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ABSTRACT: Using predictions for the sea surface temperature (SST) generated by a Flexible Global Ocean-Atmosphere-
Land System model of IAP/LASG (FGOALS-g), the season-dependent predictability of SST anomalies for El Nino/La Nina
events is investigated by analyzing the forecast error growth in an imperfect model scenario. The results indicate that, for
the predictions through the spring season in the growth phase of El Nino events, the prediction errors induced by both initial
errors and model errors tend to have a prominent season-dependent evolution and yield a prominent spring predictability
barrier (SPB). For the decay-phase predictions of El Nino events, a less prominent season-dependent evolution of prediction
errors and then a less prominent SPB are observed. For the growth- and decay-phase predictions of La Nina events, the
prediction errors do not exhibit a significant season-dependent evolution and yield a less prominent SPB phenomenon.
These results indicate that the SPB phenomenon depends remarkably on the ENSO events themselves, particularly the
phases of the El Nino/La Nina events. We also report that the initial SST errors that correspond to a significant SPB
for El Nino events tend to have the dominant modes in a large-scale dipolar pattern with negative anomalies in the
equatorial central-western Pacific and positive anomalies in the eastern Pacific, or vice versa. We further demonstrate that
the error growth related to a significant SPB for El Nino prediction generated by the FGOALS-g model can result from two
dynamical mechanisms: in one case, the prediction errors grow in a manner similar to El Nifio; in the other, the prediction
errors develop with a tendency opposite to El Nifio. Copyright © 2012 Royal Meteorological Society
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1. Introduction

The El Nifio-Southern Oscillation (ENSO) cycle, a fluc-
tuation between unusually warm (El Nifio) and cold (La
Nifia) conditions, is the most prominent year-to-year cli-
mate variation on earth. Although ENSO originates and
develops mainly in the tropical Pacific through interac-
tions between the ocean and the atmosphere, its environ-
mental and socioeconomic impacts are felt worldwide.
Knowledge about the ENSO cycle and the ability to
forecast its variations, however limited at present, sup-
ply valuable information for agriculture, public health
and safety, fisheries, forestry, and many other spheres
of climate-sensitive human endeavors.

Numerous models have been developed to simulate and
predict ENSO events. These models range from theo-
retical simulations (Wang and Fang, 1996; Jin, 1997a,

intermediate coupled models (Zebiak and Cane, 1987,
Kleeman, 1993) and CGCMs have been used to fore-
cast the ENSO cycle. Recently, the climate forecast sys-
tem at the National Center for Environmental Prediction
(NCEP) (Saha et al., 2006), the seasonal forecast systems
at the European Center for Medium-Range Weather Fore-
casts (ECMWF), and the Multi-model Ensemble System
(MME) at the EU (Palmer et al., 2004) and at the Asian-
Pacific Economic Cooperation (APEC) Climate Center
(APCC) have also been developed for seasonal to inter-
annual climate predictions.

A detailed comparison of ENSO models was given by
Kirtman et al. (2002), who indicated that it is difficult
to tell which of these models demonstrates greater fore-
casting capabilities between the dynamical models and
statistical models or between the intermediate models

1997b; Wang et al., 1999) through so-called intermedi-
ate coupled models (Zebiak and Cane, 1987; McCreary
and Anderson, 1991; Kleeman et al., 1995) to com-
plex coupled general circulation models (CGCMs). Both
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and complex models. Furthermore, these models reveal
a consistent characteristic of ENSO predictions: if fore-
casts are made before and through the spring, the ENSO
predictions tend to be much less successful. This low
predictability is the so-called “spring predictability bar-
rier” (SPB) phenomenon of ENSO forecasts (Webster and
Yang, 1992; Lau and Yang, 1996; Kirtman et al., 2002;
McPhaden, 2003).
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The SPB is a well-known characteristic of ENSO
forecasts. The SPB does not only exist in coupled
models but also in some statistical models (Kirtman et al.,
2002). On some occasions, the SPB is even stronger
in statistical models than in GCMs (van Oldenborgh
et al., 2005). While significant progress has been made in
ENSO theories and predictions over the years, especially
through the TOGA (Tropical Ocean Global Atmosphere)
program (see the review by Wang and Picaut 2004),
considerable SPB phenomena still occur in realistic
ENSO predictions (Jin et al., 2008; Luo et al., 2008).
One therefore questions whether the SPB is an intrinsic
characteristic of ENSO forecasts. Webster and Yang
(1992) demonstrated that a possible cause of the SPB
is the rapid seasonal transition of monsoon circulation
during the boreal spring that perturbs the Pacific basic
state when the east-west sea surface temperature (SST)
gradient is the weakest. Another explanation proposed
by Webster (1995) is that the SPB is due to the weak
ocean—atmosphere coupling that occurs during the spring
in the eastern Pacific. Other studies have argued that SST
anomalies in the boreal spring are relatively small, such
that these anomalies are difficult to detect and forecast
in the presence of atmospheric and oceanic noises (Xue
et al., 1994; Chen et al., 1995). These theories suggest
that the causes of the SPB are related to intrinsic physical
properties of ENSO, indicating that the SPB may be
inherent in ENSO forecasts. Samelson and Tziperman
(2001) also reported that SPB is an intrinsic characteristic
of ENSO forecasting.

Other studies have indicated that the SPB can be
reduced through appropriate approaches, which goes
against the internality of the SPB demonstrated in some
studies, including by Samelson and Tziperman (2001).
Chen et al. (1995, 2004) suggested that the predictabil-
ity barrier could be eliminated through improved ini-
tialization. McPhaden (2003) demonstrated that subsur-
face information has a winter persistence barrier and
that the predictability of ENSO bestriding spring can be
greatly enhanced by incorporating this information into
the model. Recently, Mu et al. (2007a, 2007b) demon-
strated that a ‘significant SPB’ might be a result of
the combined effect of three factors: the climatological
annual cycle, the El Nino event itself and the initial error
pattern. The former two factors are robustly in existence
for ENSO events, while the third factor is factitious and
induced by the limitation of observational instruments,
inaccurate initialization of the forecast models, etc. These
results suggest that even if the seasonality of the annual
cycle determined by observation, which is the origin of
the seasonal dependence of error growth, is robust in
forecast models, particular initial error modes are nec-
essary to bring about the SPB (Mu et al., 2007a). That
is to say, there exists the possibility that some types of
initial errors may cause extreme uncertainties in ENSO
forecasting through the spring and exhibit a prominent
season-dependent evolution related to the SPB, due to the
seasonality of ocean—atmosphere coupling. Other types
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of initial errors, however, tend to not yield a season-
dependent evolution of error growth even though the
annual cycle is embedded in the forecast models (Duan
et al., 2009; Yu et al., 2009).

The ‘significant SPB’ mentioned here is the phe-
nomenon that ENSO forecasting has a large prediction
error; in particular, a prominent error growth occurs dur-
ing the spring when the prediction is made before and
throughout the spring (Mu et al., 2007a, 2007b). Never-
theless, it should be noted that the predictions that have a
large prediction error but do not exhibit season-dependent
evolution result in a less significant SPB; those with a
trivial prediction error but a prominent seasonality of
error growth also yield a less prominent SPB because
the significant growth of error in the spring does not
cause unacceptable prediction uncertainties. This clari-
fication illustrates why we emphasize that a significant
SPB entails not only a large prediction error but also a
prominent seasonality of error growth. With this descrip-
tion of the ‘significant SPB’, Duan et al. (2009) and Yu
et al. (2009) used the Zebiak—Cane model (Zebiak and
Cane, 1987) to study the spatial characteristics of initial
errors that cause ‘a significant SPB’ for ENSO events by
performing perfect model predictability experiments with
the approach of conditional nonlinear optimal perturba-
tion (CNOP; Mu et al., 2003; Duan et al., 2004, 2008;
Mu and Zhang, 2006; Duan and Mu, 2006). CNOP rep-
resents the initial error that induces the largest prediction
error at the prediction time and has the potential for yield-
ing a significant SPB (Mu et al., 2007a, 2007b; Yu et al.,
2009). Using the CNOP method, Duan et al. (2009) and
Yu et al. (2009) identified two types of CNOP-type ini-
tial errors that cause a significant SPB for El Nino events.
One type possesses an SSTA component that has a large-
scale zonal dipolar pattern with positive anomalies in the
central equatorial Pacific and negative anomalies in the
eastern equatorial Pacific; it tends to cause El Nino events
to be under-predicted through spring. The other type has
a pattern almost opposite to the former.

The experiments of Duan et al. (2009) and Yu et al.
(2009) are perfect model predictability experiments,
although the CNOP method tackles the evolution of
finite-amplitude initial perturbation and has led to instruc-
tive results. In realistic predictions, there are typically
both initial errors and model errors. Furthermore, the
CNOPs are generally not computed in realistic predic-
tions. We therefore naturally ask: do initial errors of
realistic predictions exist that are similar to the CNOP
errors and correspond to a significant SPB for El Nino
events? What is the mechanism of the SPB for El Nino
events in the imperfect model scenario?

In this paper, we will use the predictions generated
by the Flexible Global Ocean Atmosphere Land System-
gmail (FGOALS-g) model (see next section) for the sea
surface temperature (SST; Yan and Yu, 2012), from the
view of error growth, to investigate the characteristics
of initial errors that correspond to a significant SPB in
realistic ENSO predictions and to analyse the mechanism
of the SPB in the imperfect model scenario. The paper is
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organized as follows: in the next section, the predictions
and the observations for SST are briefly introduced. In
Section 3, the uncertainties of the ENSO forecasting
generated by the FGOALS-g model and their season-
dependent evolutions are presented. The characteristics
of initial errors that correspond to a significant SPB
are investigated in Section 4, which helps to determine
whether the CNOP-like errors demonstrated by Duan
et al. (2009) and Yu et al. (2009) exist in realistic ENSO
predictions generated by the FGOALS-g model. On this
basis, the effect of model errors on the SPB is discussed;
the implications of these results are presented in Section
4. Finally, we summarize the results obtained in this paper
and discuss them in Section 5.

2. The predicted and observed SST

The predictions used here are only for the monthly
SST, which were generated by the FGOALS-g model
(version 1.11) (Yan and Yu, 2012). The FGOALS-
g model was a flexible coupled general circulation
model (GCM) (Yu et al.,, 2002, 2004) developed by
the State Key Laboratory of Numerical Modeling for
Atmospheric Sciences and Geophysical Fluid Dynamics
(LASG), Institute of Atmospheric Physics (IAP), Chinese
Academy of Sciences. This model couples atmospheric,
oceanic, land, and sea ice component models with the
National Center for Atmospheric Research (NCAR) flux
coupler.

The oceanic component is described by a LASG/IAP
Climate System Ocean Model (LICOM) (Liu et al.,
2004). This model involves 30 oceanic vertical layers
with 12 equal levels in the upper 300 m; it treats
the North Pole as an isolated island. The horizontal
resolution of LICOM is 1° x 1°, and the domain covers
from 75°S to 88°N. The atmospheric component is a
Grid-point Atmospheric Model of IAP/LASG (GAMIL),
which includes a new dynamic core (Wang et al., 2004)
and the physical parameterizations of the Community
Atmospheric Model Version 2 (CAM2) of NCAR (Kiehl
et al., 1996), except for a modified Tiedtke convective
scheme (Li et al., 2007). The model employs a hybrid
horizontal grid with a Gaussian grid of 2.8° between
65.58° N and 65.58° S and a weighted even-area grid
elsewhere (Wang et al., 2004). Vertically, there are 26
o-layers from the earth surface to 2.194 hPa.

The LICOM and GAMIL are coupled through a NCAR
coupler (Kauffman and Large, 2002). A dynamical sea
ice model known as the Community Sea Ice Model,
version 4 (CSIM4) (Weatherly et al., 1998) and a land
model known as the Community Land Model, version 2
(CLM2) (Bonan et al., 2002), are also coupled together.
The frequency of coupling is 1 d for the oceanic model
and 1 h for the atmospheric, land, and sea ice models.

Yan and Yu (2012) used this fully coupled model
to predict the ENSO events during 1982-2005 and
reported that the FGOALS-g model generated an accept-
able forecast for ENSO events. The predictions capture
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the primary ENSO events during this period, and the
anomaly correlation often exceeds 0.5 with a lead-time
of 12 months. The predictions for SST are an ensemble
forecast of ten different initial conditions of the atmo-
spheric and land components with the same oceanic and
sea ice initial conditions (Yan and Yu, 2012). By an
SST nudging experiment, initial values of atmospheric
and land components on January 1st, April Ist, July 1st,
and October 1st from 1982 to 2005 were obtained. On
these initial values, stochastic perturbations were super-
imposed and yielded ten initial conditions of an ensem-
ble forecast. Each prediction was for a leading time of
12 months.

With the ten initial atmospheric and land conditions
and the same initial oceanic and sea ice conditions, the
FGOALS-g model generated ten single forecasts with
a monthly SST related to ENSO predictions. For the
month that the ENSO prediction begins, we use the
mean of the SST during this month as the initial SST
to study the behaviour of the prediction errors in this
study. For example, for the initial time of April Ist, the
mean SST in April was regarded as the initial SST. As
such, for a start month, ten different atmospheric initial
conditions correspond to ten different initial monthly
SSTs. Therefore, we regarded January, April, July and
October as the start months of the predictions. The mean
of the ten single forecasts with ten initial monthly SSTs
yields the result of the ensemble forecast. In this study,
we adopted not only the products of the single forecasts
but also those of the ensemble forecasts.

The predictions were compared to the ‘observed’
monthly SST in the Nino 3.4 area. For the period of
1982-2005, the so-called optimum interpolation monthly
SST is used (Reynolds et al., 2002). These data were
evaluated from the observed SST, satellite remote sens-
ing, and numerical modelling data by the optimal
interpolating method, which covered the period from
November 1981 through March 2010 and the regions
(89.5°S-89.5°N, 0.5°E-0.5°W) with a resolution of
1° x 1°. The predicted SST had the same resolution as
the observation.

From 1982 to 2005, five typical El Nino events
1982/1983, 1986/1987, 1991/1992, 1997/1998 and 2002/
2003 and four La Nina events 1984/1985, 1988/1989,
1995/1996 and 1998/1999 occurred. In this paper, we
investigated the season-dependent predictability of the
SST anomalies (SSTA) of the ENSO events. Because
the predictions for the 1982/1983 El Nino event did not
consist of the whole episode of the observed event, we
only considered the other four El Nino events and the
four La Nina events (Figure 1).

In this paper, we use Year (0) to denote the year when
El Nino/La Nina attained a peak value and Year (—1)
and Year (1) to signify the years before and after Year
(0), respectively. The El Nino/La Nina predictions made
with a start month of July (—1) (i.e., July in Year (—1)),
October (—1), January (0) (i.e., January in Year (0)), and
April (0) pass through the spring in the growth phase
of El Nino/La Nina. For convenience, we hereafter refer
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Figure 1. The observed Nifio3.4 index of four El Nifio events (left column) and La Nifia events (right column) during 1982-2005. The start
months of the predictions for these El Nifio events are marked on the horizontal axis, where July (—1), October (—1), January (0) and April

(0) are the start months of the growth-phase predictions and July (0),

October (0), January (1) and April (1) are those of the decay-phase

predictions. The dashed lines mark the spring (AMJ) in the growth-phase and decay-phase predictions.

to these predictions as growth-phase predictions. The El
Nino/La Nina predictions with a start month of July (0),
October (0), January (1) (i.e., January in Year (1)), and
April (1) pass through the spring in the decay phase of El
Nino/La Nina and are therefore referred to as decay-phase
predictions hereafter.

3. The SPB phenomenon for ENSO predictions
generated by the FGOALS-g model

Yan and Yu (2012) used the results of the ensemble
forecast generated by the FGOALS-g model to investi-
gate the forecasting skill by statistical analysis and found
the SPB phenomenon of the predictions for SST in a
probabilistic sense. Wei and Duan (2010) also used the

Copyright © 2012 Royal Meteorological Society

SST predicted by the FGOALS-g model and preliminar-
ily revealed the phenomenon of the SPB from the view of
error growth. However, these papers cannot answer the
questions posed in the introduction; i.e., do initial errors
of realistic predictions that are similar to the CNOP errors
and correspond to a significant SPB for El Nino events
exist? In addition, what is the mechanism of the SPB
for El Nino events in the imperfect model scenario? In
this paper, we investigate these problems associated with
SPB from the view of error growth.

A significant SPB here, as mentioned in the Introduc-
tion, refers to the phenomenon that ENSO forecasting has
a large prediction error; in particular, a prominent error
growth occurs during the spring when the prediction is
made before the spring. In the following, we will address
the SPB problem from two aspects: (1) the prediction

Int. J. Climatol. 33: 1280-1292 (2013)
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errors of the ENSO events and (2) their season-dependent
evolution.

To study the season-dependent evolution of prediction
errors, we divide a calendar year into four seasons starting
with January to March (JFM), followed by April to June
(AMJ), and so forth. The slope of the curve y () =
||T'(1)|| during different seasons was evaluated, where
T'(t) represents the SSTA component of the evolutions of
prediction errors for ENSO events. Then, the slopes, k =

By(t)’ of the curve y(t) = ||u(¢)|| for different seasons
were estimated, where u(t) represents the evolution of
the prediction errors for El Nino events and the slope
indicates the growth rates of the prediction errors for
the different seasons. In particular, if we assume that the
prediction error at the starting time of a season is ||u(t])]]
and at the end of the season is ||u(f;)]|, the growth rate
of the prediction error for the season can be roughly

estimated by evaluating k ~ ||M(t2)t|| — @) Because
2—h

each season possesses a common time interval length,
here we simply used the values of ||u(#)|| — ||u(t1)]] to
indicate the tendency, «, of the growth of the prediction
errors for each season. A positive (negative) value of «
implies an increase (decrease) in the error, and the larger
the absolute value of «, the faster the increase (decrease)
in the error.

To apply the above strategy to study the season-
dependent evolution of prediction errors, it was necessary
to derive the SSTA from the SST forecasted by the
FGOALS-g model. By calculating the mean values of the
predicted SST, T”, at each month from 1982 to 2005,
we obtained an annual cycle of model prediction and
subtracted it from the predicted SST 77, thus leading to
a time series of ‘predicted SSTA’, Tf . In other words,
we obtained the predicted SSTA by calculating T} =
TP —T7. Using the observed SST T, we obtained the
time series of the ‘observed SSTA’, TAO, with the realistic
annual cycle TO, where the realistic annual cycle was
obtained by taking the mean values of the observed SST
during each month from 1982 to 2007. With the predicted
SSTA T} and the observed one T, we obtained the
prediction errors and then estimated their seasonal growth
dependency.

It has been mentioned that, for an El Nino event, the
predictions with a start month of July (—1), October (—1),
January (0), and April (0) and a lead time of 12 months
generally cross the boreal spring (April-May-June;
AM]J) in the growth phase of the El Nino/La Nina event,
while those with a start month of July (0), October (0),
January (1) and April (1) often pass through the spring in
the decay phase of the El Nino/La Nina event (except for
the 1986/1987 El Nino and 1998/1999 La Nina events).
To investigate the SPB phenomenon in these predictions,
we estimated the seasonal growth rates (as measured by
the slope k) of the prediction errors. We demonstrate
that the prediction errors in the growth-phase predictions
for El Nino events exhibit significant season-dependent
evolution, yielding a significant SPB, while those of the
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decay-phase predictions behave a less prominent season-
dependent evolution even though they cause a larger
uncertainty than those associated with the growth-phase
predictions, thereby leading to a less prominent SPB. For
La Nina events, we demonstrated that the predictions do
not yield an obvious season-dependent evolution of pre-
diction errors, not causing as prominent an SPB as that
of the growth-phase predictions for El Nino events; how-
ever, they cause prediction uncertainties as significant
as the El Nino predictions. This implies that the SPB
aggressively limits the ENSO predictability, but the large
uncertainties of the ENSO predictions may not necessar-
ily be caused by the SPB. To illuminate these results, we
describe the details of the season-dependent predictability
of the four observed El Nino/La Nina events.

3.1.

As described above, predictions starting from July (—1),
October (—1), January (0) and April (0) straddle the
boreal spring (AMJ) in the growth phase of El Nifio
events and are called growth-phase predictions. Now,
we describe the dynamical behaviour of the correspond-
ing predictions errors. The evolution of the prediction
errors, y(t), was obtained by removing the SSTA of
the observed El Nifio events from the predicted ones. In
doing so, the error growth rate measured by the slope «
could be evaluated. For each El Nino event, we present in
Table I the mean values of the slopes « of the ten-member
predictions with ten initial conditions and a start month
of July (—1), which roughly measures the mean skill of
the single forecasts. The prediction errors tended to have
their largest growth rate in the AMJ season and exhibit
significant season-dependent evolution. The AMJ season
covers the spring and the beginning of the summer, which
corresponds to the season in which most climate models
yield the SPB for ENSO events. Therefore, when the pre-
dictions start in July (—1), the FGOALS-g model tends
to yield a significant SPB for single forecasts of El Nino
events. If we consider the results of ensemble forecasts
for SST, the prediction errors for El Nino events are often
reduced (Figure 2). As mentioned previously, a signifi-
cant SPB involves a large prediction error and its obvious
season-dependent evolution. Therefore, the reduction of
the prediction error for ensemble forecasts leads us to
think that the SPB phenomenon in the ensemble forecast
is much weaker. It was therefore inferred that the SPB for

The predictions for El Nifio events

Table I. The mean of the error growth rates k of single forecasts

for El Nifio with a start month of July (—1) (The bold characters

indicate the seasons that have the greatest growth rate of
prediction error).

El Nifio JAS OND JFM AMJ
event

1986/1987 14.2278 3.4130 —8.6793 —3.8856
1991/1992 3.3140 5.4718 —6.1908 8.7512
1997/1998 1.2174 9.5280 —3.2437 22.2288
2002/2003 2.3449 1.2414 —1.8402 5.4251

Int. J. Climatol. 33: 1280-1292 (2013)
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Figure 2. The prediction errors for single forecasts and ensemble forecasts. The former is obtained by taking the mean of the prediction errors

of single forecasts for the four El Nino events; the latter is estimated by evaluating the mean of the prediction errors of the ensemble forecasts

for the four El Nino events. The prediction errors for ensemble forecasts are often smaller than those for single forecasts, indicating that the
ensemble forecast with different initial conditions to some extent reduces the prediction uncertainties for El Nino events.

Table II. The mean of the error growth rates k of single
forecasts for El Nifio with a start month of October (—1). The
bold characteristics are as in Table L.

Table IV. The mean of the error growth rates k of single
forecasts for El Nifio with a start month of April (0). The bold
characteristics are as in Table I.

El Nifio OND JFM AMJ JAS El Nifio AMJ JAS OND JFM
event event

1986/1987 16.9614  —1.8448  —4.52499  —0.3548 1986/1987 0.3700 7.1942 1.5440 —1.5109
1991/1992 5.6249  —7.2660 9.9230 2.1911  1991/1992 5.4992 10.4252 5.2026 —0.4553
1997/1998 8.7691 0.2048 16.8357 5.1270  1997/1998 2.9946 —1.5612 6.5776 —2.7369
2002/2003  —-3.0759  —2.8210 10.6292 3.5060 2002/2003 2.2376 12.9754 —6.0772 —1.0929

Table III. The mean of the error growth rates k of single
forecasts for El Nifio with a start month of January (0). The
bold characteristics are as in Table 1.

El Nifio JFM AMJ JAS OND
event

1986/1987 5.9027 5.4891 —2.4275 6.6737
1991/1992 4.6695 15.1765 —15.5694 11.1503
1997/1998 4.1496 16.5563 —4.4389 —1.7625
2002/2003 3.1286 22.2646 —6.1001 —0.3547

El Nino events may to some extent be related to initial
uncertainties.

For the El Nifio predictions starting from October
(—=1) and January (0), we also investigated the season-
dependent evolution of the prediction errors for the
four El Nino events (Tables II and III). The results
illustrate that the prediction errors of these El Nifio
events tend to grow significantly during AMJ and yield
a significant SPB; nevertheless, the ensemble forecast
associated with multiple initial conditions reduce the SPB
phenomenon to some extent (Figure 2). However, for
the 1986/1987 El Nino event, the largest growth rates
of the prediction errors were not always in the spring
season for the predictions with different start months, so
this event does not have a prominent SPB phenomenon.

Copyright © 2012 Royal Meteorological Society

Mu et al. (2007a) reported that the SPB is related to
the annual cycle (also see Webster and Yang, 1992;
Moore and Kleeman, 1996); that is, the seasonality of
the predictability barrier originates from the annual cycle.
The 1986/1987 El Nino event did not phase-lock to
the annual cycle; that is, the peak of the 1986/1987 El
Nino event did not occur at the end of the year, and
the transition from the cold to the warm phase was not
in the spring. This may be one of the reasons that the
predictions of the 1986/1987 El Nino event do not yield
a significant SPB.

We further explore the growth-phase predictions of
El Nifio with a start month of April (0) (Table IV).
The month April (0)is the beginning of the AMIJ
season; therefore, the predictions initialized in April
(0) start directly in the spring. In this situation, we
demonstrate that the largest growth rate of the prediction
errors for the four El Nifio events does not occur in
the AMJ season, implying that when the growth-phase
predictions are made directly in the spring, the decrease
in the skill seen during the spring (AMJ) is not nearly
as significant. Furthermore, we find that the growth-
phase predictions starting in April (0) yielded much
smaller prediction uncertainties than those starting in
other seasons (Figure 2); the growth-phase predictions
are much more effective when they start in the spring
than when they start in other seasons.
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For the decay-phase predictions of the El Nino events,
we also estimate the seasonal growth rate of the predic-
tion errors. The results demonstrate that when the start
month was July (0), the largest error growth rates of the
El Nifio events in 1991/1992, 1997/1998 and 2002/2003
are in the OND, AMIJ and JAS seasons, respectively,
whereas for the start month of October (0), the largest
error growth rates of these three El Nino events are
all in the OND season. For the start months of Jan-
uvary (1) and April (1), the prediction errors have the
largest growth rates in either the AMJ season or the
OND season. However, for the 1986/1987 El Nino event,
the decay phase did not include the spring season, and
therefore, the decay-phase predictions did not involve the
1986/1987 EI Nino. In any case, for the decay-phase pre-
dictions of the El Nifio events, the largest error growth
rates were not always in the spring season. The decay-
phase predictions of the El Nifio events present a nonob-
vious season-dependent evolution of prediction errors,
thus causing a less prominent SPB. However, for either
ensemble forecasts or single forecasts, the decay-phase
predictions possessed a much larger prediction error and
a poorer forecasting ability than the growth-phase predic-
tions (Figure 3), although the growth-phase predictions
exhibited a significant SPB phenomenon. Furthermore,
the decay-phase predictions starting directly in the spring
did not have a prediction error nearly as small as that of
the growth-phase predictions. It is obvious that the fore-
cast skill of El Nino predictions through spring depends
on the phase of the El Nino events. Kirtman et al. (2002)
reported that the ENSO predictions starting in the spring
may have a much greater score than those starting in
other seasons. Our results indicate that the greater score
of the ENSO predictions with a spring start month may
be reflected primarily in the growth-phase predictions for
El Nino events.

When the predictions generated by the FGOALS-g
model are made through the spring during the growth
phase of El Nino events, the prediction errors tend
to exhibit season-dependent growth and cause a large
prediction error, thus yielding a significant SPB phe-
nomenon. The ensemble forecast technique reduces the
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1.6

1.4 |
1.2

il
0.8
0.6 ¢
0.4
0.2
o 3 ' 6 ' g

Lead time(months)

W decaying-phase prediction

Frediction errors

Figure 3. The prediction errors of single forecasts for the four El Nino

events, which are for the growth-phase and the decay-phase predictions

respectively. The prediction errors for the growth-phase predictions are
often smaller than those for decay-phase predictions.
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uncertainties of the forecasting through the spring and
indicates that the SPB may be related to initial uncer-
tainties. Although the decay-phase predictions of El
Nino events have much larger uncertainties, they do not
exhibit an obvious season-dependent evolution of pre-
diction errors and do not exhibit a prominent SPB. The
occurrence of the SPB depends on the phases of the El
Nino events. Furthermore, the results indicate that a sig-
nificant SPB implies a significant prediction uncertainty,
but a large prediction uncertainty may not necessarily be
caused by a significant SPB.

3.2. The predictions for La Nina events

From Section 3.1, we know that the El Nifio growth-
phase predictions tend to cause a prominent SPB, while
the decay-phase predictions have a less significant SPB.
In this section, we will investigate the SPB phenomenon
for the La Nifia predictions generated by the FGOALS-g
model.

We studied the season-dependent evolutions of predic-
tion errors for the four La Nifia events from 1982 to
2005. The results demonstrate that neither the growth-
phase predictions nor the decay-phase predictions exhibit
a significant season-dependent evolution of prediction

Table V. The mean of the error growth rates k of single
forecasts for El Nifio with a start month of July (—1). The
bold characteristics are as in Table I.

La Nifia JAS OND JFM AMJ
event

1984/1985 —1.7720 —8.1956 21.1823 —1.3639
1988/1989 19.6745 —5.2589 —5.8381 1.4092
1995/1996 —1.2286 6.6341 —8.2167 —3.6610
1998/1999 —1.6310 10.0125 11.1387 22.3826

Table VI. The mean of the error growth rates k of single
forecasts for El Nifio with a start month of January (0). The
bold characteristics are as in Table I.

La Nifia OND JFM AMIJ JAS
event

1984/1985 20.6852 —5.9568 —15.9025 —2.1503
1988/1989 0.8015 3.0969 0.1765 2.3241
1995/1996 11.9307 7.0700 —14.2091 —3.4893
1998/1999 0.3520 2.2753 8.9794 10.3351

Table VII. The mean of the error growth rates k of single
forecasts for El Nifio with a start month of July (0). The bold
characteristics are as in Table 1.

La Nifia JAS OND JFM AMIJ
event

1984/1985 3.8322 28.6102 —7.5550 —5.9142
1988/1989 —1.7241 2.6647 —5.7061 0.2726
1995/1996 4.8980 —5.0450 0.8937 1.1813
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Table VIII. The mean of the error growth rates k of single
forecasts for El Nifio with a start month of January (1). The
bold characteristics are as in Table L.

La Nifia JFM AMJ JAS OND
event

1984/1985 —6.5301 —0.6698 5.2977 5.0982
1988/1989 —1.0639 2.7201 17.1540 5.5175
1995/1996 —5.3403 —1.8484 16.8388 8.1510

errors. In other words, the largest error growth rates of
the predictions for the La Nina events generated by the
FGOALS-g model are not in the same season, and in par-
ticular, they are not in the AMJ season. Tables V — VIII
present the seasonal growth rates of the prediction errors
for the growth-phase predictions with the start months of
July (—1) and January (0) and for the decay-phase pre-
dictions with the start months of July (0) and January (1).
For the decay-phase predictions through the spring, the
1998/1999 La Niifia event is not displayed in Tables VII
and VIII; the predictions starting in July (0), October (0),
January (1) and April (1) did not pass through the spring
in the decay phase of the 1998/1999 La Nina event, so
the growth rates of the prediction errors are not included
in the tables. The La Nina predictions did not present
a prominent SPB, but they did cause a significant pre-
diction uncertainty. This result further indicates that a
large prediction error may not necessarily be caused by
a significant SPB phenomenon.

The growth-phase predictions for the El Nino events
were more effective than the decay-phase predictions.
Does the same hold true for La Nina predictions? By
comparing the prediction errors of the decay-phase pre-
dictions with those of the growth-phase predictions, we
found that the growth-phase predictions for the La Nina
events were much less effective than the decay-phase pre-
dictions (Figure 4). This characteristic of the La Nina pre-
dictions is not the same as that of the El Nino predictions.

In summary, a significant SPB does not occur for either
the growth-phase or the decay-phase predictions of La
Nifia events, while a prominent SPB does occur in the
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Figure 4. The prediction errors of single forecasts for the four La Nina

events, which are for the growth-phase and the decay-phase predictions

respectively. The prediction errors for the growth-phase predictions are
often larger than those for decay-phase predictions.
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growth-phase predictions of El Nino events. Despite this,
the growth-phase predictions for El Nino events pos-
sess a greater score than the decay-phase predictions, but
the growth-phase predictions for La Nina events reveal
a lower forecast skill than the decay-phase predictions.
These results indicate that the forecast skill of ENSO
predictions through the spring is closely related to ENSO
events themselves and that the El Nino predictions may
have different behaviour than the La Nina predictions.
Furthermore, the significant SPB of the El Nino growth-
phase predictions causes large prediction errors, but the
large errors for the El Nino decaying-phase predictions
and the La Nina growth- and decaying-phase predictions
may not be necessarily caused by a significant SPB phe-
nomenon. In any case, the SPB is still a very important
factor that aggressively limits the ENSO predictability.
It is very necessary to reveal the SPB phenomenon and
clarify the possible mechanism of the SPB, which will
benefit the improvement of the ENSO forecasting skill.

4. Possible mechanism of SPB for El Nino events

In Section 3, we demonstrated that the growth-phase pre-
dictions of El Nino events tend to yield a significant SPB.
Duan et al. (2009) and Yu et al. (2009) conducted perfect
model predictability experiments with the Zebiak—Cane
model (Zebiak and Cane, 1987) and revealed that two
types of initial errors exist that are most likely to cause
a significant SPB for EI Nino events. One type of initial
error has an SSTA pattern with negative anomalies in the
equatorial central-western Pacific and positive anomalies
in the equatorial eastern Pacific; the other type of initial
error has patterns nearly opposite to those of the former
type. To facilitate the discussion, we refer to the former
error pattern as a Type A error and the latter as a Type
B error. These results were derived from perfect model
predictability experiments with the Zebiak—Cane model
(Zebiak and Cane, 1987); however, in more realistic pre-
dictions (e.g., the hind-cast experiments generated by the
FGOALS-g model), not only initial errors but also model
errors exist. That is to say, the hindcast experiments
are often within the framework of imperfect model pre-
dictability experiments. Fundamental questions must be
addressed, including the following: (1) in realistic predic-
tions, do the Type A and B initial errors that correspond
to a significant SPB for El Nino events exist? (2) What
is the mechanism of the SPB for El Nino events in an
imperfect model scenario?

4.1. Do the Type A and B errors exist in the ENSO
predictions generated by the FGOALS-g model?

We investigated the spatial patterns of the initial SST
errors that correspond to a significant SPB for realistic
ENSO predictions generated by the FGOALS-g model.
For each El Nino event, there were eight start months
in the realistic predictions generated by the FGOALS-g
model (see Section 2). At each start month, there were
ten single forecasts with ten different initial monthly
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SSTs (see Section 2). There was a total of 320 pre-
dictions for four realistic El Nino events. Statistically,
136 predictions exist that yield a significant SPB phe-
nomenon with the greatest error growth rate occurring
in the spring season. Furthermore, most of these predic-
tions were growth-phase predictions, which coincide with
the results of Section 3; that is, the growth-phase predic-
tions potentially yielded a significant SPB for the El Nino
events. For the SST component of the initial conditions of
the 136 predictions, we obtained 136 initial error patterns
by comparing the observed SSTA with the initial SSTA
field of predictions. For these 136 initial SSTA error pat-
terns, we performed an Empirical Orthogonal Function
(EOF) analysis to identify the dominant mode of the ini-
tial SSTA errors. This mode is the dominant mode of the
initial SSTA errors that correspond to a significant SPB
for El Nino events. Figure 5 plots the spatial pattern of
the leading EOF mode and the corresponding time series.
The leading EOF mode accounted for 51% of the total
variance over the region (170°E-85°W, 10°N-10°S),
which approximately covers the Nino 3 and 4 regions.
The leading EOF mode clearly demonstrated an SSTA
pattern with negative anomalies in the equatorial central-
western Pacific and positive anomalies in the equatorial
eastern Pacific. From the time series of this leading EOF
mode, we can see that the first EOF mode exhibited not
only a positive phase but also a negative phase, which
indicates that the dominant mode of the initial SSTA
errors could be either the pattern illustrated in Figure 5
(Pattern A; corresponding to the positive phase of the
time coefficient series) or its opposite pattern (Pattern B;
corresponding to the negative phase of the time coef-
ficient series). Furthermore, both Patterns A and B bear
great resemblance to the Types A and B errors mentioned
above, respectively. Therefore, we demonstrated that in

W. DUAN AND C. WEI

realistic ENSO predictions generated by the FGOALS-g
model, initial SSTA errors exist that are similar to those
of the Type A and B errors reported by Yu et al. (2009)
and Duan et al. (2009), and they also correspond to a
significant SPB for El Nino events.

4.2. Behaviour of error growth related to the SPB for
El Nino events

From Figure 5, we noticed that the time coefficient series
of the first EOF mode displayed its positive phase in
most of the 136 El Nino predictions. This implies that for
the El Nino predictions, most contained the initial SSTA
errors with the dominant mode illustrated in Figure 5,
and the rest of the 136 predictions had the initial SSTA
errors with the major mode opposite that in Figure 5. In
addition, Duan et al. (2009) and Yu et al. (2009) demon-
strated that the Type A and B errors physically favour
anomalous westerlies and easterlies along the equator and
are most likely to evolve into El Nino- and La Nina-like
events, respectively, in the Zebiak—Cane model (Zebiak-
Cane, 1987). One can therefore ask whether, in the ENSO
predictions generated by the FGOALS-g model, the dom-
inant modes of the initial SSTA errors (i.e., the Pat-
tern A and B modes, which are similar to the Type A
and B errors) correspond to El Nino- and La Nina-like
events. The answer to this question will help identify the
behaviour of the error growth related to the SPB for El
Nino events.

To address this question, we explored the time-
dependent evolution of the prediction errors correspond-
ing to the 136 initial errors. The 136 time-dependent
series of prediction errors were 12 months in length, cor-
responding to the leading time 12 months of predictions.
We divided each 12-month time series into four con-
secutive quarters; i.e., the first through the third month
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Figure 5. (a) The leading EOF mode of the 136 initial errors that corresponded to a significant SPB for the El Nino events and (b) the
corresponding time series. The numbers located on the horizontal axis in (b) represents the 136 predictions for the El Nino events. Each number
corresponds to one prediction.
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(season-1), the fourth through the sixth month (season-2),
and so forth. By applying the season-reliant EOF analy-
sis (S-EOF) method (Wang and An, 2005), we detected
the major mode of the season-dependent evolutions of
the prediction errors over the Nino 3 and 4 regions. The
S-EOF method can be used to search for the seasonally
evolving patterns from year to year. The spatial pattern
obtained for each S-EOF mode describes the evolving
seasonal anomalies in a given year. These patterns share
the same yearly value in the corresponding principal com-
ponent (PC; for details, please see Wang and An, 2005).
In this study, we connected the 136 time-dependent series
and regarded them as a time series of year-to-year vari-
ations. The prediction errors in the four sequential sea-
sons were then treated as an integral block to construct
a covariance matrix. After the EOF decomposition was
performed, the yearly block was divided into four sequen-
tial seasonal prediction errors so that a PC was derived
for each eigenvector that contained a set of seasonally
evolving patterns of the prediction errors from season-1
to season-4.

Figure 6 illustrates the first S-EOF mode and the cor-
responding time series, which accounts for 64% of the
total variance. This seasonally evolving mode of SSTA
errors corresponds to the positive phase of the time series
and is the seasonally evolving major mode of the predic-
tion errors that causes a significant SPB for the El Nino
events. For convenience, we denote this mode as Evolu-
tion A mode. This seasonally evolving dominant mode
of the prediction errors clearly seems to be an El Nino
evolving mode; however, the time coefficient series of
the first S-EOF mode also displays a negative phase in
some predictions (Figure 6). This result indicates that in
these predictions, the pattern of the seasonally evolving
major mode of prediction errors is opposite that illustrated
in Figure 6; that is, in these predictions, the prediction
errors, which cause a significant SPB for El Nino events,
display a La Nina-like evolving major mode and have
dynamical behaviour opposite the El Nino events. We
refer to this mode as the Evolution B mode. It is clear
that the prediction errors that yield a significant SPB
tend to have seasonally evolving major patterns as El
Nino or a La Nina evolving modes. This implies that the
error growth associated with the SPB for El Nino events
possesses the same mechanism as the ENSO events them-
selves.

We have demonstrated that in realistic predictions gen-
erated by the FGOALS-g model, the initial SSTA errors
that correspond to a significant SPB have the dominant
modes of Patterns A and B, which are very similar to
the Type A and B errors reported by Yu ef al. (2009)
and Duan et al. (2009). Furthermore, the prediction errors
demonstrate seasonally evolving major modes of the Evo-
lution A and B modes, like the El Nino and La Nina
evolving modes, respectively. From Figure 5, it is appar-
ent that the Pattern A mode of initial errors arises in
most of the 136 El Nino predictions, while the Pattern B
mode, opposite from Pattern A, appears in the rest of the
136 predictions. By comparing the time coefficient series
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in Figures 5 and 6, we find that the seasonally evolv-
ing major modes of prediction errors, Evolution A (B),
arose in almost all of the predictions corresponding to
Pattern B (A) of the initial errors. This means that the
dominant mode of the initial SSTA errors, Pattern A (B),
approximately corresponded to the seasonally evolving
major mode of prediction errors, Evolution B (A). How-
ever, as mentioned previously, the Type A (B) errors in
the Zebiak—Cane model potentially physically activate
an anomalous westerly (easterly) and favor an El Nino (a
La Nina) evolving mode, while in the ENSO predictions
generated by the FGOALS-g model, the initial errors of
the dominant mode of Pattern A (Pattern B) correspond
to the seasonally evolving major mode, the Evolution
B (A) mode, which corresponds to a La Nina (an El
Nino) evolving mode. That is, Patterns A and B should
have physically developed into the Evolution A and B
major modes, but they tended to have an opposite trend
in the predictions generated by the imperfect FGOALS-g
model. Therefore, we naturally ask whether it is model
error or initial errors of other variables that causes this
difference between Type A (B) and Pattern A (B). If
it is due to model errors, we will have to demonstrate
that the model errors will also have a significant season-
dependent evolution and lead to a prominent SPB for the
El Nino events. Of course, this is only an assumption,
which will be examined in future papers by comparing
the results of a perfect model assumption with those of
an imperfect model scenario.

At all events, we have demonstrated that the prediction
errors that yield a significant SPB tend to have season-
ally evolving major patterns of an El Nino or a La Nina
evolving mode. The prediction errors that have similar
dynamic behaviour to El Nino and La Nina events may
easily cause a significant SPB for El Nino events. The El
Nino and La Nina events are now understood to develop
as a result of Bjerknes’ (1969) positive feedback; mean-
while, they usually exhibit the fastest growth during the
spring (Moore and Kleeman, 1996), as the spring main-
tains the strongest ocean-atmospheric instability of the
climatological annual cycle (Wang et al., 1996). The pre-
diction errors that have similar dynamical behaviour to
El Nino and La Nina events may be the most likely to
cause a significant SPB for El Nino events. Therefore,
no matter what the initial errors are like, the prediction
errors caused by the initial errors and the model errors
will be more likely to cause a significant SPB for El Nino
events if and only if they exhibit an El Nino or a La Nina
evolving mode.

5. Summary and discussion

The SPB problem in ENSO predictions was explored by
analysing the predictions generated by the FGOALS-g
model. The results demonstrate that the SPB phenomenon
exists for El Nino events in the ENSO predictions
generated by the FGOALS-g model. In particular, the
predictions through the spring season during the growth
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Figure 6. (a) The seasonally evolving major mode of prediction errors that caused a significant SPB for the El Nino events and its corresponding
time series. The horizontal axis in (b) is as in Figure 5.

phase of the El Nino events demonstrated a much
more significant SPB than the other predictions did.
The ensemble forecast with multiple initial conditions
alleviated the SPB phenomenon due to the reduction
of prediction errors, which indicates that the SPB is to
some extent related to initial errors. The results also
indicate that the predictions that began directly in the
spring season during the growth phase of the El Nino
events may have much smaller prediction errors than
the predictions that began in other seasons. Therefore,
the results reported by Kirtman ef al. (2002), that the

Copyright © 2012 Royal Meteorological Society

predictions with a start month in the spring are relatively
more effective than those with a start month in other
seasons, may be primarily reflected in the predictions
with a start month in the spring during the growth phase
of El Nino events.

We demonstrated that the initial errors that correspond
to a significant SPB for El Nino predictions generated
by the FGOALS-g model had statistically major modes
corresponding to Patterns A and B, similar to the Type A
and B errors reported by Duan et al. (2009) and Yu ef al.
(2009). Meanwhile, we demonstrated that the prediction
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errors that caused a significant SPB exhibited the same
seasonally evolving major modes as the El Nino or La
Nina evolving modes, which indicates that a significant
SPB may result from the prediction errors having similar
dynamic behaviour to El Nino and La Nina events; that
is, from the Bjerknes’ positive feedback mechanism. Yu
et al. (2009) and Duan et al. (2009) demonstrated that
the Type A (B) errors of the SSTA pattern with nega-
tive (positive) anomalies in the equatorial central-western
Pacific and positive (negative) anomalies in the equato-
rial eastern Pacific have dynamic behaviour similar to
El Nino (La Nina) events. However, Patterns A and B,
similar to Types A and B in the El Nino predictions gen-
erated by the FGOALS-g model, correspond to La Nina
and El Nino evolving modes, respectively. This differ-
ence between Yu et al. (2009) (also see Duan et al., 2009)
and the present study will be investigated in future papers
by performing many experiments within the framework
of a perfect model and an imperfect mode. In fact, regard-
less of the types of errors that play an important role in
yielding prediction uncertainties related to SPB, the pre-
diction errors induced by them that exhibit the seasonally
evolving major modes as El Nino or La Nina evolving
modes will be the most likely to cause a significant SPB,
although these two major evolving modes did not phys-
ically result from Patterns A and B.

Kirtman et al. (2002) compared the status of ENSO
forecasts generated by a group of international climate
models. From Figure 4 in Kirtman et al. (2002), it can
easily be seen that the predictions generated by the Uni-
versity of Oxford (UOX) coupled model (Balmaseda
et al., 1994) and the Linear Inverse Modelling (LIM)
prediction system (Penland and Magorian, 1993) with
observational data as the initial conditions exhibited a
significant SPB for ENSO events. This indicates that the
prediction errors generated by these two models were
only caused by the model errors, but they also caused
a significant SPB for ENSO events. Furthermore, Zheng
and Zhu (2010) demonstrated that the SPB can be reduced
by using the random forcing to offset the model errors.
We have demonstrated that the Pattern A and B error
modes correspond to different tendencies of prediction
error evolutions from those of the Type A and B errors. Is
this difference caused by the model errors as in the UOX
and LIM models? This is a very challenging question that
must be explored by conducting many experiments run-
ning the FGOALS-g model in the scenarios of a perfect
model and an imperfect model.

In addition, this paper adopted the definition of SPB
as the phenomenon of ENSO forecasting having a large
prediction error; in particular, a prominent error growth
occurs during the spring when the prediction is made
before and throughout the spring. Some studies also used
the decline of the forecasting skill, such as the anomaly
correlation, to describe the SPB. Zheng and Zhu (2010)
indicated that the rapid spring decline of the anomaly
correlation skill for El Nino predictions accompanies the
rapid growth of the prediction errors in the spring. This
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implies that the SPB described by the anomaly correla-
tion skill of the predictions is in accordance with that
described by the prediction errors. Nevertheless, the SPB
described in the present study can identify the predic-
tions that display a less prominent SPB with negligible
prediction errors but obvious season-dependent evolution
of prediction errors or less significant season-dependent
evolution of prediction errors but a large prediction error.

The SPB for ENSO is an unresolved problem, though it
has attracted the attention of many scientists. This paper
reveals the SPB phenomenon of the predictions generated
by the FGOALS-g model and finds the CNOP-like errors
associated with SPB, finally demonstrating the mecha-
nism of the SPB in the imperfect model scenario. These
results extend those of Yu ef al. (2009) and Duan et al.
(2009) and emphasize that the CNOP-like errors related
to SPB and the SPB’s mechanism demonstrated by Duan
et al. (2009) and Yu et al. (2009) are still valid in realistic
ENSO predictions generated by the FGOALS-g model.
This outcome encourages us to filter the CNOP-like errors
by appropriate approaches and perform ensemble fore-
casting to reduce the effect of SPB on prediction uncer-
tainties. The model error is also an important source of
prediction errors. As mentioned previously, its effect on
SPB for El Nino events may exist, which should therefore
be explored in depth. Furthermore, model errors come
from different sources, such as model parameter errors,
the uncertainties of some physical processes, the errors
in external forces, and the uncertainties of the computa-
tion scheme, among others. It is unknown which type of
model error plays the dominant role in producing predic-
tion uncertainties or which kind of model error should
be prioritized for improvement. All of these should be
investigated in future in-depth studies. The results from
this study are expected to provide useful information for
ensemble forecasting with multiple physical processes,
external forcing, and more.
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