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In this paper, the role of constant optimal forcing (COF) in correcting forecast models was numerically studied using the 
well-known Lorenz 63 model. The results show that when we only consider model error caused by parameter error, which also 
changes with the development of state variables in a numerical model, the impact of such model error on forecast uncertainties 
can be offset by superimposing COF on the tendency equations in the numerical model. The COF can also offset the impact of 
model error caused by stochastic processes. In reality, the forecast results of numerical models are simultaneously influenced 
by parameter uncertainty and stochastic process as well as their interactions. Our results indicate that COF is also able to sig-
nificantly offset the impact of such hybrid model error on forecast results. In summary, although the variation in the model er-
ror due to physical process is time-dependent, the superimposition of COF on the numerical model is an effective approach to 
reducing the influence of model error on forecast results. Therefore, the COF method may be an effective approach to correct-
ing numerical models and thus improving the forecast capability of models. 
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The study of the uncertainty of the forecast results (predic-
tion error) is a core of predictability studies on numerical 
weather forecasting and climate prediction. The uncertainty 
is usually caused by both initial and model errors. To study 
the role of initial and model errors independently, Lorenz [1] 
divided the predictability problem into two types. The first 
type of predictability problem mainly concerns the uncer-
tainty of the forecast results caused by initial error, whereas 
the second type of predictability problem addresses the un-
certainty generated by model error. Due to the development 
of nonlinear theory [2, 3], meteorological data, and numeri-
cal models [4, 5], the impact of initial error on predictability 
has been extensively studied [6–10]. Several methods asso-
ciated with the first type of predictability have been pro-
posed, such as the conditional nonlinear optimal perturba-

tion (CNOP) method [11], the four-dimensional variational 
data assimilation method [12], and the Ensemble Kalman 
Filter [13] method. All these methods are effective for cor-
recting the initial fields to overcome the uncertainty of the 
initial condition. A common feature of these studies is that 
the forecast models are assumed to be perfect without any 
model error; therefore, the prediction errors are derived 
solely from the initial errors. However, in realistic cases, the 
model equations and the control parameters cannot be given 
exactly, thus resulting in the inevitable effect of model error 
on the forecast result. Therefore, it is important to study and 
subsequently control model errors.  

The atmosphere, oceans, land surface and their coupled 
systems are typical nonlinear systems, and their characteris-
tics determine that there is an upper limit of predictability 
for each of these systems. Meteorologists are seeking ways 
to minimize the model error to achieve the limit of the pre-
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dictability. Efforts to reduce model error have been made by 
improving model resolution, parameterizing physical pro-
cesses, offsetting model errors by external forcing, and us-
ing computer technology with greater accuracy. Ren et al. 
[14] commented on these methods and identified the ad-
vantages and disadvantages of them, thereby providing 
guidance for the further application of the above methods.  

D’Andrea and Vautard [15] suggested that if observa-
tions for a certain time interval are known, one can super-
impose an appropriate constant forcing associated with the-
se observations to the tendency equations and correct the 
model closest to the observations, thereby generating a 
modified model with forcing for improved forecast results. 
Roads [16] and Vannitsem and Toth [17] also used a similar 
approach to reducing the effects of model error. If only 
time-invariant system errors exist in the models, it is then 
conceivable that model error can be offset by superposing a 
proper constant forcing on the numerical model. However, 
model error usually includes both the time-invariant system 
error and other types of time-varying model error. Therefore, 
in the case where the model error varies with time, the 
question of whether the constant forcing remains an effec-
tive approach to offsetting model error and improving the 
forecast capability is not known. This is the main issue that 
we will discuss later in this paper. 

1  Constant optimal forcing 

Consider a nonlinear partial differential equation(s): 
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where 1 2( , ) [ ( , ),  ( , ),  ...,  ( , )]nt u t u t u tu x x x x  is the state 

vector, F  is a nonlinear operator, u0 is the initial state, 
( , ) [0, ],t Tx   is a domain in Rn, ,T    

1 2, , ...,( ),nx xxx  and t  is the time. Suppose we use the 

model described by eqs. (1.1) to predict the motion of the 
atmosphere or oceans, but the model is associated with 
model errors. For the given initial field u0, the solution to 
eqs. (1.1) for the state vector u  at time   is given by 

 0( , ) ( ).M u x u  (1.2) 

Here, M  is the propagator. 

If the initial field is exact, then the prediction error 
caused by model error can be defined as 

 0( ) ,r rE M   u u  (1.3) 

where 0
ru  is the true state at the initial time, r

u  is the 

true state at time , and  is a given norm used to measure 

the magnitudes of the prediction errors. The true states of 
the atmosphere and ocean motions cannot be known exactly; 
therefore, in this paper, we take observations

 
to be suffi-

ciently accurate approximations of the true state r
u [18]. 

Let the observations at time 0 and   be obs
0u and obs

u  

respectively; then, the prediction error caused by model 
error can be approximately written as  

 0 .( )obs obsE M   u u  (1.4) 

In the following text, we discuss the model error based on 
eq. (1.4).  

For a given time T, let the observations at time T and ini-
tial time be obs

Tu  and obs
0u , respectively. The prediction 

error caused by model error of eqs. (1.1) is ET. As men-
tioned in the introduction, D’Andrea and Vautard [15] re-
duced the model error by adding a constant forcing (also 
known as model perturbation) f(x) to the original model: 
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Considering this approach, we pose the following question: 
how can an external forcing f(x) be “the most effective” in 
correcting the model? To address this question, we can turn 
the above problem into a type of nonlinear optimization 
problem [15, 17]. That is, the optimization problem can 
consider that certain f(x) is chosen such that the difference 
between the model predictions and the observations is 

minimized. Suppose f
TM

 
is the discrete propagator of eqs. 

(1.5) from 0 to time T; then, the following unconstrained 
optimization problem can be solved: 

 *( ) min ( ),J J
f

f f  (1.6) 

where 

 obs obs
0( ) ( )( ) .T TJ M ff u f u  (1.7) 

The obtained f 

* is the model perturbation that produces 
model forecast results closest to the observation at the pre-
diction time T; this model perturbation is called “constant 
optimal forcing” (COF) in this paper. We can also define 
other types of objective functions. For example, to investi-
gate the forecast capability of a model with respect to the 
variable trends in weather or climate events, we can define 
the objective function as minimizing the difference between 
the model predictions and the observations at several chosen 
time points within a certain time interval. In summary, the 
objective function associated with COF should be defined 
according to the physical problems of investigation. 
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Based on the definition of the COF, we can determine 
that the prediction error of the corrected model with a COF 
does not exceed that of the original model within the opti-
mization time interval [0, T]. However, a numerical model 
is generally used to forecast an unknown future state, i.e., to 
forecast the state beyond the optimization time interval. In 
this case, it is necessary to determine the extent to which the 
COF approach improves the forecast capability. In addition, 
the model error (denoted by R) of a numerical model often 
changes with time, while the model perturbation used to 
offset model error (i.e., the COFs) is time-invariant. Natu-
rally, we seek to determine whether the COF approach can 
eliminate the time-varying model error and to determine the 
extent to which the COF can reduce the time-varying model 
error. In the follow discussion, we will use the Lorenz 63 
model to explore these issues.  

From the above discussion, it is known that for a given 
norm, eqs. (1.6) and (1.7) define an unconstrained optimiza-
tion problem, with the COF f*

 being the minimum point of 
the objective function in the phase space. The COF can be 
computed via the Limited memory Broyden-Fletcher- 
Goldfarb-Shanno (L-BFGS) algorithm [19]. This solver 
adopts the gradient-steepest descent method and finds the 
minimum value of an objective function, in which one 
needs to calculate the gradient of the objective function with 
respect to the model perturbation. It is known that the gra-
dient of an objective function with respect to initial pertur-
bations is often obtained by the adjoint of the corresponding 
model [20]. Then can we use the adjoint to obtain the gra-
dient of the objective function with respect to external forc-
ing? In the next section we will address this question. 

2  Computation of the constant optimal forcing 

The COF is related to an unconstrained optimization prob-
lem. In a large-scale optimization, the gradient of the objec-
tive function with respect to the initial perturbations is often 
obtained by the adjoint method [20]. Many studies have 
used the adjoint method to compute the gradient of the ob-
jective function with respect to the initial perturbations, and 
a large number of adjoint models have been built, including 
the adjoint model of the two-dimensional quasi-geostrophic 
model, the Zebiak-Cane model [21], the MM5 model, and 
the WRF model, etc. The COF can also be solved using an 
adjoint method. Nevertheless, it should be noted that the 
computation of the COF requires the gradient of the objec-
tive function with respect to external forcing or model per-
turbation f. In fact, the gradient of the objective function 
with respect to model perturbation f can be transferred to a 
particular case of the objective function with respect to 
augmented initial perturbations. Next, we describe the 
computation of the COF using the adjoint method. 

For convenience, we define the function  
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and rewrite it in the inner product form 
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where ( )u is the departure from the reference state (the 

observations) caused by model perturbation f and     is 
the inner product. The COF defined by the eqs. (1.6) and 
(1.7) can then be obtained by computing the minimum of

 
J1(f). 

The first-order variational of J1(f) is as follows: 
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Furthermore,  f  can be governed by the following tan-
gent linear model: 
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By introducing two Lagrangian multipliers, 1  and 2, we 

obtain  
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Using integration by parts, we obtain 
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We then derive  J1 as follows: 
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where the sign “  * ” denotes an adjoint operator; 

(0) 0  u  has been taken into consideration. Therefore, 

by comparing eqs. (2.3) and (2.6), we obtain 
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The parameters 1( )t  and 2 ( )t  in eq. (2.6) satisfy the 

following relationship: 
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Eqs. (2.8) is the adjoint of eqs. (2.4). By integrating Eqs. 
(2.8) backward from the prediction time to 0, we obtain 

the gradient 1 /J f . With this gradient, the COF can be 

computed using optimization solvers (the L-BFGS optimi-
zation solver is used in this paper). 

From eq. (2.6), we know that 1(t) satisfies the following 
equations: 
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It is clear that eqs. (2.9) is composed of the adjoint model 
of the nonlinear model (1.1) with respect to the initial per-
turbations. It is also obvious that the adjoint model (2.8) 
associated with model perturbation f is established by eqs. 
(2.9), which are associated with the initial perturbations. 
Therefore, we do not alter the adjoint model (2.9); rather we 
only add a line of code for the discretization of the equation 

2
1 =0
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 following the code for the adjoint model eqs. 

(2.9), thereby easily obtaining the adjoint model (2.8). 

3  The role of COF in model correction 

We use the Lorenz 63 model as an example to analyze the 
role of constant optimal forcing in model correction. The 
equations in the Lorenz 63 model are as follows: 
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where , r, b are the model parameters with the given val-
ues =10, r=28 and b=8/3. The Lorenz 63 system is a non-
linear chaotic system and is often used to test the validity of 
approaches with respect to predictability studies.  

In this section, we mainly discuss the effects of model 
error on the forecast results, and therefore, we assume that 
the initial field is perfect here. It has been mentioned that 
model error typically varies with time, and this error is de-
noted as R. According to the results of D’Andrea and Vau-
tard [15], R can be divided into three parts: 

 ( ) ,R R R R  u  (3.2) 

where R  is the time-invariant part, i.e., the system error of 
the model, R(u) is the model error associated with the state 
vector u, and R′ is the time-varying part independent of u 
that is usually taken as the uncertainty caused by stochastic 
process. It is reasonable to believe that the COF method, 
due to its time-invariant characteristic, can easily reduce the 
system error, i.e., the time-invariant part of model error. In 
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this paper, we focus on the role of COF in reducing model 
errors related to the state vector or/and time-varying sto-
chastic errors.  

3.1  Cases of model errors dependent on the state vari-
ables 

To study the role of the COF in improving forecast capabil-
ities, the forecast results should be compared with observa-
tional data. For this section, we choose the well-known Lo-
renz 63 model to clarify the role of the COF in offsetting 
model error. The so-called observational data are obtained 
by running the Lorenz 63 model, and are “ideal”. To deter-
mine the difference between the model predictions and ob-
servations, we use model (3.3) to forecast the “observa-
tions” produced by model (3.1). 
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The difference between the forecast model and the Lo-
renz 63 model lies in the parameter r, which is equal to 28 
in the Lorenz 63 model but has a value of 29 in the forecast 
model (3.3). In this manner, the uncertainty of r yields the  

model error. We note that the state variable x is multiplied 
by r. Therefore, the model error induced by the uncertainty 
superimposed on r is time-varying during the numerical 
integration due to the interaction between the parameter 
error and state variable x. Therefore, the model error in-
duced by the uncertainty of the parameter r corresponds to 
the model error associated with state variables, i.e., R(u), 
which is described in eq. (3.2). 

Using the fourth-order Rung-Kutta scheme to discretize 
models (3.1) and (3.3) and integrate them from t=0 to t=5 
with initial values x0=12, y0=2, z0=9 and time step dt=0.01, 
we obtain the “observations” and forecast results of model 
(3.3), respectively (Figure 1). Note that the initial value of 
the forecast model is the same as the initial "observations". 
That is, the initial field of the forecast model is accurate, 
and we only consider the effect of the model error in the 
numerical experiment. 

Figure 1 shows that the prediction error caused by the 
model error is relatively small in the forecast time period (t
≤0.5) but gradually becomes large after t=0.6. Moreover, 
the prediction error increases with time, and when 3≤t≤
3.5, the forecasted state and the “observed” one are in the 
opposite phase; thus, the forecast results become useless. 
Therefore, to obtain more useful forecast results, we must 
attempt to improve the forecast model. Here, we use the 
COF method to correct the model and improve the forecast 
capability of the model. 

 

 
Figure 1  Ideal observations based on Lorenz 63 model (full lines) and forecast results from model (3.3) (dashed lines). x, y, z the state variables of Lorenz 
model. 
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The objective of the COF method is to add a proper con-
stant forcing to the forecast model (3.3), as shown in Eqs. 
(3.4). The time interval [0, 1] is chosen as the optimization 
time interval to compute the COF, and the time intervals [1, 
2] are set as the forecast period. Specifically, we use the 
known “observations” during [0, 1] to obtain the COF and 
then use the COF to correct the original model to forecast 
the state vector (x, y, z) during [1, 2]. 
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Taking T=1.0 as the optimization time and using the 
“observations” during [0, 1], we compute the COF via the 
L-BFGS method according to Eqs. (1.6) and (1.7) in section 
2. This computation shows that the COF of model (3.3) is  
f *=(f1, f2, f3)=(2.8951, 3.0356, 2.9088)T. By superimposing 
it to the eqs. (3.4), we obtain the corrected model. We then 
use the corrected model to forecast the state variables dur-
ing [1, 2] (Figure 2). As shown in Figure 2, the results of the 
corrected model coincide better with the “observations” 
within both the optimization time window [0, 1] and the  

forecast time window [1, 2], whereas those of the original 
forecast model (3.3) deviate significantly from the "obser-
vations" over time (Figure 3). 

Figure 3 shows the growth of the prediction errors of the 
original forecast model and the corrected model. Here, the 
norm used to measure the prediction errors is the L2 norm, 

i.e., 2 2 2
iE x y z      with x′, y′, z′ representing the 

prediction errors of the variables, where i=1, 2 correspond 
to the original forecast model (3.3) and the corrected model 
(3.4), respectively. In other words, E1 is the prediction error 
of the original model, and E2 is the prediction error of the 
corrected model. It can be shown that over the entire time 
interval [0, 2], the prediction error of the corrected model is 
far less than that of the original model, which indicates that 
the model forecast capability is significantly improved by 
the COF approach. Therefore, by superimposing the COF 
calculated from the given “observations” on the forecast 
model, we obtain much better forecast results within both 
the optimization and forecast time windows. 

3.2  Cases of model errors associated with stochastic 
process 

Climate observations typically include the influence of sto- 
chastic processes, whereas forecast models often fail to de-  

 

 

Figure 2  Ideal observations based on Lorenz 63 model (full lines), forecast results from model (3.3) (dashed lines) and from the corrected model (dotted 
lines). x, y, z the state variables of Lorenz model. 
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Figure 3  Error growth of model (3.3) (full line) and the corrected model 
(dashed line). 

scribe such processes; as a result, time-dependent random 
errors are consistently present in the models. This section 
discusses the influence of the COF in reducing the effect of 
the random errors. To reflect the observation with random 
processes, we superimpose random terms onto the Lorenz 
63 model and obtain eqs. (3.5) to generate the “observa-
tions”. Model (3.1) is then used to forecast these “observa-
tions”: 
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 (3.5) 

where R1(t), R2(t), R3(t) represent random noises of a Gaussi-
an distribution with an amplitude given in refs. [2, 4]. 

Based on eqs. (3.1) and (3.5), it is evident that the model 
error of the Lorenz 63 model is attributed to the fact that the 
Lorenz 63 model fails to account for stochastic processes in 
eqs. (3.5). Clearly, this type of model error is time-varying 
and corresponds to the random error denoted as R′ in eq. 
(3.2). Therefore, one can ask whether the COF can offset 
the effect of such random errors on forecast results. 

We use a fourth-order Rung-Kutta scheme to discretize 
eqs. (3.1) and (3.5) and integrate them from initial time 0 to 
the future time point 5 with initial values x0=12, y0=12, z0=9. 
Subsequently, the “observations” and the forecast results 
corresponding to these observations are obtained. Due to the 
impact of random error, the forecast results generated by the 
Lorenz 63 model are significantly different from the obser-
vations (figures are omitted). Next, we use the COF to re-
vise the model and explore whether it can improve the 

forecast capability. 
The time interval used to compute the COF is taken as [0, 

1], and the prediction period is the time interval [1, 2]; i.e., 
we assume that the “observations” during [0, 1] are known, 
and we can use these “observations” to compute the COF of 
the Lorenz 63 model. According to the computation, we 
obtain the corresponding COF 1 2 3( , , )f f f f = (2.8951,   

3.0356,  2.9088)T. By superimposing this COF onto the 
Lorenz 63 model, we obtain the corrected model, which is 
used to forecast the state of the variables during [1, 2] (Fig-
ure 4). As shown in Figure 4, the difference between the 
forecast results generated by the corrected model and the 
“observations” are extremely small within both the optimi-
zation and the forecast time windows; however, there are 
significant differences between the forecast results generat-
ed by the original model and the “observations”. 

Figure 5 shows the growth of the prediction error of the 
original and corrected Lorenz 63 models. These results in-
dicate that during the entire time interval [0, 2], the predic-
tion errors of the modified model are approximately zero, 
whereas those of the original Lorenz 63 model are relatively 
large. All these results indicate that the forecast capability 
of the model is improved by adding a COF to the forecast 
model, and the time-varying random model error is almost 
eliminated by the COF during the time interval of investiga-
tion. 

3.3  Cases of the hybrid model errors of parameter and 
random errors 

In sections 3.1 and 3.2, we have shown that when model 
error is caused only by parameter error associated with the 
state variables or only by stochastic process, the COF ap-
proach is effective at reducing the model error and improv-
ing the forecast capability. However, in realistic predictions, 
these two types of errors often exist simultaneously in a 
numerical model, and the interaction between these errors 
also significantly influences the uncertainty of the forecast 
results. Therefore, we seek to determine the extent to which 
the COF can offset the model errors caused by these two 
types of error as well as their interaction. 

We use the model (3.5) to generate the “observations”, as 
in section 3.2, and the following model (3.6) is used to 
forecast the observations: 
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By comparing model (3.6) with model (3.5), we find that 
model (3.6) not only fails to describe the model errors 
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Figure 4  Ideal observations based on model (3.5) (full lines), forecast results from model (3.1) (dashed lines) and from the corrected model (dotted lines). x, 
y, z the state variables of Lorenz model. 

 

Figure 5  Error growth of model (3.1) (full line)and the corrected model 
(dashed line). 

caused by the random error, but also fails to describe those 
caused by the parameter errors. The parameter r

 
is equal 

to 29 in the forecast model (3.6), which is different from 
that in model (3.5), and this difference induces the model 
errors. 

The COF method is again used to correct the forecast 
model. As in sections 3.1 and 3.2, the time interval to com-

pute COF is taken as [0, 1], and the time interval of the 
forecast period is [1, 2]. We then use the “observations” 
generated by eqs. (3.5) to compute the COF of the forecast 
model (3.6). The computation shows that the COF of model 

(3.6) is * T
1 2 3( , , ) ( 1.6297,7.0150,5.2176) .f f f  f  By 

superimposing this model perturbation onto model (3.6), we 
obtain the corrected model and use it to forecast the state of 
the physical variables during the time interval [1, 2]. 

Figure 6 shows the forecast results of state variables (x, y, 
z) obtained by the original forecast model (3.6) and the cor-
rected model. It is clear that the forecast results of the cor-
rected model are in much better agreement with the “obser-
vations” than those of the original model (3.6) during [0, 2]. 
In particular, the prediction error of the corrected model is 
approximately zero at the optimization time T=1.0. Figure 7 
shows the growth of the prediction error of the original 
model (3.6) and the corrected model. It is readily apparent 
that, over the entire time interval of [0, 2], the prediction 
error of the original forecast model (3.6) is significantly 
reduced by superimposing the COF onto the model. These 
results indicate that when both parameter error and random 
error exist in the forecast model, the COF approach remains 
an effective mechanism to correct the model and improve 
the forecast capability. 

It should be noted that when both parameter error and 
random error simultaneously exist in the forecast model, the  
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Figure 6  Idea observations based on model (3.5) (full lines), forecast results from model (3.6) (dashed lines) and from the corrected model (dotted lines). x, 
y, z the state variables of Lorenz model. 

 
Figure 7  Error growth of model (3.6) (full line) and the corrected model 
(dashed line). 

improvement of the model by the COF is not as evident as 
in sections 3.1 and 3.2, where only parameter or random 
errors are considered. In addition, in the numerical experi-
ments, we also find that when only random error is present, 
the COFs computed at different optimization time intervals 
do not show large differences from one another, which im-
plies that the COF may be effective for a relatively longer 

time interval of predictions in reducing the model errors and 
improving the forecast capability when there is only random 
error present. However, when both parameter error and 
random error simultaneously exist in the forecast model, the 
COFs computed at different optimization time intervals are 
significantly different. In other words, for the COF of a 
given time interval, the COF works well in reducing the 
model error and improving the forecast capability only for a 
relatively shorter time interval of predictions. This effect 
reflects the complexity of the interaction of different types 
of model errors. In addition, the limitation of the COF indi-
cates that it is difficult for one COF to eliminate the multi-
ple sources of model errors. Regardless, we are encouraged 
by the above results, and the COF approach can be used to 
offset certain types of model errors and improve the forecast 
capability to a certain extent. The COF method could be an 
effective approach that is worth attempting for correcting 
models and improving forecast capabilities.  

4  Discussion and summary 

To explore the role of the COF method in correcting fore-
cast models, we derived the gradient formula of the objec-
tive function with respect to model perturbation using the 
adjoint model and then applied this gradient information to 
compute the COFs of numerical models. Using the Lorenz 
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63 model as an example, we numerically studied the role of 
the COF in eliminating different types of model errors. First, 
we studied the case in which the forecast model only con-
siders parameter errors associated with state variables. The 
results show that the COF can offset the effect of such 
model error and thus improve the forecast capability. Se-
cond, we explored the case in which the forecast model fails 
to account for the time-dependent random processes of ob-
servational data. In this case, the COF offsets the impact of 
model error caused by stochastic process and improves the 
model forecast capability over a longer time than in the 
former case. Finally, we considered a more realistic case 
where the model errors are caused by both stochastic pro-
cess and parameter uncertainties and their interactions. In 
this case, the COF method is also very effective in reducing 
model errors. In summary, we demonstrate that although 
model errors generated by physical process typical vary 
with time, their effect on forecast results can be effectively 
reduced by adding a COF to the model. Therefore, the COF 
method may have a great potential in correcting forecast 
models and improving the forecast capabilities. 

For the model errors caused by parameter errors in sec-
tion 3.1, we assumed that parameter errors are only derived 
from parameter r and that the other two parameters are ac-
curate. In numerical experiments, we also explored the situ-
ation in which the errors occur in any other parameter or 
even in multiple parameters. Furthermore, for different 
magnitudes of errors in various parameters, we also per-
formed numerical experiments and demonstrated similar 
results. Based on these findings, the COF method is an ef-
fective approach for reducing model errors and improving 
forecast capabilities. For the sake of simplicity, we did not 
describe the results of every possible scenario in this paper, 
and only presented the case of errors occurring in the pa-
rameter r. In addition, for the parameter errors in the nu-
merical model, we can also directly optimize the parameters 
to improve the model forecast capability [22]. However, the 
computation necessary for parameter optimization is more 
complicated than for the COF, and thus, its application 
much more difficult in complex forecast models. 

In computing the COF in this paper, the purpose is to 
produce forecast results that are most similar to the “obser-
vations” at a given optimization time; therefore, the objec-
tive function presented here only measures the magnitude of 
the prediction error at a given time point. In practical appli-
cations, we can define a more reasonable objective function 
by obtaining forecast results that are most similar to several 
“observations” at several time points within the optimiza-
tion time window. 

To explain theoretically the role of the COF in improving 
the model forecast capability, we adopted a conceptual 
model, i.e., the Lorenz 63 model, to generate “observations” 
or to act as forecast model. Although this model is simple, 
the results produced here are encouraging and instructive. In 
future studies, we will attempt to adopt more realistic fore-
cast models, such as the three-layer baroclinic quasi-   

geostrophic model, the Zebiak-Cane model, the MM5 mod-
el, and the GCM models, to explore the role of COF in cor-
recting models and improving forecast capabilities. It is 
expected that the COF method will be an effective approach 
for improving model forecast capabilities in a realistic 
weather or climate predictions. 
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