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Conditions under which CNOP sensitivity is valid for tropical
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To determine whether profound improvements in tropical cyclone (TC) forecasting
are achievable by deploying dropwindsondes according to conditional nonlinear
optimal perturbation (CNOP) sensitivity, observing system simulated experiments
(OSSEs) were conducted on 20 TCs that developed over the western North Pacific
during 2010 using Mesoscale Model 5 and its 3DVar assimilation system. Of the
20 cases, 13 showed neutral or improved track forecasts of between 0% and 51.2%.
Eliminating initial errors within the CNOP pattern, which are related to either
the storm directly or the surrounding regimes indirectly, reduced the subsequent
track forecast errors. The remaining 7 TCs showed deterioration in the accuracy of
the track forecasts over the 48 h forecast period. Accurate forecasts made without
adaptive observations, a low sensitivity of forecast errors to initial errors, or major
forecast errors associated with regimes other than the TC, can lead to a decline in
the accuracy of TC track forecasts.

Following analysis of the potential causes of inaccuracy in the track forecasts,
we find that TC cases with profound positive effects on track forecasts often satisfy
the following four conditions: (i) an inaccurate initial forecast without additional
observation data; (ii) proper sensitivity of the forecast errors to the initial errors;
(iii) a large proportion of the forecast errors fall within the verification region; and
(iv) the TC system is the dominant regime in the verification region at verification
time. Seven TCs satisfied these four conditions, and showed a mean reduction of
28.75% in track forecast errors over periods of 12–48 h. This result suggests that
the TC cases satisfying these four conditions often show profound improvements
on track forecast by dropwindsondes guided by CNOP sensitivity.
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1. Introduction

Many factors have contributed to recent improvements
in tropical cyclone (TC) track forecasts, including the
use of advanced numerical models, satellite observations,

and adaptive observations obtained by dropwindsondes,
aircrafts, balloons, ships, etc. (Aberson, 2002, 2003).
Dropwindsondes are an important tool for the collection of
adaptive observational data, and increasing numbers have
been released in data-sparse TC environments and inner
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cores since 1982 (Burpee et al., 1996), yielding significant
improvements in numerical track forecasts. Reductions of
10–15% in Global Forecast System (GFS) TC track forecast
errors were achieved by the synoptic surveillance missions
of TCs over the Atlantic (Aberson, 2010). In addition,
the Dropwindsonde Observations for Typhoon Surveillance
near the Taiwan Region (DOTSTAR) project began in the
Pacific in 2003 (Wu et al., 2005, 2007), and statistical results
from DOTSTAR (2003–2009) show that assimilation of
dropwindsonde data leads to improvements of 60% of the
cases in 1- to 5-day track forecasts, and 10–20% reductions
in mean track error, with at least a 90% confidence level
(Chou et al., 2011).

Previous studies have also confirmed the beneficial
effects of adaptive observations on TC track forecasts
(Elsberry and Harr, 2008; Harnisch and Weissmann,
2010; Weissmann et al., 2010, 2012), and show that these
benefits are dependent upon the correct identification of
the most appropriate regions (sensitive regions) for each
adaptive observation mission. Among the methods used
to identify these sensitive regions, the singular vectors
(SVs; Palmer et al., 1998) and ensemble transform Kalman
filter (ETKF; Bishop et al., 2001) are widely used. The SV
method accounts for the analysis error statistics of the
routine observational network by identifying structures
that linearly evolve into the leading eigenvectors of the
forecast error covariance matrix associated with the routine
observational network and the localized verification region
(Ehrendorfer and Tribbia, 1997). The ETKF technique is
used to quantitatively estimate the reduction of the forecast
error variance of each distinct deployment of observational
resources by constructing ensemble-based approximations
to the prediction error covariance matrices associated with
rankings of different possible deployments of observational
resources. Both methods have advantages and limits. ETKF
can quantitatively estimate the impacts of specific adaptive
observational networks concerning the verification regions
based on the prediction error statistics, but makes greater
demands on the ensemble sample, while SVs emphasize the
dynamics of initial errors, but assume their linear evolution,
a factor that cannot be ignored in ETKF either.

However, the motion of the atmosphere and oceans is
dominated by complicated nonlinear systems, especially
as the observation period increases. Hence, based on the
SV principles, Mu et al.(2003) and Mu and Zhang (2006)
proposed the conditional nonlinear optimal perturbation
(CNOP) approach. CNOP is the initial perturbation whose
nonlinear evolution attains the maximum of the cost
function, which is constructed according to the physical
problems of interest with physical constraint conditions.
Similar to SVs, CNOP has been used to identify sensitive
regions in the forecast of heavy rain and typhoons (Mu et al.,
2009; Wang and Tan, 2009; Chen, 2011; Chen and Mu, 2012;
Qin and Mu, 2011a, 2011b; Wang et al., 2011; Zhou and Mu,
2011, 2012a, 2012b). Qin and Mu (2011b) used the observing
system simulation experiments (OSSEs) to study the effects
of CNOP and SV sensitivities on TC track forecasts. They
found an improvement in forecast accuracy in six of seven
cases, with the degree of improvement being between 13%
and 46% in the CNOP-sensitive regions, and 14–25% in
the leading five SV-sensitive regions, which demonstrates
the effectiveness of CNOP sensitivity in reducing TC track
forecast errors. These previous findings support the use

of CNOPs in future research into the use of adaptive
observations in TC forecasting.

Nevertheless, improvements in TC track forecasts based
on adaptive observations have not been universal. Field
experiments conducted in the Atlantic and Pacific oceans
(Langland et al., 1999) showed that the forecast accuracy
in 20–30% of the cases studied was either unaffected
or declined following the assimilation of the additional
data. These findings are in line with the statistical
results of DOTSTAR from 2003 to 2009; i.e. only minor
improvements, or even deteriorations, occurred in nearly
one third of the TC cases where dropwindsonde data were
incorporated into the TC track forecasts (Chou et al., 2011).
That is to say, majority of the TC cases can benefit from
adaptive observations, while the others cannot. Therefore,
are there some common characteristics among those cases
with profound track forecast improvements? This is the
motivation for the present study.

This question is addressed by analyzing the impacts of
CNOP sensitivity on the TC track forecasts of 20 cases that
originated in the western North Pacific during the 2010
season, with the aim of providing a theoretical reference for
future operational decisions regarding the appropriateness
of adaptive observation missions. The remainder of this
paper is organized as follows. Section 2 describes the CNOP
adaptive observation methods used in this study and section
3 presents the strategy. Section 4 describes the TC events
studied, and then considers the OSSE results and details
the conditions required to lead to profound benefits from
the use of adaptive observations based on CNOP sensitivity.
Finally, the conclusions and discussion are presented in
section 5.

2. Conditional nonlinear optimal perturbations

CNOPs, which represent the largest-growing perturbations
in a nonlinear sense, have been used in the predictability
of ENSO events (Duan et al., 2004, 2009; Mu et al., 2007;
Yu et al., 2009, 2012a, 2012b; Duan and Luo, 2010), the
thermohaline circulation (Mu et al., 2004; Sun et al., 2005),
blocking events (Jiang and Wang, 2010; Jiang et al., 2011;
Mu and Jiang, 2011), cold vortex (Jiang and Wang, 2011),
and simulation and predictability of ecosystem (Sun and
Mu, 2009, 2011, 2012; Sun et al., 2010).

Consider a nonlinear model M acting on a state vector
X, such that Xt = M(X0), where the subscript refers
to the integration time. Let δX0 and δXt represent the
initial and final perturbation states, respectively, such that
Xt + δXt = M(X0 + δX0). For a chosen norm || · ||, an
initial perturbation δX∗

0 of δX0 is called the CNOP if, and
only if

max
J(δX∗

0 ) = ||δX0||≤β ||M(X0 + δX0) − M(X0)|| (1)

where ||δX0|| ≤ β is the initial constraint defined by the
chosen norm || · ||, which could reflect some physical laws
that the initial perturbation should satisfy. The norm || · ||
also measures the evolution of the perturbations in this
study.

CNOP is the initial perturbation whose nonlinear
evolution attains the maximal value of the cost function
J at time t (Mu et al., 2003; Mu and Zhang, 2006). In
predictability studies, CNOP represents the initial error
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that has the worst effect on the prediction result at the
optimization time (Mu et al., 2003). Therefore, CNOP has
been used to identify the initial error that causes the largest
prediction error for TC events (Mu et al., 2009). That is
to say, the worst forecast would be avoided if the CNOP
is eliminated in the initial analysis. For the MM5 model,
the sensitivities of CNOP to verification and horizontal
resolution were investigated by Zhou and Mu (2011, 2012a).
Based on these studies, in this paper the initial errors
that cause significant forecast errors are identified in an
attempt to reveal the impacts on TC track forecast of CNOP
sensitivity. A local projection operator was acting on the
cost function to ensure that computation was restricted to
the verification region.

To compute CNOP, Eq. (1) must be solved, which
is a maximization optimization problem, but one for
which there is no solver available to calculate it. However,
there are many solvers available to tackle minimization
optimization problems. Therefore, Eq. (1) is converted into
a minimization problem by considering the negative of the
cost function, after which solvers such as Spectral Projected
Gradient 2 (SPG2; Birgin et al., 2001), Sequential Quadratic
Programming (SQP; Powell, 1982), and Limited memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS; Liu and
Nocedal, 1989) etc., can be used to compute the CNOP.
In these solvers, the gradient of the modified cost function
is required, and the adjoint of the corresponding model
is usually used to obtain this gradient. Having calculated
the gradient, running these solvers with initial guesses
can find the minimum of the modified cost function (i.e.
the maximum of the cost function in Eq. (1)) along the
descendent direction of the gradient. In phase space, the
point corresponding to the minimum of the modified cost
function is the CNOP defined by Eq. (1). In this paper,
the SPG2 solvers were used to obtain the CNOP of the
MM5 model. If several initial guesses exist that converge to
a point in the phase space, this point can be considered as
a minimum in a neighbourhood. Thus several such points
are obtained. Of these points, the one that makes the cost
function in Eq. (1) the largest is regarded as the CNOP.

3. Strategy

The CNOP employed in this study optimized the
perturbation energy growth over a 48 h optimization period
using adjoint models of MM5. The physical parametrizations
used in the simulation include the dry convective
adjustment, grid-resolved large-scale precipitation, the
high-resolution PBL scheme, and the Kuo cumulus
parametrization scheme. The horizontal area covered a
121 × 81 square lattice with a horizontal resolution of
60 km, and 11 vertical levels, with the top level at 50 hPa.
The verification region was approximately a 15◦ × 12◦ box
centred on the forecast central position of the corresponding
TC at 48 h.

In this paper, the total dry energy norm was used to
measure the initial perturbations and their evolution, which
can be expressed as follows:

Gde(δX0) = 1

D

∫
D

∫ 1

0
[u′2

0 + v′2
0 + cp

Tr
T ′2

0

+ RaTr

(
p′

s

pr

)2

]dσds

(2)

where D is the horizontal model region, σ is the vertical
coordinate, cp = 1005.7 J kg−1 K−1, which is the specific
heat at constant pressure, Ra = 287.04 J kg−1 K−1, which is
the dry air constant, pr = 1000 hPa, and Tr = 270 K. δX0

is composed of u′
0, v′

0, T ′
0, and p′

s, which are the perturbed
zonal and meridional wind components, temperature, and
surface pressure, respectively. The integration extends over
the full domain D and the vertical direction σ . In this study,
specific humidity was not considered in the cost function
or in the initial perturbation, but the moisture equation
was included in the model. According to Eq. (2), CNOP
sensitivity comprises those grids with higher perturbation
energy.

After identifying the CNOP sensitivity, OSSEs were
completed in these regions for each individual case to
estimate the impacts of CNOP sensitivity on TC track
forecasts. Generally, three basic components should be
included in OSSEs (Hoffman et al., 1990): a 4D reference
atmosphere, often called the nature run, the purpose of
which is to act as the ‘truth’, a procedure to obtain simulated
observations by sampling the nature run and adding errors,
and a data assimilation system, which comprises a forecast
model and the analysis procedure.

In this study, the truth was taken to be forecasts from
0 to 48 h based on National Centers for Environmental
Prediction (NCEP) reanalysis data, using the MM5 model
and the same resolution and physical parameterizations as
those used for calculating the CNOP aforementioned. The
forecast TC centres were collated every 6 h to represent
the true TC tracks. In order to estimate the statistics of
the OSSE truth run to reality, we compare the simulated
TC centres in OSSE truth run with the best track from the
Joint Typhoon Warning Center (JTWC). We find that the
difference increases monotonically as the forecast period
increases, being 92.4 km at 12 h to 325.9 km at 48 h
averagely for all 20 cases. The simulation within 24 h of the
OSSE truth run has comparative track forecast errors with
those in National Hurricane Center (NHC) for Atlantic
basin tropical storms and hurricanes from 2000 to 2009.
However, the track forecast errors of the OSSE truth run
over 30 h are larger, but not too much larger, than those in
NHC from 2000 to 2009. Generally, the track forecast errors
of the OSSE truth run in this study are acceptable. Forecasts
during the same period with same model and resolution,
using the ERA-Interim reanalysis data from the European
Centre for Medium-Range Weather Forecasts (ECMWF),
were used as the control run. The difference between the
position of the TC centre in the control run and the nature
run was defined as the error in the TC track forecast made
without additional dropwindsonde data, which only come
from using different initial reanalysis data.

After identifying the CNOP-sensitive regions for the
optimization period (0–48 h), 15 simulated dropwind-
sondes were deployed at 0 h over these regions to obtain
observational data, which were the sum of the reanalyses
(interpolated to observational points) of the nature run at
0 h and randomly produced observation errors of the order
of 10−1 of the analysis. The number of the dropwindsondes
is decided by both the range of the sensitive region and
the distance between two neighbour sondes. The simulated
additional dropwindsonde data included horizontal wind
speed, horizontal wind direction, and temperature at 850,
500, and 200 hPa. The 3DVar assimilation system of MM5
was used to assimilate the additional dropwindsonde data
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to produce an analysis at 0 h, which was then run to predict
the locations of the TC centres over the following 48 h.
The difference between these TC centre positions and the
nature run was defined as the TC track forecast error with
dropwindsondes. The difference between these errors, and
those without dropwindsondes, was used to evaluate the
influence of CNOP sensitivity on TC track forecasts.

4. Results

4.1. TC cases

According to the China Meteorological Administration
(CMA), 14 TCs originated in the western North Pacific
during the 2010 season. Of these, Namtheum (No. 201008)
lasted for less than 48 h, which was too short for the
analytical approach used here, and this TC was not included
in the study. During the period between 0000 UTC 29
August to 0000 UTC 2 September, three TCs developed
simultaneously over the western North Pacific: Lionrock
(No. 201006), Kompasu (No. 201007), and Namtheum
(No. 201008). The control run could not simulate the spiral
structure of Kompasu, leading to the exclusion of this event
from the study. A similar simulation problem occurred with
Mindulle (No. 201005), which was also excluded. If the
lifetime of a TC was longer than 96 h, it will be separated
into two continuous cases. Therefore, there are 20 cases
(listed in Table 1) for the 11 TC events.

4.2. CNOP sensitivity and simulated dropping sites

For all 20 cases, the analysis at 0 h in the control run was used
as the basic state from which to calculate CNOPs concerning
the verification region (small rectangle in Figure 1) over the
following 48 h optimization period. For example, consider
the case of CHABA2, where the shaded areas (J kg−1) in
Figure 1 represent the sensitive regions identified by CNOP
according to Eq. (2). Within this region, 15 simulated
dropping sites were identified based on the restriction that
the distance between adjacent sites was appropriate (about
150 km). Comparable figures for the other TCs have been
omitted.

4.3. OSSE results

The simulated observational data were assimilated from
the CNOP-sensitive regions for each TC case, and the
track forecast errors were compared with and without
dropwindsonde data at intervals of 6 h between 12 and 48 h.
The average impact of dropwindsondes on the TC track
forecast for each case is listed in the last column in Table 1,
with negative values indicating an improvement. Neutral or
improved track forecasts of between 0% and 51.2% were
obtained from 13 of the TC cases (bold in Table 1). Of these
13 cases, 9 demonstrated a profound improvement (>10%),
while the other 4 showed neutral or minor effects of between
0 and 4.6%. In contrast, deteriorations in forecast accuracy
of between 7.8% and 72.5% occurred in 7 cases, with an
average of 25.3%, which is a little less than the average
profound improvement (26.3%). This result is in line with
the findings of Chou et al.(2011).

Figure 2 shows the TC track forecast errors, with
and without dropwindsonde data, every 6 h from 12
to 48 h, for each individual case. The points that plot

beneath the diagonal line indicate that the track forecast
errors with dropwindsondes are lower than those without
dropwindsondes. The solid line in each colour represents the
linear best fit of each set of data points of the same colour.
Their slopes indicate the ratio of the track forecast errors
with dropwindsondes to those without dropwindsondes.
The shallower the slope, the larger the magnitude of
improvement; conversely, if the slope is steeper than that of
the diagonal, the use of sonde data results, on average, in a
deterioration of the TC track forecast.

Figure 2(a) displays the results of the cases that
showed profound improvements from the dropwindsondes
deployed in CNOP-sensitive regions. Track forecast errors
without dropwindsondes are evenly distributed between 0
and 400 km, suggesting that inaccurate forecasts were made
without the adaptive observations. After assimilating the
dropwindsonde data, most of the track forecast errors were
reduced, which is highlighted by the concentration of data
points in the lower right of the plot. Eight linear best-fit
lines have shallower slopes than the diagonal line, indicating
large-magnitude improvements in these cases. Compared
with the cases with profound improvements, Figure 2(c)
shows a totally different situation associated with the TCs
for which the forecast became less accurate. Most of the
points are grouped to the lower left corner of the plot,
suggesting comparatively small track forecast errors made
without the additional dropwindsonde data. Additionally,
most of the points are above the diagonal line, which,
together with the steeper slopes of the linear best-fit lines,
confirms that the adaptive observations produced a less
accurate forecast in these cases. The plot of the other four
cases with neutral or minor improvements (Figure 2(b))
displays a transition between the previous two situations.
Track forecast errors without dropwindsondes are typically
less than 300 km, and the linear best-fit lines have a similar
slope to the diagonal line. Neither indicates a pronounced
degree of improvement.

As two examples of cases with profound improvements,
detail for CHABA2 and Lionrock1 (Figure 3(a), (b)) shows
that track forecast errors were reduced on average by 41.8%
and 23.1%, respectively, after assimilating dropwindsonde
data from CNOP-sensitive regions. For CHABA2, the CNOP
sensitivity was along the forecast track between 0000 UTC
27 October and 0000 UTC 29 October in the control run
(Figure 3(a1)). The forecast errors at 48 h are shown in
Figure 3(a2). It is clear that the order of the energy at
48 h was much larger than that at 0 h, with an increase of
approximately 638 times. This indicates that the forecast
errors were sensitive to the initial error in this case.
Therefore, if the order of initial errors is small, there
would be a comparatively large order of forecast errors
in the model region over a 48 h period. Moreover, most
of the forecast errors were concentrated in the verification
region, accounting for 51.68% of the error over the entire
model region. This indicates that the forecast errors caused
by CNOP were mainly within the verification region, and
associated with the TC regime (concentrated around the TC
central position at terminal time). That is to say, eliminating
the initial errors associated with the CNOP pattern can
directly reduce the forecast errors associated with the TC
regime, rather than with other systems within the verification
region.

The results from Lionrock1 were somewhat different
from those from CHABA2. During the 48 h forecast
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Table 1. 11 TCs originated in the western North Pacific during the 2010 season numbered (second column) according to the China Meteorological
Administration (CMA).

Case No. Initial time Terminal time Impacts

OMAIS 201001 2010032406 2010032606 −51.20%
CONSON1 201002 2010071218 2010071418 21%
CONSON2 2010071418 2010071618 −1.48%
Chanthu 201003 2010072006 2010072206 7.77%
Dianmu 201004 2010080812 2010081012 9.49%
Lionrock1 201006 2010082900 2010083100 −23.11%
Lionrock2 2010083100 2010090200 −12.16%
Malou1 201009 2010090306 2010090506 13.27%
Malou2 2010090506 2010090706 15.60%
Meranti 201010 2010090800 2010091000 −22.66%
Fanapi1 201011 2010091606 2010091806 −16.46%
Fanapi2 2010091806 2010092006 0
Malakas1 201012 2010092106 2010092306 −0.45%
Malakas2 2010092306 2010092506 −4.63%
MEGI1 201013 2010101500 2010101700 72.52%

%%
MEGI2 2010101700 2010101900 −13.59%
MEGI3 2010101900 2010102100 −20.14%
MEGI4 2010102100 2010102300 36.99%
CHABA1 201014 2010102500 2010102700 −35.45%
CHABA2 2010102700 2010102900 −41.77%

48 h optimization period from initial time (‘2010032406’ means 0600 UTC 24 March 2010, same below) up to terminal time for each case is shown in
the third and forth columns, respectively. If the lifetime of a TC was longer than 96 h, it was separated into two continuous cases (as CONSON1 and
CONSON2). The average impacts of dropwindsonde data in CNOP sensitivity on TC track forecast is displayed in the last column, with negative values
indicating track forecast reduction. The corresponding TC cases with neutral or track forecast improvement are in bold type.

Figure 1. Sensitive regions (shaded; J kg−1) calculated by CNOP in the small rectangle over 48 h optimization period for case CHABA2; squares represent
the simulated sites for dropping sondes.

period, Lionrock1 remained a tropical depression, and was
a comparatively weak system in the background. It was
noticeable that the sensitive regions did not surround the
TC centre position at 0 h, which was near Taiwan Island.
The corresponding forecast errors at the end of the 48 h
period (Figure 3(b2)) showed an increase of about 417 times
compared with the initial errors, and were distributed into
three parts, only 34.31% of which fell within the verification
region. The western section was west of 100◦E, the middle
section was between 100◦E and 115◦E, and the eastern area
was around Shanghai. These three areas of perturbation
energy corresponded to different regimes. The centre of
the South Asia high (located at 200 hPa) was over the
western section (Figure 4(b)), which was the largest and most
stable circulation regime during the northern summer. The
situation in the middle section was more complicated. At
the upper level, the easterly extension of the South Asia high
controlled this region (Figure 4(b)), while at lower levels
two different regimes contended with each other: a small,

local anticyclone in the north, and a ridge over the South
Asia continent (Figure 4(a)). Due to the topographic impact
of Taiwan Island, a local cyclone formed near Shanghai.
The main forecast errors were associated with these regimes
rather than Lionrock1, and the subsequent development
of Lionrock1 was, inevitably, jointly affected by the above
regimes. The South Asia high controlled the upper level and
western section, preventing the storm developing into a deep
system, while the steering flow from both the system ahead
of the ridge over South Asia, and the local anticyclone to the
north, together pushed the storm east, where its progress
was restricted within a small area near Taiwan Island. Hence
eliminating initial errors with the CNOP pattern reduced
forecast errors associated with the other systems, the steering
flow of which in turn led to a more accurate track prediction
of Lionrock1. This suggests that in this case the improved
forecast accuracy was not due to the direct reduction of
forecast errors associated with the storm itself, but to a
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(a)

(b)

(c)

Figure 2. Scatter-plots of track forecast errors for each TC. The y-axis
represents the errors associated with the track forecast made using
additional dropwindsonde data, and the x-axis represents those made
with no additional data. (a), (b), and (c) show those cases with profound
improvements (above 10%), neutral or minor improvements, and a decline
in the forecast accuracy, respectively.

more accurate estimation of the environmental systems that
steered the subsequent movement of the TC.

Malakas1 was representative of a neutral impact on track
forecast accuracy (see Figure 3(c3)), and developed from
a tropical depression to a severe tropical storm. Most
of the initial errors associated with the CNOP pattern
(Figure 3(c1)) were located southwest of the storm with
respect to its direction of movement. According to the
streamlines at 500 hPa (Figure 4d) at 0 h, Malakas1 was
southwest of the saddle between two subtropical highs (one
over the central Pacific, the other over the western Pacific),
and the regions with large initial errors corresponded to an
inflow south of the storm from lower (925 hPa, Figure 4(c))
to mid levels (500 hPa, Figure 4(d)). This suggests that the
initial errors related to the inflow from these areas would lead
to the most forecast errors within the verification region.
Over the following 48 h period, the errors increased 125
times to those at the initial time, which was comparatively
smaller than in the previous two cases. With a comparable
order of initial errors, the development of forecast errors for
Malakas1 did not reach the magnitude of the other two cases.

This indicates that the forecast errors were not so dependent
on the initial errors in this case, suggesting that other factors
(such as model errors) were probably primarily responsible
for the forecast errors. This may explain why assimilating
additional observational data resulted in a nearly neutral
impact on track forecast accuracy in this case, even though
about 71.82% of the forecast errors were concentrated in
the verification region and were associated with the storm
regime.

These results illustrate that the reasons for improvements
in forecast accuracy in each case were different, even though
13 of the 20 cases showed a neutral or improvement of
between 0% and 51.2% from the deployment of sondes in
the CNOP sensitive regions. Directly reducing initial errors
associated with the case itself can lead to a more accurate
forecast of the TC track, such as in the case of CHABA2,
while reducing initial errors associated with nearby regimes
around a TC may generate useful data regarding the
steering flow, which can further improve the forecast of the
subsequent movement of the storm, such as for Lionrock1.
Except for cases with profound improvements, neutral or
minor improvements were shown by four cases; e.g., for
Malakas1, the initial errors were not the principal factor
responsible for forecast errors at terminal time, suggesting
that model errors, or other factors, should be improved in
an attempt to generate a more accurate forecast.

Similarly, MEGI1 was selected as an example of a case
in which there was a decline in forecast accuracy. This
storm developed into a typhoon from a tropical storm
over the 48 h period, and showed the largest decrease in
forecast accuracy, with an average increase in track forecast
errors of 72.52% (Figure 3(d3)). The track forecast error
without dropwindsonde data, averaged over 48 h, was nearly
60 km, which might reasonably be considered to be a near
perfect prediction. After assimilation of the sonde data, track
forecast errors approximately doubled (104 km) as before.
Initial errors with respect to the CNOP pattern are shown
in Figure 3(d1). The main areas of perturbation energy
were located south of 5◦N. Meanwhile, there was a cyclone
over the South Asia continent (not shown), uncertainty
regarding which led to large forecast errors there over the
48 h period (Figure 3(d2)). Other forecast errors were
concentrated in South China, which was also outside of the
verification region. In addition, compared with the initial
errors, forecast errors at the terminal time increased by
only 9 times, indicating that initial errors did not lead to
considerable forecast errors in this case. It is inferred that
model errors, or some other reasons, caused the larger
forecast errors, or that the simulation was robust, and large
forecast errors could not occur in this case.

Examining all 7 cases that experienced a decline in forecast
accuracy suggests a number of possible causes for this,
including the sensitivity of forecast errors to system errors
rather than initial errors, TC regimes being too weak to be
dominant in the verification region, other strong regimes
outside the verification region dominated the main forecast
errors, or very accurate track forecasts made before the
assimilation of the dropwindsonde data.

4.4. Conditions leading to improvements

Having estimated the impact of CNOP sensitivity on TC
track forecasts, further analysis was performed on those
TCs where the accuracy of the forecast either improved or

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 1544–1554 (2013)



1550 X. Qin et al.

(a1) (a3)(a2)

(b1) (b2) (b3)

(c1) (c3)(c2)

(d1) (d3)(d2)

Figure 3. (1) CNOP sensitivity (shaded; J kg−1), (2) corresponding forecast errors (shaded; J kg−1) at terminal time (48 h), and (3) track forecast errors
(km) from 12 to 48 h for TCs (a) CHABA2, (b) Lionrock1, (c) Malakas1, and (d) MEGI1.

(a)

(c)

(b)

(d)

Figure 4. Streamlines at terminal time (48 h) at (a) 850 hPa and (b) 200 hPa for Lionrock1, and at initial time (0 h) at (c) 925 hPa and (d) 500 hPa for
Malakas1.

declined. It was found that the TC cases where the track
forecast errors could be reduced profoundly by dropping
sondes according to CNOP sensitivity often satisfy following
four conditions:

(i) The errors associated with the track forecast made
without additional dropwindsonde data were not too
small to distinguish.

(ii) The track forecast errors were properly sensitive to
the initial errors.

(iii) The forecast errors in the verification region account
for a large proportion of the errors across the whole
model region.

(iv) The TC is the main atmospheric regime within the
verification region.

These four points will be considered in more detail below.
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With respect to the first condition, it is well known that
adaptive observations are unnecessary for accurate forecasts.
Generally, the average track forecast errors should be larger
than the horizontal resolution. Otherwise, improvements
are not obvious even if positive effects are obtained from
the adaptive observations. However, under operational
conditions, it is not possible to determine the track
forecast errors without dropwindsonde data before the
real observational data are obtained. In this case, track
forecast differences between several predictions based on
different models or different initial analyses can be used as
an alternative reference.

The second condition emphasizes the importance of
initial errors to adaptive observations, the principle of which
is to improve the initial analysis by collecting additional
observations. The evolution of these initial errors over a
period should be obvious for a given constraint of initial
errors (βin Eq. (1)). Taking CHABA2 as an example, the
forecast errors at terminal time due to initial errors within the
CNOP pattern increased approximately 638 times compared
with those at the initial time. Conversely, the increase was
only 9 times for MEGI1. That is to say, given initial errors
with the same values, the initial errors caused much greater
forecast errors for CHABA2 than for MEGI1, assuming
that the model was perfect. This indicates that the forecast
errors were much more sensitive in the former than the
latter. Nevertheless, forecast errors cannot be too sensitive
to initial errors. In this case (such as Malakas2), assimilation
of dropwindsonde data with observational errors would
cause only a small difference in initial analysis, which would
in turn lead to very large forecast errors at terminal time.

The third condition guarantees that forecast errors are
concentrated in the regions of interest. Only under this
premise can adaptive observations reduce forecast errors
within the verification region. Dianmu and MEGI1 are
two cases in which this condition was not met, as forecast
errors caused by initial errors of the CNOP pattern in
the verification region only occupied 5.35% and 10.05%,
respectively, of the total errors over the whole model region.
Hence the areas affected mostly by the CNOP pattern’s
initial errors were outside the verification region. TC track
errors would increase by 9.49% and 72.52%, respectively,
for these two storms if the corresponding initial errors were
eliminated.

The fourth condition must be more strictly applied than
the third. Even if the forecast errors in the verification region
account for a large proportion of the total errors across the
model region, it is possible that the main forecast errors
are caused by regimes other than the TC. Taking Fanapi2
as an example, over the 48 h period the forecast errors
increased nearly 429 times from those at the initial time,
and the forecast errors in the verification region accounted
for 42.32% of the total errors. However, a local atmospheric
regime but not the storm dominated the forecast errors.
Hence dropwindsonde data did not help to reduce the track
forecast errors associated with the TC, or no deterioration
either.

It should be noted that the steering flow plays an
important role in controlling the movement of TCs.
Hence reducing the forecast errors associated with the
surrounding atmospheric conditions can improve the TC
forecast accuracy to some degree. Lionrock1 and Lionrock2
provided examples of this situation. However, the above
criterion is not against the experience actually. Moreover, as a

necessary condition that TC with profoundly improvements
by dropping sondes often satisfies, it is indispensable.

Based upon these four conditions, the 20 TC cases were
divided into three groups (Figure 5). The first comprises
the 7 cases that satisfied all four conditions; the other two
groups contain the rest. The difference between these latter
two groups is that 6 cases showed neutral or improvements in
track forecast after utilizing dropwindsonde data, while the
other 7 showed deterioration. Taking OMAIS (Figure 5(a))
as an example, the shaded areas indicate the forecast errors
caused by the CNOP pattern’s initial errors at terminal time,
from which it is possible to judge whether the TC regime
dominated the forecast errors in the verification region. The
three numbers in the upper left corner of the plot refer to
the first three conditions: 153.71 is the mean (from 12 up to
48 h) track forecast error (km) without dropwindsonde
data, forecast errors at terminal time increased 144.17
times over the 48 h period, and about 62.71% of these
errors were concentrated in the verification region. Bold
numbers indicate that the corresponding condition was not
satisfied. Hence all four conditions can be reflected in one
plot.

For the 7 cases that satisfied all four conditions, it is clear
that the majority of the forecast errors at terminal time was
concentrated in the verification region, and was associated
with the TC regimes (Figure 5(a–g)). On average, the mean
track forecast error from 12 to 48 h was 177 km in these
cases, forecast errors increased 458 times compared with the
initial errors within the CNOP pattern, and 51.8% of the
forecast errors were concentrated in the verification region.
Based upon these conditions, a mean 28.75% reduction
in track forecast errors was obtained after assimilating
dropwindsonde data according to CNOP sensitivity. This
suggests that the TC track forecasts are likely to benefit from
adaptive observations based on CNOP sensitivity if they
satisfy the above four conditions.

For the 6 cases that did not satisfy all four conditions,
but still showed neutral or some improvements in forecast
accuracy, the forecast errors of four of the TCs was not
associated with the TC regime (Figure 5(h–k)), while
Malakas1 and 2 showed different sensitivities of forecast
errors to initial errors: one is not so sensitive (Figure 5(l)); the
other is too sensitive (Figure 5(m)). Generally, these 6 cases
satisfy three of the four conditions. However, the situation
for the cases in which the forecast accuracy fell is different.
A common characteristic is the concentration of forecast
errors outside of the verification area, which breaks the third
condition (i.e. that the majority of the forecast errors should
be associated with the TC regime). In addition, for three TCs
(Figure 5(q), (s), (t)) the original track forecasts (without
the adaptive sonde data) were exceptionally accurate, and
this prevented any further improvements in these cases.

5. Conclusion and discussion

To determine the conditions under which profound
improvements in TC track forecasts can be obtained by
deploying dropwindsondes according to CNOP sensitivity,
OSSEs were performed on 20 TC cases that originated in the
western North Pacific during 2010 to measure the impact
of CNOP sensitivity on track forecast accuracy. Based on
these results, further analysis was conducted to determine
the characteristics of the TC cases that showed profound
improvements in track forecast accuracy. Finally, four
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Figure 5. Forecast errors (shaded; J kg−1) for those cases that satisfied all four conditions (a)–(g), those that did not meet all four conditions but showed
neutral or moderate track forecast improvements (h)–(m), and those that showed a decline in forecast accuracy (n)–(t). Numbers in the upper left
corner of each plot denote the mean track forecast errors (without dropwindsonde data; km) from 12 to 48 h, the scale of the increase in forecast errors
between the initial and terminal times, and the proportion of forecast errors within the verification region. Red numbers indicate that the corresponding
condition was not satisfied.

conditions were defined that are often required to obtain
profound improvements in TC track forecast accuracy from
adaptive observations based on CNOP sensitivity.

Of the 20 TC cases, 13 showed neutral or reductions
in track forecast errors of between 0% and 51.2% when
additional observational data were obtained from the
sensitive regions identified by CNOPs. Eliminating initial
errors, either those directly related to the storm, or
indirectly to the surrounding atmospheric regime at the
time, improved the track forecast accuracy. An average
relative fall in forecast accuracy was seen in the other 7 cases
during the 48 h period. A highly accurate forecast made
without dropwindsonde data, the insensitivity of forecast

errors to initial errors, or a weak TC regime that could not
dominate the main forecast errors over the whole model
region led to a decline in forecast accuracy.

Based upon these OSSE results, the following four
conditions were defined under which adaptive observations
according to CNOP sensitivity have a profound positive
impact on TC track forecasts: (i) the track forecast errors
associated with forecasts made without dropwindsonde data
cannot be ignored; (ii) the forecast errors should be properly
sensitive to the initial errors; (iii) the forecast errors in the
verification region must account for a large proportion of
the total errors from the whole model region; and (iv) the
TC should be the dominant regime within the verification
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region. Seven TC cases satisfied these four conditions, and
showed a 28.75% reduction in the mean track error in the
12–48 h track forecasts.

We expect that the four conditions described above can
be applied to TC forecast. It is therefore necessary to discuss
their applicability. Since the true TC track cannot be known
ahead of time, the first condition is impossible to determine
beforehand; nevertheless, we can use the ensemble variance
as a surrogate to the track forecast errors. The sensitivity
of forecast errors to initial errors shown in the second
condition is also a struggle to determine a priori, which
should be explored in depth in future work. As indicated
in Duan et al.(2012), the initial anomalies of the CNOP
structure are most likely to evolve into an El Niño event;
and such CNOP-induced El Niño events are most sensitive
to initial conditions. This result implies that the forecast
errors of CNOP-induced El Niño events are significantly
sensitive to initial errors (Mu et al., 2007). Along this
thinking, we may investigate what initial anomalous states
are most likely to cause a TC; then the TC induced by such
optimal initial anomalous states could be most sensitive
to initial conditions. In TC forecast, we may observe the
initial anomalous states in advance to roughly estimate
which TC is significantly sensitive to initial conditions.
Such study can also help to determine the third and fourth
conditions. It seems that the third condition is a necessary
consequence of both the first and the fourth conditions,
because the verification region is principally defined by the
TC vortex, and the position of the TC vortex is poorly
forecast. Nevertheless, in some occasions, the TC was the
main atmospheric regime in the verification region, while the
forecast errors in the verification region did not constitute
a large proportion of the total error, such as in the case
of Chanthu, CONSON1, and Fanapi1 (Figure 5). That is
to say, although the TC regime is the main atmospheric
regime within the verification region, it is not strong enough
to dominate in the whole model region. There could be
much stronger atmospheric regimes outside the verification
region which occupy most of the forecast errors. Hence we
still classified four conditions to separate the improved from
degraded forecasts.

Adaptive observation for TCs is still an unresolved prob-
lem, although track forecast has made great improvements
these decades. This study reveals the conditions under which
CNOP sensitivity is valid for TC-adaptive observations and
demonstrates that the TC cases with profound track forecast
improvements by using dropwindsondes often have some
common characteristics. These results encourage us to per-
form adaptive observation according to CNOP sensitivity,
finally improving the forecast skill of TC track. Despite thus,
there are problems, such as how to know a priori which TC
case satisfies the four conditions discussed above, still to be
explored. Furthermore, we note that the present study only
considers the track forecast of TC cases and does not include
the intensity forecast. How to improve the intensity forecast
of the TCs by adaptive observation may also be a challenging
problem. All of these should be further investigated in future
in-depth studies. Nevertheless, it is still expected that the
results from this study can provide useful information for
the TC track forecast.
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