timal initial perturbation in a given constraint, has been

used to study the predictability of ENSO events (Mu

and Duan 2003; Duan et al. 2004, 2008; Duan and Mu

2006; Mu et al. 2007a,b), to assess the sensitivity of ocean

circulation (Mu et al. 2004; Sun et al. 2005; Wu and Mu

2009; Terwisscha van Scheltinga and Dijkstra 2008), and

to identify sensitive areas for typhoon observations (Mu

et al. 2009). These studies demonstrated the usefulness

of the CNOP-I approach in analyses of weather and

climate predictability.

Existing numerical models are unable to describe ex-

actly the atmospheric and oceanic motions, and contain

model errors. An important source of model errors are

uncertainties in model parameters (Lu and Hsieh 1998;

Mu et al. 2002). This gives rise to the question of how to

estimate the predictability limit related to the error modes

of the model parameters. To address this question, Mu

et al. (2010) extended the CNOP approach to include not

only CNOP-I but also the optimal model parameter per-

turbation (CNOP-P). In the present study, we use this

renewed approach to study the SPB for El Niño events.

The CNOP approach is briefly described below.

We write the evolution equations for the state vector

w as follows:

›w

›t
1 F(w, p, t) 5 0

wjt50 5 w0,

8<
: (1)

where w(x, t) 5 [w
1
(x, t), w

2
(x, t), . . . , w

l
(x, t)] consists of

l state variables (e.g., thermocline depth anomalies and

SST anomalies; w0 is the initial state; x 5 (x1, x2, . . . , xn),

where x 2 V and V is a domain in Rn; t is time, with 0 #

t , ‘; p 5 ( p1, p2, . . . , pm) is the model parameter vec-

tor; and F is a nonlinear operator.

Assuming that the dynamical system equation and the

initial state are known exactly, the future state can be

determined by integrating Eq. (1) with the appropriate

initial condition. The solution to Eq. (1) for the state

vector w at time t is given as

w(x, t) 5 M
t
(p)(w0), (2)

where Mt(p) is the propagator of Eq. (1), with the pa-

rameter vector p. The term Mt(p) propagates the initial

value to time t in the future, as described by Eq. (2).

The solutions of Eq. (2) are U(t) and U(t) 1 u(t), with

initial values U0 and U0 1 u0. Thus, we have

U(t) 5 M
t
(p)(U0), U(t) 1 uI(t) 5 M

t
(p)(U0 1 u0),

(3)

where u0 is the initial perturbation of a time-dependent

state U(t) (hereafter the reference state) and uI(t) de-

scribes the nonlinear evolution of the initial perturba-

tion.

In addition, while assuming that the parameter per-

turbation vector p9 is superimposed on the parameter

vector P, we obtain

U(t) 5 M
t
(P)(U0), U(t) 1 up(t) 5 M

t
(P 1 p9)(U0)

(4)

In which up(t) describes the departure from the refer-

ence state U(t) caused by p9.

Considering the existence of both an initial pertur-

bation and parameter perturbation in Eq. (2), we have

U(t) 5 M
t
(P)(U0),

U(t) 1 uI,p(t) 5 M
t
(P 1 p9)(U0 1 u0), (5)

where uI,p(t) is the departure from the reference state

U(t) caused by the combined mode of the initial and

model parameter perturbations.

The nonlinear optimization problem is defined as

J1(u0d
, p9

s
) 5 max

u
0
2C

d
,p92C

s

J(u0, p9), (6)

where

J(u0, p9) 5 kM
t
(P 1 p9)(U0 1 u0) 2 M

t
(P)(U0)k,

where u0 and p9 are perturbation vectors superimposed

on the initial value of the reference state U0 and the

parameter P, respectively, with u
0
2 C

d
, p9 2 C

s
as

the constraint conditions. By solving Eq. (6), we obtain

the optimal combined mode of the initial perturbation

and parameter perturbation, (u
0d

; p9
s
), for a given con-

straint that induces the largest departure from the ref-

erence state U(t) at time t. Mu et al. (2010) called this

optimal combined mode CNOP, which has two special

cases. The first is CNOP-I, denoted by u0d,I, which rep-

resents the initial perturbation with the largest nonlinear

evolution at the prediction time and is obtained by

solving the following optimization problem:
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Ju
0
(u0d,I) 5 max

u
0
2C

d

kM
t
(P)(U0 1 u0) 2 M

t
(P)(U0)k.

(7)

The second case is CNOP-P, denoted by p9s,p, which

describes the parameter perturbation that results in the

largest departure from a given reference state and can

be obtained by evaluating the following optimization

problem:

Jb(p9
s,p) 5 max

p92C
s

kM
t
(P 1 p9)(U0) 2 M

t
(P)(U0)k.

(8)

Physically, CNOP represents the optimal combined mode

of the initial error and the model parameter error, while

CNOP-I, in perfect model experiments, acts as the opti-

mal initial error, and CNOP-P, in experiments with per-

fect initial conditions, represents the optimal parameter

error. In their respective scenarios, these cases cause the

largest prediction error. In addition, the CNOP ap-

proach can be used to identify the errors that play a

dominant role in yielding predictions with large uncer-

tainties.

In this paper, the CNOP-I and CNOP-P errors of the

ZC model are computed to investigate the major source

of the uncertainties that yields a significant SPB, which is

identified by comparing the results derived from the

CNOP-I errors, the CNOP-P errors, and the combined

mode of CNOP-I and CNOP-P errors. In fact, a compar-

ison of CNOP errors with CNOP-I errors or with CNOP-P

errors would be the preferred approach; however, one

cannot successfully obtain CNOP by using existing solvers

owing to different kinds of constraints for initial pertur-

bation and parameter perturbation, despite that these

solvers can be used to effectively compute CNOP-I and

CNOP-P. Therefore, in this paper, we must consider

the approximate combined mode of the CNOP-I and

CNOP-P errors and compare it with CNOP-I or CNOP-P

errors so as to identify the errors that play a dominant role

in generating a significant SPB for El Niño events.

To calculate the CNOP-I and CNOP-P errors, we

transform the corresponding maximization optimization

problem into a minimization problem by considering the

negative of the cost function. Then, existing solvers, such

as the spectral projected gradient 2 (SPG2) (Birgin et al.

2000), sequential quadratic programming (SQP) (Powell

1982), and limited-memory Broyden–Fletcher–Goldfarb–

Shanno (L-BFGS) (Liu and Nocedal 1989), can be used to

compute CNOP-I and CNOP-P. The use of these solvers

requires the gradient of the modified cost function with

respect to the initial or parameter perturbation. In large-

scale computations, the adjoint of the corresponding model

is often used to obtain the gradient. Le Dimet and

Talagrand (1986) described how to use an adjoint model

to compute the gradient of the cost function with respect

to the initial perturbation, while Mu et al. (2010) showed

how to adopt this adjoint model to obtain the gradient of

a cost function with respect to parameter perturbations.

As such, the gradient of the cost function with respect to

parameter perturbations can be obtained by using the

adjoint approach.

Making use of information on the gradient with respect

to both initial perturbation and parameter perturbations,

the optimization solvers mentioned above are generally

used to determine the minimum of the modified cost

function [i.e., the maximum of the cost functions in the

optimization problems presented in Eqs. (7) and (8)]

along the direction of the gradient. In a phase space, the

point corresponding to the minimum of the modified cost

function represents either CNOP-I or CNOP-P.

3. Does CNOP-P error cause a significant SPB for
El Niño events in the ZC model?

The ZC model is a nonlinear anomaly model of in-

termediate complexity that describes anomalies of a

specified seasonally varying background, thus avoiding

the ‘‘climate drift’’ problem (Zebiak and Cane 1987).

The atmospheric model is a gridpoint model with a zonal

resolution of 5.6258 3 2.08. The ocean model is run at

a horizontal resolution of 2.08 3 0.58. The ZC model has

been routinely used for real-time ENSO forecasting

since 1986 and has been widely applied in predictability

studies (Blumenthal 1991; Xue et al. 1997; Xu and Duan

2008). The model describes the essential physics of

ENSO and is appropriate for investigating the spring

predictability barrier of ENSO.

a. CNOP-P errors for El Niño events in the
Zebiak–Cane model

The empirical parameters in both atmospheric and

oceanic components of the ZC model have the potential

to yield model error and thereby affect the prediction

skill of ENSO events. In this case, to what extent do the

uncertainties in these empirical parameters affect ENSO

predictability? Do the uncertainties cause a significant

SPB for El Niño events? To answer these questions, we

use the CNOP approach to find the optimal parameter

error—that is, the CNOP-P error.

The ZC model contains nine main empirical param-

eters, which are listed in Table 1 along with their phys-

ical meanings and reference values (for details, see

Zebiak and Cane 1987). Next, we calculate the CNOP-P

errors of these parameters.
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A nonlinear optimization problem related to CNOP-

P, p9s,p, is defined as follows:

J(p9
s, p) 5 max

p92C
s

kT9(t)k2, (9)

where p9 5 fp91, p92, . . . , p99g describe the errors super-

imposed on the nine parameters Pi, i 5 1, 2, . . . , 9 (see

Table 1), p9 2 Cs is the constraint of the parameter

errors, and the cost function kT9(t)k2 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i,j[T9i,j(t)]2

r

measures the magnitude of the prediction error of the

SSTA at prediction time t, as induced by parameter

errors. Here T9i,j(t) represents the prediction error of the

SSTA at different grid points, and (i, j) is the grid point

in the domain of the tropical Pacific with a latitude and

longitude from 198S to 198N (at an interval of 28) and

from 129.3758E to 84.3758W (at an interval of 5.6258),

respectively. The prediction error T9i,j(t) of the SSTA

can be obtained by subtracting the SSTA of the refer-

ence state El Niño events with the reference values of

the parameters (see Table 1) from the predicted SSTA

with perturbed parameters.

The constraint p9 2 Cs is chosen as fp9j jp91j# s1,

jp92j# s2, . . . , jp99j# s9g, where si is a positive real

number and represents an error bound. The constraint

condition limits the magnitude of the error of each pa-

rameter, with jp9
i
j# s

i
; that is, 2s

i
# p9

i
# s

i
. In this

paper, we determine the constraint bound according to

the basic rules of the numerical simulation of ENSO. In

realistic ENSO predictions, it should first be guaranteed

that the forecast model can simulate the main features of

the observed ENSO and at least avoid the occurrence of

damping oscillation or departure from the climatology

(Fig. 1). As such, the values of the parameters in the

model must be set to satisfy this precondition. In satisfying

this requirement, we found that the parameter errors sat-

isfy the constraint condition, 2x
i
(%)P

i
# p9

i
# x

i
(%)P

i
,

within which the corresponding disturbed parameters

still produce persistent simulated ENSO events with an

irregular oscillation (period 3–5 yr), without a damping

oscillation or a departure from the climatology. In

Table 1, the right-hand column (‘‘error bound’’) lists the

values of ‘‘xi’’ under the constraint condition. The error

bound si 5 xi(%)Pi is described as the percentage of

parameter error in the reference value Pi, as shown in

Table 1. For example, the reference value of the pa-

rameter b in the ZC model is 0.75, and its error is limited

to the interval [20.75 3 4%, 0.75 3 4%], where the

number 4 is the value of xi in the constraint condition.

In this paper, the solver SQP (Powell 1982) is used to

compute the CNOP-P error in the optimization problem

shown in Eq. (9). As mentioned above, we need to cal-

culate the gradient of the cost function with respect to

parameter perturbations, for which the adjoint model is

TABLE 1. Nine main parameters in the ZC model with their physical meanings, reference values, and the bounds of the constraint

adopted in calculating the CNOP-P errors. The error bound si 5 xi(%)Pi is described as the percentage of the parameter error si in the

reference value Pi. The error bound column lists the values of ‘‘xi(%)’’ (see section 3a).

Parameter Physical meaning

Reference

values

Error

bound (%)

a Controlling strength of the SST-related component of atmospheric heating 1.6 0.1

b Controlling strength of the convergence feedback portion of atmospheric heating 0.75 4

« Atmospheric friction parameter 0.3 0.3

h Affecting surface heat flux (linear damping on SSTA) 0.98 0.02

T1 h . 0, affecting the amplitude of subsurface temperature anomalies for positive h perturbations 28.0 0.1

b1 h . 0, affecting the nonlinearity of subsurface temperature anomalies for positive h perturbations 1.25 1

T2 h , 0, affecting the amplitude of subsurface temperature anomalies for negative h perturbations 240.0 3

b2 h , 0, affecting the nonlinearity of subsurface temperature anomalies for negative h perturbations 3.0 2

s Controlling the strength of wind stress 0.0329 1

FIG. 1. SSTA component of two examples of ENSO 30-yr sim-

ulations with parameter perturbations that lie outside of the con-

straint: (a) b increased by 5% and the other parameters left

unchanged; the amplitude of the ENSO oscillation shows a gradual

decrease and (b) « reduced by 0.4% and the other parameters left

unchanged; a climate drift is observed. (c) All parameters were left

unchanged; the ENSO oscillation is irregular.
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an efficient tool. Xu and Duan (2008) constructed

a tangent linear model of the ZC model and its corre-

sponding adjoint model. To compute the CNOP-P error,

we modified the adjoint of the ZC model according to

Mu et al. (2010). Using this modified adjoint model, the

gradient of the cost function with respect to parameter

perturbations is computed, and the CNOP-P error can

be obtained by the SQP solver. In calculating the CNOP-P

error, as mentioned in section 2, we modify the maximi-

zation problem shown in Eq. (9) into a minimization one.

Thirty initial guesses of the parameter perturbations are

randomly generated. If several initial guesses converge to

a point in the parametric phase space, this point can be

considered the minimum in the neighborhood; thus, sev-

eral such points are obtained, among which the point that

yields the highest cost function in Eq. (9) is regarded as the

CNOP-P error.

Sixteen model El Niño events are chosen as reference

states for investigating the SPB phenomenon, which

indicates that we will perform experiments in a perfect

model scenario. These events include both strong and

weak El Niño events with different initial warming

times, which tend to peak at the end of the year. For each

of these events, we made predictions based on a 12-

month lead time, starting from different months of the

year. Here, we use year (0) to denote the year when

El Niño attains a peak value, and year (21) and year (1)

to signify the years before and after year (0), re-

spectively. In numerical experiments, the El Niño pre-

dictions are first made with starting months of July (21)

[i.e., July in year (21)], October (21), January (0), and

April (0). These four predictions start in the season

before and extend through boreal spring in the growth

phase of El Niño. For convenience, we refer to these

predictions as growth-phase predictions. We performed

further numerical experiments for El Niño predictions

with starting months of July (0), October (0), January (1),

and April (1). These four predictions cover the boreal

spring in the decaying phase of El Niño; consequently,

they are referred to as decaying-phase predictions. In to-

tal, eight predictions are made for each El Niño event,

with eight starting months.

To investigate whether a significant SPB occurs in the

predictions generated by the ZC model with disturbed

model parameters, we analyzed the CNOP-P errors, for

which the initial times are the predetermined starting

months of the El Niño forecasting and the time interval

is 12 months (i.e., t 5 12 months, corresponding to

a lead time of 12 months for the El Niño prediction).

The initial conditions of the prediction experiments are

the states of 16 model El Niño events at the starting

months, which indicates the initial conditions being

perfect and then allows us to study the effect of model

parameter errors on prediction uncertainties. The error

bounds related to the CNOP-P error are predetermined

(see Table 1) according to the simulation rule outlined

above. Eight predictions were made for each of the

16 El Niño events, yielding a total of 128 predictions.

For each prediction, we computed the corresponding

CNOP-P error. The computations revealed that for each

prediction (whether for a strong or weak El Niño event),

there is one CNOP-P error. Thus, a total of 128 CNOP-P

errors were obtained. Furthermore, these CNOP-P er-

rors correspond to the parameter perturbations that lie on

the boundary of the domain defined by the constraint.

Table 2 provides data for two examples of the CNOP-P

errors, corresponding to predictions with starting months

of July (21) and July (0) for a particular El Niño event.

As stated in the introduction, a significant SPB, from

the viewpoint of error growth, is considered to exist in

ENSO forecasting with a large prediction error, with the

error growth being especially large in spring. The CNOP-

P errors cause the largest prediction uncertainty in the

scenario of perfect initial fields, indicating that they may

have the potential to induce the SPB phenomenon. If the

CNOP-P errors do not cause a SPB for El Niño events, we

could conclude that none of the parameter errors causes

an SPB in the ZC model. Therefore, to investigate

whether the parameter errors are related to a significant

SPB, it is first necessary to estimate the seasonal growth

tendencies of prediction errors caused by CNOP-P errors.

b. Seasonal growth tendencies of prediction errors
induced by CNOP-P errors

We divided a calendar year into four seasons: January–

March (JFM), April–June (AMJ), July–September

(JAS), and October–December (OND). We computed

the growth tendency of the prediction error with k ’

(kT9(t2)k2 2 kT9(t1)k2)/(t2 2 t1), where kT9(t1)k2 and

kT9(t2)k2 represent the prediction errors of the SSTA

TABLE 2. CNOP-P errors of two predictions for a single El Niño

event for starting months of July (21) and July (0). The errors are

expressed as a percentage of the corresponding reference value.

The reference values of the parameters are listed in Table 1.

Parameter

Starting month

July (21)

Starting month

July (0)

a 0.1(%)a 20.1(%)a

b 24(%)b 4(%)b

« 20.3(%)« 0.3(%)«

h 0.02(%)h 20.02(%)h

T1 0.1(%)T1 20.1(%)T1

b1 21(%)b1 1(%)b1

T2 23(%)T2 2.8(%)T2

b2 2(%)b2 2(%)b2

s 1(%)s 21(%)s
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at the start of a season and at the end of the season

and k describes the error growth during a unit time (here

the unit time is one season). Since each season possesses a

common time interval length, we simply use the values of

kT9(t2)k2 2 kT9(t1)k2 to indicate the growth tendency k

for each season. A positive (negative) value of k corre-

sponds to an increase (decrease) of the prediction errors

in that season, and the larger the absolute value of k, the

faster the increase (decrease) of the prediction errors in

that season.

As described in section 3a, predictions starting from

July (21), October (21), January (0), and April (0)

cross the boreal spring (AMJ) in the growth phase of the

El Niño event and are referred to as growth-phase pre-

dictions. In these predictions, the 16 El Niño events are

each predicted for one year by integrating the ZC model

for 12 months with a perfect initial field (i.e., the state of

the El Niño events at the starting month) and a para-

metric field disturbed by the CNOP-P errors. The time-

dependent prediction errors caused by the CNOP-P

errors are obtained by subtracting the SSTA of the ref-

erence state El Niño event from those of the predicted

El Niño events. The seasonal growth tendencies k are

then evaluated according to the prediction errors.

Figure 2 shows the seasonal growth tendencies k for

16 El Niño events. For a starting month of July (21)

(Fig. 2a), although the largest k induced by the CNOP-P

errors tends to appear in the AMJ season, most pre-

dictions yield an indistinctive error increase in this sea-

son. Furthermore, for predictions with starting months

of October (21) (Fig. 2b), January (0) (Fig. 2c), and

April (0) (Fig. 2d), the prediction errors of most of the

predictions show the largest increases in JAS or OND. It

is clear that the largest k caused by CNOP-P errors does

not always occur in AMJ; furthermore, the k is very

small, which results in a small prediction error for the

El Niño events (Fig. 3). Although we investigated the

seasonal growth tendencies for strong and weak El Niño

events (16 events in total), we found no systematic dif-

ference between strong and weak events; that is, the

results obtained when considering parameter errors are

similar for both types of events.

We also investigated the decaying-phase predictions.

For the eight predictions of each El Niño event, those

with starting months of July (0), October (0), January (1),

and April (1) cross the spring season during the decaying

phase of the El Niño events. As before, we investigated

the seasonal growth tendencies of prediction errors

caused by the CNOP-P errors related to these decaying-

phase predictions. For the 16 chosen El Niño events, the

CNOP-P errors were obtained in section 3a. Regarding

the k related to these CNOP-P errors, the prediction

FIG. 2. Seasonal growth tendencies of prediction errors for 16 El Niño events caused by

CNOP-P errors. Each line corresponds to one El Niño event. The prediction starting months

are (a) July (21), (b) October (21), (c) January (0), and (d) April (0).
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errors show an inconspicuous season-dependent evolu-

tion and cause a small prediction error, generating

a weakened SPB. Given that these findings are consistent

with those of the growth-phase predictions, the relevant

figures are omitted. The results indicate that the param-

eter errors are not the main contributing errors to the

significant SPB for El Niño predictions generated by the

ZC model.

The predictions generated by the ZC model with per-

turbed model parameters show that the model parameter

errors do not possess an obvious season-dependent evo-

lution of prediction errors and do not cause a large pre-

diction error. However, Mu et al. (2007b), Yu et al. (2009),

and Duan et al. (2009) demonstrated that initial errors

with a particular spatial pattern could yield a large pre-

diction error, causing a significant SPB for El Niño events.

In fact, the CNOP-I errors are one such type of this kind of

initial error. Therefore, it is important to consider whether

an initial error is the dominant source of uncertainties that

result in the development of a significant SPB. This ques-

tion is addressed in the following section, based on a com-

parison of CNOP-I and CNOP-P errors.

4. Main source of uncertainties that cause
a significant SPB for El Niño events
in the ZC model

As mentioned above, Yu et al. (2009) demonstrated

that CNOP-I errors cause a significant SPB. Yu et al.

selected eight El Niño events with different initial

warming times in computing the CNOP-I errors within

the scenario of a perfect model. In the present study, to

assess which errors play a dominant role in generating

a significant SPB for El Niño events, we obtain the

CNOP-I errors of the 128 predictions made for the 16

El Niño events selected for analysis. For details of the

optimization problem and its calculation for CNOP-I

errors, see the appendix or Yu et al. (2009). The re-

sultant CNOP-I errors are similar to those reported by

Yu et al. and can be classified into two types that possess

a large-scale zonal dipolar pattern: one of the types has

positive (negative) anomalies in the central (eastern)

equatorial Pacific, while the locations of the anomalies

are reversed for the other type (see Yu et al. 2009). In

particular, CNOP-I errors are concentrated in a local-

ized region of the equatorial central-western and eastern

Pacific. The CNOP-I errors are computed for a con-

straint ku
0ka

# d with d 5 0.8. From the resultant

CNOP-I errors (Fig. 2 in Yu et al. 2009), we see that the

CNOP-I errors within the localized region have SSTA

errors , 0.088C at each grid point, and the errors in

the thermocline depth anomaly are , 2 m. However, the

realistic analysis errors of the SSTA along the equator

commonly possess a standard deviation of ;0.28C

(Kaplan et al. 1998; Dijkstra 2000), and Karspeck et al.

(2006) estimated the analysis error of the thermocline

depth anomaly to be , 15 m. It is conceivable that the

magnitude of CNOP-I errors is smaller than that of

a particular realistic analysis error, measured by an L2

norm; consequently, when the CNOP-I errors with the

above constraint are projected to a particular realistic

analysis error, the magnitude of the projected CNOP-I

errors would be smaller in absolute terms than that

of the analysis errors. Therefore, the initial constraint

adopted here is acceptable for comparing the relative

contributions of the initial error and the model param-

eter error in generating a significant SPB for El Niño

events.

Figure 4 shows the ensemble mean of the seasonal

growth tendencies induced by CNOP-P and CNOP-I

errors associated with the growth-phase predictions for

the 16 El Niño events. By comparing the ensemble mean

of k in four seasons, we can find that the CNOP-I errors

of the predictions with a starting month of July (21) and

October (21) have the largest k in AMJ and show an

obvious season-dependent evolution. For El Niño pre-

dictions with a starting month of January (0), the largest

increases of CNOP-I errors are seen in JAS. For this

situation, Mu et al. (2007b) argued that, although the

largest increase of initial errors occurs in JAS, the error

increase during AMJ is also large and may have caused

the drastic decrease in El Niño forecast skill during

FIG. 3. (a) Ensemble mean of prediction errors for 16 El Niño

events with a lead time of 12 months at each starting month, as

measured using the absolute value of Niño-3 SSTA: (a) prediction

errors caused by the corresponding CNOP-I errors, CNOP-P errors,

and their combined mode with the initial constraint ku
0ka

# 0:8 and

parametric constraint with the error bound as listed in Table 1; (b) as

in (a) but for the initial constraint ku0ka
# 0:4 and a parametric

constraint that is double the error bound listed in Table 1.
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spring. Therefore, the CNOP-I errors of the growth-phase

predictions with the above three starting months exhibit

a prominent season-dependent evolution (see also Yu et al.

2009). However, we also demonstrated that the CNOP-P

errors are associated with a less significant season-

dependent evolution of prediction errors (see section 3a).

Furthermore, for almost every season, the k associated

with the CNOP-P errors is notably smaller than that re-

lated to the CNOP-I errors; consequently, the prediction

errors at prediction time caused by CNOP-I errors are

much larger than those caused by CNOP-P errors (Fig. 3).

For a starting month of April (0), significant increase of

CNOP-I errors occurs mainly in OND. For CNOP-P er-

rors, in contrast, the resultant prediction errors show a low

increase in all seasons; consequently, they are much smaller

than the prediction errors caused by CNOP-I errors.

The above results show that the CNOP-P errors, within

a reasonable error bound, do not cause a large prediction

error and do not induce a significant season-dependent

evolution of prediction errors; therefore, they do not

generate a significant SPB for El Niño events. The

CNOP-I errors are more likely to cause a notable SPB

than are the CNOP-P errors. This finding indicates that

initial errors may play a dominant role in generating

a significant SPB for El Niño events in the ZC model.

We also note that the growth behavior of the initial

error is sensitive to the intensity of the El Niño event.

The initial error growth for strong El Niño events is

strongly affected by nonlinear processes, whereas a mi-

nor nonlinearity is found for weak El Niño events [as

also reported by Yu et al. (2009)]. Given that these re-

sults are outside the scope of this paper, they are not

described in detail.

We obtained similar results for the decaying-phase

predictions as for the growth-phase predictions. That is, the

CNOP-I errors cause a significant SPB, but the CNOP-P

errors do not show an obvious season-dependent evolution

of prediction errors. Therefore, initial errors may be the

main source of uncertainties that cause a significant SPB

for El Niño events.

Above, we compared the CNOP-I and CNOP-P er-

rors, and concluded that the model parameter errors

may not be a major source of uncertainties that cause

a significant SPB for El Niño events. Note that the

CNOP-I errors are related to the perfect model sce-

nario, while the CNOP-P errors are associated with the

perfect initial field scenario. However, in realistic pre-

dictions, initial errors and model parameter errors co-

exist in the forecast model. Therefore, to identify the

errors that play a major role in generating a significant

FIG. 4. Ensemble mean of the seasonal growth tendencies of prediction errors for 16 El Niño

events, as caused by CNOP-I errors (black bars), CNOP-P errors (red bars), and their com-

bined mode (green bars). To demonstrate spread of the ensemble, the maximal and minimal

seasonal growth tendencies for 16 El Niño events are presented as a line segment along with

each bar that represents the ensemble mean value. The starting months of the predictions are

(a) July (21), (b) October (21), (c) January (0), and (d) April (0).
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SPB, it is necessary to further investigate the predictions

for which both initial and model parameter errors exist.

Here, we explore the seasonal evolution of the pre-

diction error caused by the combined mode of initial and

model parameter errors and compare the results with

the seasonal evolution of the prediction error caused by

model parameter errors and by initial errors, respec-

tively. This analysis supports the proposal that initial

errors (rather than model parameter errors) are more

likely to cause a significant SPB for El Niño events.

In these experiments, we used the ZC model with

perturbed initial conditions and model parameters to

predict the 16 selected El Niño events and to estimate

their season-dependent predictability. In particular, we

superimposed the CNOP-I errors and CNOP-P errors

obtained above in the ZC model and integrated the

model with a lead time of 12 months to obtain the pre-

diction errors. Consequently, the prediction errors are

caused by the combined mode of CNOP-I and CNOP-P

errors.

The resultant prediction errors show an obvious season-

dependent evolution for the 16 El Niño events and are

much larger than those caused by the CNOP-P errors

but are similar to those caused by the CNOP-I errors

(Figs. 3 and 4). It is inferred that the initial error plays

the dominant role in generating a significant SPB for

El Niño events, which is consistent with the results of the

comparison between the CNOP-I and CNOP-P errors

(see above).

To this point, we have shown that CNOP-I errors with

the constraint ku0ka
# 0:8 [see the appendix or Yu et al.

(2009)] are more likely to yield a significant SPB for

El Niño events in the ZC model than are CNOP-P errors

with the constraint jp9
i
j# s

i
, i 5 1, 2, . . . , 9 (values of si

are listed in Table 1; see section 3). One might question

whether these results reflect an excessively large initial

error or excessively small parameter errors, even though

the constraints have been clarified to lie within a rea-

sonable error bound. To remove all doubts of this kind,

we performed another group of predictability experi-

ments as follows.

We take the d value of the initial constraint ku
0ka

# d

to be 0.4 (half of d 5 0.8) and the si value of the pa-

rameter error constraint jp9ij# si, i 5 1, 2, . . . , 9, which

are double the error bounds listed in Table 1. These

magnitudes of parameter errors will cause a climate drift

of the ENSO oscillation; however, we assess the degree

to which these magnitudes of parameter errors affect the

El Niño predictions with a lead time of one year.

Using the modified constraints outlined above, the

CNOP-I and CNOP-P errors are computed to estimate

the effect of model parameter errors on El Niño pre-

dictions. A comparison of the prediction errors caused

by CNOP-I, CNOP-P, and the combined mode of the

CNOP-I and CNOP-P errors revealed that, in most

cases, the CNOP-P errors with a larger magnitude (in terms

of the chosen measurement) still yield a small prediction

error of the Niño-3 SSTA, but the CNOP-I errors with

a smaller magnitude cause a large prediction error (Fig. 3);

furthermore, the small magnitude of CNOP-I errors shows

an obvious season-dependent evolution, whereas the large

magnitude of CNOP-P errors shows a less significant

season-dependent evolution. Moreover, the prediction

errors caused by the combined mode of CNOP-I and

CNOP-P errors have a similar magnitude to those caused

by the CNOP-I errors (Fig. 3).

The above results indicate that an increase in the error

bound of parameter errors or a decrease in the error

bound of initial errors does not affect the conclusion that

the initial error plays a dominant role in the occurrence

of a significant SPB. To further illustrate this result, we

investigated the spatial pattern of the seasonal evolution

of predicted SSTA. The CNOP-I errors and the com-

bined mode of CNOP-I and CNOP-P errors have

greater potential than the CNOP-P errors in terms of

disrupting the evolution of the reference state El Niño

events (e.g., see the predictions in Fig. 5). Figure 5 shows

that differences between the predicted SSTA patterns

associated with the CNOP-I errors (and the combined

mode of CNOP-I and CNOP-P errors) and SSTA pat-

terns of the reference state El Niño events tend to in-

crease significantly during AMJ. However, it should be

noted that, although the prediction error caused by

CNOP-I error evolves more dramatically in magnitude

than that caused by CNOP-P errors, both prediction

errors bear a similar pattern to some extent after several

months, especially after a half-year evolution. Figure 6

shows the spatial pattern of the SSTA component of

prediction errors caused by these two kinds of errors

associated with the El Niño prediction as in Fig. 5 and

their monthly similarity coefficients. It is shown that

the negative similarity coefficients, after six months,

approach 21 over time, which suggests that the SSTA

spatial patterns of the resultant two prediction errors

bear more and more similarities despite having opposite

signs. Of course, there also exists other El Niño pre-

dictions whose time-dependent prediction errors caused

by the CNOP-I errors and CNOP-P errors possess sim-

ilar patterns with common signs after 6 months but

with significant differences in error magnitudes. In any

case, for the prediction errors caused by the CNOP-I

errors and CNOP-P errors, they have similar patterns

but with considerable differences in error magnitudes,

which implies that the differences between CNOP-I

errors and CNOP-P errors in the ZC model mainly lie in

the magnitudes of their resultant prediction errors, not
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the structure. This also illustrates that initial errors,

compared to model parameter errors, are likely to cause

large prediction errors and play a dominant role in

yielding uncertainties for El Niño predictions bestriding

boreal spring.

From the above results, we have demonstrated that

the initial errors, rather than the model parameter er-

rors, are likely to cause a significant SPB for El Niño

events. Of course, these results were derived solely from

the ZC model and need to be further validated using ad-

ditional models. It is also necessary to investigate a more

realistic error constraint. Despite these limitations, the

present results provide important information on El Niño

predictions.

5. Summary and discussion

In this paper, we applied the approach of conditional

nonlinear optimal perturbation (CNOP) in the Zebiak–

Cane model (ZC model) to study the effect of parameter

errors on El Niño predictability and to identify the er-

rors that play a dominant role in generating a significant

SPB for El Niño events. Note that reasonable error

bounds for the parameters were predetermined based

on the assumption that model parameter errors are

small enough to avoid climate drift of ENSO oscilla-

tions. With reasonable constraint conditions, the CNOP

initial errors (CNOP-I) and CNOP parameter errors

(CNOP-P) were obtained. The CNOP-I errors, in per-

fect model experiments, act as the optimal initial errors,

and the CNOP-P errors, in perfect initial condition ex-

periments, represent the optimal parameter errors. In

their respective scenarios, they cause the largest pre-

diction error. A comparison of the prediction errors

caused by the CNOP-I and CNOP-P errors revealed

that the CNOP-P errors do not give rise to a noticeable

prediction error of the Niño-3 sea surface temperature

anomaly (SSTA) and do not show an obvious season-

dependent evolution of prediction errors. In contrast,

the CNOP-I errors cause a large prediction error and

tend to have an obvious season-dependent evolution,

with the largest error increase in spring. Therefore, the

initial errors, rather than the parameter errors, play

a dominant role in generating a significant SPB for

FIG. 5. SSTA component of the seasonal evolution of (a) the reference state El Niño event with initial warming in

July (21), (b) the predicted El Niño with CNOP-I error, (c) the predicted El Niño with CNOP-P error, and (d) the

predicted El Niño with the combined mode of the CNOP-I and CNOP-P errors. The predictions are made from

October (21).
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El Niño events. To further validate this result, an ex-

periment was performed to investigate the situation in

which the CNOP-I and CNOP-P errors are simulta-

neously superimposed in the model, which may be more

plausible because the initial errors and model parameter

errors coexist in realistic predictions. The combined

mode of CNOP-I and CNOP-P errors showed a similar

season-dependent evolution to that of CNOP-I errors

and also yielded a large prediction error, in contrast to

the CNOP-P errors. Therefore, it is inferred that the

initial errors (rather than model parameter errors) play

a dominant role in generating a significant SPB for

El Niño predictions of the ZC model. A smaller mag-

nitude of initial errors and a larger magnitude of pa-

rameter errors were also used to investigate the relative

effect of initial errors and model parameter errors on

a significant SPB for El Niño events. The corresponding

results support the above conclusion and emphasize the

role of initial errors in generating a significant SPB.

These results provide a clue as to why Chen et al. (1995,

2004) achieved a significant reduction in the SPB phe-

nomenon by improving the initialization of the forecast

model. The results also indicate the importance of data

assimilation in ENSO predictions.

This paper investigated the effect of model errors on a

significant SPB based on model El Niño events and only

considered the role of model parameter errors in the

SPB. Previous studies that used the stochastic optimal

approach to investigate ENSO predictability (Kleeman

and Moore 1997; Moore and Kleeman 1999) explored

the influence of stochastic noise forcing on ENSO pre-

dictability, which is another type of model error in ad-

dition to those considered in the present study. It is well

known that model errors are derived from various sour-

ces, including parameter errors, external forcing, and

different types of physical parameterization schemes. We

FIG. 6. Seasonal evolution of prediction errors of SSTAs caused by (a) CNOP-I error and (b)

CNOP-P error associated with the El Niño predictions as in Fig. 5: counter interval 0.3 is for (a) and

0.05 for (b). (c) Time-dependent similarity coefficients between the patterns of the SSTA component

of the prediction errors caused by the CNOP-I and CNOP-P errors.
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used the ZC model to show that the model parameter

errors fail to cause a significant SPB. However, it is un-

known whether other types of model errors cause a sig-

nificant SPB and which type of model error has the largest

effect on ENSO predictability. It is necessary to address

these questions in future works and to thereby provide

information to modelers that will enable the improve-

ment of forecast models.

Because the main characteristics of La Niña events

(e.g., phase locking) are poorly reproduced by the

Zebiak–Cane model (An and Wang 2001), we made no

attempt to study the corresponding problem for La Niña

events. We anticipate that more realistic ENSO models

can be used to investigate the SPB for ENSO events, for

the purpose of identifying the differences in predictability

of El Niño and La Niña. Given the limitations of existing

algorithms, it is difficult to use the CNOP approach to

tackle predictability problems related to spatially varying

parameters. Therefore, a more effective algorithm is re-

quired. In addition, we performed forecast experiments

with scenarios such as perfect model or perfect initial field

so as to identify the major source of the uncertainties that

causes a significant SPB for El Niño events. The reference

El Niño events were also from model El Niño events. In

a word, the forecast experiments in this study are per-

formed with a few assumptions and are different from

realistic El Niño predictions. A realistic forecast experi-

ment strategy should be designed to examine the theo-

retical conclusions obtained in this study.

The SPB for ENSO is an unresolved problem, al-

though it has attracted the attention of many scientists.

This paper investigated the effect of parameter errors on

SPBs and compared them with the effect of initial errors,

demonstrating the importance of initial errors in gen-

erating a significant SPB. However, there are questions

that remain to be addressed. For example, which phys-

ical variables are most sensitive to perturbations in the

initial fields and in the model parameters? Do the opti-

mal perturbations provide information in terms of iden-

tifying those parameters that should be better constrained

by observations? As stated above, do other types of model

errors cause a significant SPB? Which type of model error

should be minimized to improve the forecast skill? Fur-

thermore, the mechanism by which the SPB develops re-

mains debatable despite many hypotheses proposed to

explain its occurrence (Webster and Yang 1992; Mu et al.

2007a). These topics are worthy of attention in future

studies.
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APPENDIX

CNOP-I Errors for El Niño Events
in the Zebiak–Cane Model

The CNOP-I errors, denoted by u0d,I, are obtained by

solving the following nonlinear optimization problem:

J(u0d,I) 5 max
ku

0
k

a
#d
kT9(t)k2, (A1)

where u0 5 (w21
1 T90, w21

2 h90) is a nondimensional initial

error of the SSTA and thermocline depth anomaly su-

perimposed on the initial state of a predetermined ref-

erence state El Niño event: w1 5 28C and w2 5 50 m

are characteristic scales of SST and thermocline depth.

The constraint condition is ku0ka # d, and the norm is

ku0ka
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i,j[(w 2 1

1 T90i,j)
2 1 (w 2 1

2 h90i,j)
2]

r
, where T90i, j and

h90i, j represent the dimensional initial error of the SSTA

and thermocline depth anomaly at different grid points,

and (i, j) is the grid point in the domain of the tropical

Pacific from 198S to 198N (at an interval of 28), 129.3758E

to 84.3758W (at an interval of 5.6258) and. The evo-

lution of the initial error is measured by kT9(t)k2 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i,j[T9

i, j(t)]2
r

; T9(t) represents the prediction error

of SSTA at time t and is obtained by subtracting the

SSTA of the reference state from the predicted SSTA

with initial errors at prediction time t. Note that there is

only one variable SSTA to be used to measure the pre-

diction errors of an El Niño event, while both SST and

thermocline depth anomalies are considered in the initial

errors. It is known that if a Niño-3 SSTA larger than 0.58C

persists for 6 months, it is regarded as an El Niño event;

that is to say, the onset of an El Niño event is generally

determined by the magnitudes of the SSTA. Therefore,

we use the error evolution for the SSTA to measure the

prediction error of an El Niño event. For the factors that

affect the evolution of El Niño, Wang and Fang (1996)

demonstrated that the SST and thermocline depth anom-

alies are the two main physical components. Therefore,

we consider the SSTA and thermocline depth anomaly

components in the initial errors. This may illustrate

that the errors superimposed on the SSTA and ther-

mocline depth anomaly eventually affect the evolution

of the SSTA through some positive or negative feed-

back mechanisms.
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We use the SPG2 solver to obtain the CNOP-I of the

ZC model. To obtain CNOP-I, we modify the corre-

sponding maximization problem into a minimization one

and try at least 30 initial guesses (obtained randomly). If

several initial guesses converge to a point in the phase

space, this point can be considered a minimum in the

neighborhood; thus, several such points are obtained, of

which the one that yields the largest cost function in Eq.

(A1) is regarded as CNOP-I.
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