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grow in a manner similar to the behavior of the growth 
phase of La Niña; while for the latter initial error type, they 
experience a process that is similar to El Niño decay and 
transition to a La Niña growth phase. Both two types of ini-
tial errors cause negative prediction errors of Niño-3 SSTA 
for El Niño events. The prediction errors for Niño-3 SSTA 
are mainly due to the contribution of initial sea temperature 
errors in the large-error-related regions in the upper lay-
ers of the eastern tropical Pacific and/or in the lower lay-
ers of the western tropical Pacific. These regions may rep-
resent ‘‘sensitive areas’’ for El Niño–Southern Oscillation 
(ENSO) predictions, thereby providing information for tar-
get observations to improve the forecasting skill of ENSO.

Keywords  El Niño events · Spring predictability barrier · 
Initial errors · Target observation

1  Introduction

El Niño–Southern Oscillation (ENSO) describes the 
extreme sea surface warming events that occur in the east-
ern tropical Pacific Ocean accompanied by large-scale 
atmospheric circulation anomalies (Philander 1983, 1990). 
Although ENSO originates and develops mainly in the 
tropical Pacific, it is capable of bringing climate variabil-
ity to various parts of the globe through teleconnection and 
resulting in serious societal and economic consequences 
(Bjerknes 1969; Ropelewski and Halpert 1987; Hoerling 
et  al. 1997; Trenberth et  al. 1998). Accordingly, we as a 
research community are continually motivated to improve 
the forecasting skill of ENSO.

With the development of ENSO-related theories, 
observing systems and numerical models, there has been 
encouraging progress in our understanding and prediction 
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Community Earth System Model is used to study the 
“spring predictability barrier” (SPB) problem for El Niño 
events from the perspective of initial error growth. By con-
ducting perfect model predictability experiments, we obtain 
two types of initial sea temperature errors, which often 
exhibit obvious season-dependent evolution and cause 
a significant SPB when predicting the onset of El Niño 
events bestriding spring. One type of initial errors pos-
sesses a sea surface temperature anomaly (SSTA) pattern 
with negative anomalies in the central–eastern equatorial 
Pacific, plus a basin-wide dipolar subsurface temperature 
anomaly pattern with negative anomalies in the upper lay-
ers of the eastern equatorial Pacific and positive anomalies 
in the lower layers of the western equatorial Pacific. The 
other type consists of an SSTA component with positive 
anomalies over the southeastern equatorial Pacific, plus a 
large-scale zonal dipole pattern of the subsurface tempera-
ture anomaly with positive anomalies in the upper layers 
of the eastern equatorial Pacific and negative anomalies in 
the lower layers of the central–western equatorial Pacific. 
Both exhibit a La Niña-like evolving mode and cause an 
under-prediction for Niño-3 SSTA of El Niño events. For 
the former initial error type, the resultant prediction errors 
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of ENSO (Wang and Picaut 2004; Wang and Fiedler 
2006), and generally it is skillfully predictable with a 
1-year lead time in hindcast experiments (Chen and Cane 
2008; Jin et al. 2008). However, considerable uncertain-
ties still exist in realistic ENSO predictions; in particular, 
the influence of the so-called “spring predictability bar-
rier” (SPB) for El Niño (Latif et al. 1994, 1998; Kirtman 
et al. 2002; Luo et al. 2005, 2008; Jin et al. 2008). This 
barrier manifests as a sharp drop-off in the monthly per-
sistence of observed oceanic and atmospheric index asso-
ciated with ENSO across boreal spring, and in numeri-
cal prediction models it appears as a sudden decrease (or 
increase) of the anomaly correlation coefficient (ACC) 
(or RMSE: root-mean-square error), regardless of the 
starting month (Webster and Yang 1992; Webster 1995; 
Torrence and Webster 1998; Luo et  al. 2008). From the 
perspective of error growth, a “significant SPB” refers to 
the phenomenon that ENSO forecasting has a large pre-
diction error; and in particular, a prominent error growth 
occurs during boreal spring when the prediction is made 
before and throughout that spring (Mu et  al. 2007a, b; 
Duan et al. 2009; Duan and Wei 2012).

Agreement regarding the cause of the SPB has yet to 
be reached, although considerable efforts have been made 
in studying this phenomenon. Some studies argue that the 
SPB is an intrinsic characteristic of ENSO forecasting. 
Because the signal-to-noise ratio for SST tends to be lowest 
in spring, even additional observations cannot change the 
fact of the low signal in spring (Xue et  al. 1994; Samel-
son and Tziperman 2001). Others, meanwhile, believe 
that the SPB arises from the growth of initial errors. Chen 
et al. (1995, 2004) suggest that ENSO predictions depend 
more on the initial conditions than on unpredictable noise, 
and hence the predictability of ENSO across spring can 
be greatly enhanced through improving the initializa-
tion. Moore and Kleeman (1996) investigated the season-
dependent evolutions of initial errors related to SPB by 
using the linear singular vector (LSV) method, and Xue 
et al. (1997a, b) also applied LSV to ENSO predictability 
studies.

Mu et al. (2007a) demonstrated that the SPB may be a 
result of the combined effect of the climatological annual 
cycle, the El Niño event itself and the initial error pat-
tern. In terms of the third factor, Mu et  al. (2007b) used 
the Zebiak–Cane model (ZC model; Zebiak and Cane 
1987) along with the conditional nonlinear optimal pertur-
bation (CNOP) approach (Mu et  al. 2003) to explore the 
initial errors that cause a significant SPB. Yu et al. (2009, 
2012) further recognized two kinds of CNOP-type initial 
errors, which show a large-scale zonal dipolar pattern for 
the sea surface temperature anomaly (SSTA) component 
and a basin wide deepening or shoaling along the equator 
for the thermocline depth anomaly, and similar CNOP-like 

initial errors also exist in realistic ENSO predictions (Duan 
et al. 2009; Duan and Wei 2012). All these studies attempt 
to reveal the initial error that induces a significant SPB for 
El Niño events most probably, and identify the location 
in which additional observations should be a priority for 
improving the El Niño forecast skill. However, the results 
were obtained from the ZC model, which is an anomaly 
coupled model of intermediate-complexity and only con-
siders the interannual variability of the tropical Pacific. In 
particular, they focused on the SSTA component of the ini-
tial errors and did not consider the role of subsurface tem-
peratures in yielding the SPB, due to the limitation of the 
simplicity of the ZC model.

In fact, subsurface processes play an important role not 
only in the evolution of the ENSO life cycle, but also in 
ENSO predictions. On the one hand, observations show 
that the movement of upper-ocean warm water in the equa-
torial Pacific is closely related to ENSO events. The buildup 
of warm water volume (WWV) in the equatorial Pacific is 
a necessary precondition for the development of ENSO 
(Wyrtki 1975, 1985; Cane et  al. 1986; Zebiak and Cane 
1987; Zebiak 1989; Jin 1997a). Ramesh and Murtugudde 
(2013) stated that subsurface processes can be a fundamen-
tal driver for the onset of ENSO, whereas the SSTA follows 
later, serving as the surface manifestation of the subsurface 
temperature anomaly. Zelle et al. (2004) showed that there 
are two pathways for the thermocline depth anomaly lead-
ing to SST anomalies. One is the local “upwelling path-
way” in which the SSTA is directly related to thermocline 
depth anomalies over the eastern equatorial Pacific, and 
the other “wind coupling pathway” provides a remote cou-
pling through wave dynamics. Moreover, most theoretical 
ENSO oscillator models emphasize the importance of oce-
anic wave propagation processes associated with the upper-
ocean heat content (OHC) anomalies (Suarez and Schopf 
1988; Battisti and Hirst 1989; Weisberg and Wang 1997; 
Picaut et  al. 1997). In particular, Jin (1997a, b) proposed 
that it is the phase lag between the zonal mean thermo-
cline depth over the entire equatorial Pacific and the SST 
anomaly in the eastern Pacific that leads to an oscillation 
of ENSO. Generally, the predictability of ENSO mainly 
comes from the oceanic memory associated with subsur-
face temperature anomalies along the equatorial thermo-
cline (Zebiak 1989). Variations in the equatorial WWV 
anomalies or the heat content anomalies of the equatorial 
Pacific precede ENSO SSTA variability by two to three 
seasons, so that they can serve as reliable predictors of 
Niño-3 SST (Meinen and Mcphaden 2000; Hasegawa and 
Hanawa 2003). Consistent with the phase relationship, 
there is a winter prediction barrier for the WWV (or OHC) 
anomalies, rather than a spring barrier. As a consequence, 
accurate initialization for sea level heights or OHC and cor-
rect prediction of subsurface signals can help to reduce the 
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SPB (Clarke and Van Gorder 2003; Mcphaden 2003; Yu 
and Kao 2007; Luo et al. 2005, 2008).

In the above context, the following questions arise: 
What kinds of initial errors often cause the SPB in a more 
complex earth system model (ESM)? What is the dynami-
cal mechanism responsible for error growth? In particular, 
what is the role of initial subsurface temperature errors in 
the occurrence of SPB? Motivated by these questions, in 
this study we use an ESM to explore the initial errors that 
cause a significant SPB for El Niño events, and suggest a 
possible mechanism responsible for the initial error growth 
by performing perfect model predictability experiments.

The remainder of this paper is organized as follows: 
First, in Sect.  2, we introduce the ESM, followed by the 
experimental strategy in Sect.  3. In Sect.  4, two types of 
initial errors that often yield a significant SPB for El 
Niño forecasts are identified. Then, in Sect. 5, we provide 
dynamical explanations for the season-dependent evolu-
tion of prediction errors caused by the two types of initial 
errors. In Sect. 6, we reveal some implications of the initial 
errors associated with the SPB in terms of target observa-
tions for El Niño events; and then to close, we summarize 
the study and offer further discussion in Sect. 7.

2 � The community earth system model

The model used in this study is the Community Earth Sys-
tem Model (CESM), supported by the National Center for 
Atmospheric Research (NCAR). The CESM, superseding 
its previous version of the Community Climate System 
Model (CCSM4), is a fully-coupled ESM that includes 
ocean, atmosphere, land, sea ice, and land ice compo-
nents, interacting together through a central flux coupler, 
which can provide state-of-the-art simulations of the 
Earth’s past, present and future climate states. The CESM 
uses one of three alternatives as its atmospheric compo-
nent: either the Community Atmosphere Model (CAM), 
the high-top atmosphere Whole Atmosphere Community 
Climate Model (WACCM), or the CAM with chemis-
try (CAM-CHEM) model. The Community Atmosphere 
Model version 4 (CAM4), used in this study, has a finite-
volume (FV) dynamical core with 26 vertical layers. The 
horizontal resolution is 0.9° (longitude) × 1.25° (latitude) 
upon the regular longitude–latitude grid. The model con-
figuration is described in detail in Neale et al. (2012). The 
ocean component is based on the Parallel Ocean Program 
version 2 (POP2) of the Los Alamos National Laboratory, 
which has 60 vertical levels varying from 10  m below 
the surface to a depth of 250 m. It uses spherical coordi-
nates in the Southern Hemisphere, and a displaced pole 
grid in the Northern Hemisphere. The horizontal resolu-
tion is approximately 1° (longitude) ×  0.27° (latitude) at 

the equator, with the domain ranging from 79°S to 89°N. 
Further details on the ocean component can be found in 
Smith et  al. (2010). The CAM4 and POP2 are coupled 
through the version 7 coupler (CPL7) (Craig et al. 2012) 
together with the Community Land Model version 4.0 
(CLM4) (Oleson et  al. 2010), the Los Alamos sea ice 
model, referred to as the Community Ice CodE version 4.0 
(CICE4) (Hunke and Lipscomb 2008), and a dynamic ice 
sheet model known as Glimmer-CISM (Rutt et  al. 2009; 
Lipscomb et  al. 2013). More details of the CESM model 
configuration and its simulation of the climate system are 
given in Hurrell et  al. (2013). The model demonstrates 
some biases in the tropical Pacific interannual variability, 
such as a westward displacement (compared to obser-
vations) of the location of maximum warming (Capo-
tondi 2013) and an underestimation of ENSO asymmetry 
(Zhang and Sun 2014). However, the fundamental charac-
teristics of modeled El Niño generally compare well with 
observations (Bellenger et al. 2014).

3 � Experimental strategy

To study the initial error that causes a significant SPB for 
an El Niño event, we conduct perfect model experiments 
in this study. That is to say, the CESM is assumed to be 
perfect and the prediction uncertainties of El Niño events 
are considered to be caused only by initial errors. We inte-
grate the CESM model for 150 years with forcings of tracer 
gases, insolation, aerosols and land cover during the year 
2000, and yield a control run. Taking the last 100 years of 
the simulation so as to eliminate initial adjustment pro-
cesses, it is found that the control run reproduces reason-
ably the fundamental characteristics of the tropical Pacific. 
Figure  1 shows the winter mean SST climatology and 
standard deviation of the simulated interannual SST anom-
alies in November–January (NDJ), at the peak phase of El 
Niño events. The simulated climatological SST and inter-
annual variability are comparable to those in observation 
except that the location of strong variability in the CESM 
shifts slightly westward than observed, which is a com-
mon symptom in the current coupled global climate mod-
els (CGCMs) (AchutaRao and Sperber 2002). The stand-
ard deviation of Niño-3 index (averaged SSTA in 5°S–5°N, 
150°–90°W) at each calendar month is also presented in 
Fig. 1. Compared to observation, the minimum variance of 
simulated Niño-3 SST anomalies appears about 1  month 
later than the observed, and the variance is rather flat in the 
boreal autumn and winter. This indicates that the El Niño 
events generated by the CESM model may peak in late 
autumn or winter, being somewhat earlier than observed 
El Niño events. This may be related to the simulated cli-
matological annual cycle (Fig. 1a3). In any case, the mean 
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seasonal variance of Niño-3 SSTA in the CESM still tends 
to have weak ones in boreal spring, suggesting a relatively 
feasible climatological annual cycle. The control run also 
show irregular occurrence of El Niño events with a domi-
nant period of 3 years. Especially, the CESM can capture 
the observed spring persistence barrier of Niño-3 index 
(Fig. 2a), which exhibits a rapid drop in the auto-lag cor-
relation of Niño-3 index occurring in boreal spring. More-
over, the relationship between ENSO SSTA and WWV 

anomalies, as well as the winter persistence barrier of 
WWV anomalies, can be reproduced (Fig. 2b). As such, the 
CESM is deemed acceptable for investigating the SPB for 
El Niño events. Since the model is assumed to be perfect, 
the El Niño events generated by the model’s control run are 
regarded as the “true state” El Niño events to be predicted. 
It should be noting that the El Niño events generated by the 
CESM’s control run are often strong, which could be due to 
the effect of the forcing used in the integrated simulation. 

Fig. 1   a Climatology of SSTs 
(°C) over the tropical Pacific 
during ND(0)J(1) from a1 the 
CESM and a2 the monthly 
Extended Reconstructed Sea 
Surface Temperature Version 
3 (ERSST V3) dataset of the 
period 1952–2011. The thick 
black lines in (a1) and (a2) 
indicate the 28 °C isotherm. a3 
The climatological SSTs aver-
aged in Niño-3 region at each 
calendar month from CESM 
and ERSST. b Same as a but for 
the standard deviation of SST 
anomalies (°C)

Fig. 2   Lagged autocorrela-
tion coefficients of monthly 
anomalies for a Niño-3 SST 
and b WWV [determined by 
spatial integration of the depth 
of the 20 °C isotherm, Z20, 
over the region (5°S–5°N, 
120°E–80°W), as in Mcphaden 
(20003)] as a function of the 
starting calendar month and lag 
time. The calculations are made 
for the last 100 years of the 150-
year control simulation in the 
CESM model. The character-
istics of the spring persistence 
barrier are consistent with those 
shown in observations reported 
by Yu and Kao (2007)
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Therefore, in this paper we have to focus on these relatively 
strong model El Niño events.

Samelson and Tziperman (2001) argued that the inherent 
predictability of ENSO varies throughout the ENSO cycle, 
with the lowest predictability during the growth phase, and 
the SPB may be a manifestation of the growth phase bar-
rier. In this study, we therefore focus on the predictability 
of the onset of El Niño events, paying particular attention 
to the predictions bestriding spring during the growth phase 
of El Niño events, in an attempt to investigate the SPB phe-
nomenon. We select typical El Niño events from the con-
trol simulation. The so-called typical El Niño events tend 
to onset in boreal spring and peak in late autumn or winter. 
As such, there obtain six typical El Niño events. Figure 3 
shows the time-dependent Niño-3 indices for the six El 
Niño events, which are denoted as SRi (i = 1, …, 6). In this 
context, we use Year(0) to denote the year when El Niño 

attains a peak value and Year(−1) to signify the year before 
Year(0). For each El Niño event, we make 12-month pre-
dictions (i.e. lead time of 12 months), with the start months 
being October(−1) and January(0), respectively. These pre-
dictions are made through spring in the growth phase of El 
Niño. As mentioned above, we focus on the predictions of 
the onset of El Niño events.

The initial errors are superimposed on the initial sea 
temperature fields of the six “true state” El Niño events. 
Considering that the dominant period of El Niño is about 
3  years, the initial errors are generated by taking the dif-
ferences between the sea temperature of the “true state” 
El Niño events at the start month, and that in each month 
of the 3 years preceding each El Niño year, which may be 
responsible for much ergodic initial errors. For example, 

when the start month is October(−1), the first initial error 
is determined by subtracting the sea temperature of Octo-
ber(−1) from that of September(−1); when September(−1) 
is changed to August(−1), the  sea temperature differ-
ence  between these 2  months will be the second initial 
error, and so forth. Therefore, at each start month, we have 
36 different initial error patterns to be superimposed on 
the initial values of each El Niño event. In total, there are 
432 predictions for the two start months of the six El Niño 
events. Several studies have used the ZC model to examine 
the initial errors that cause a significant SPB for El Niño 
(Mu et al. 2007b; Duan et al. 2009; Yu et al. 2009). How-
ever, the ZC model is a simple model and cannot depict 
the evolution of subsurface temperature anomalies, which 
are important for the onset of El Niño events. In this study, 
we adopt the CESM, which is a complex earth system 
model and can explore the role of subsurface temperature 
anomalies in the occurrence of an SPB. In the numerical 
experiments, the initial errors of the sea temperature fields 
cover the region (20.19°S–20.05°N, 130.44°E–84.49°W); 
and to explore the role of subsurface processes, the ini-
tial errors extend from the surface to 165 m depth, which 
is approximately the bottom of the thermocline over the 
western equatorial Pacific. Quite a few studies emphasized 
the importance of the spatial structure of initial errors in 
yielding SPB (Xue et al. 1994; Duan et al. 2009; Yu et al. 
2012); furthermore, we found that the initial errors being 
normalized often cause an initial shock phenomenon that 
characterized as a rapid growth of errors within a short 
time after the beginning of predictions, which may be due 
to the dynamical unbalance among different levels of the 
upper ocean temperature field induced by normalized ini-
tial errors. It is therefore pointed out that the magnitudes of 
the initial errors are not constrained uniformly in numeri-
cal experiments and the spatial pattern of initial errors is 
mainly emphasized.

To study the evolution of initial errors, the prediction 
errors are defined as the difference between the SSTA in 
the Niño-3 region (Niño-3 SSTA) of the predicted El Niño 
and those of the “true state” El Niño events, which are 
expressed as follows:

where the prediction error T ′(t) is measured by the norm �·� 
shown in Eq.  (3.1), Tp represents the predicted SSTA, Tt is 
the “true state” SSTA, (i, j) are the grid points in the Niño-3 
region, and N is the total grid number of the Niño-3 region. In 
prefect model predictability experiments, the prediction error 
is only caused by the growth of initial errors. To explore the 
season-dependent evolution of prediction errors, we divide 
a calendar year into four seasons, starting with January to 

(3.1)T ′(t) =
∥

∥Tp(t)− Tt(t)
∥

∥ =

√

∑

i,j [T
p

i,j(t)− Tt
i,j(t)]

2

N
,

Fig. 3   Time-dependent Niño-3 indices of El Niño events from the 
100 years control run of the CESM model. Colored curves indicate 
the six “true state” El Niño events, denoted by SRi (i =  1, …, 6), 
which are chosen to conduct the perfect model predictability experi-
ments. The start months of predictions for these El Niño events are 
marked on the horizontal axis, where the black bullet points denote 
the start months of October(−1) and January(0)
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March (JFM), followed by April to June (AMJ), and so forth. 
Then, the growth tendency κ of prediction errors in different 
seasons can be roughly estimated by evaluating

where T ′(t1) represents the prediction error at the start time 
of a season, T ′(t2) is at the end of the season, and t2 − t1 
is the time interval length. A positive (negative) value 
of κ corresponds to an increase (decrease) of errors, and 
the larger the absolute value of κ, the faster the increase 
(decrease) of errors.

4 � Two types of initial errors that often cause the 
SPB for El Niño events

A significant SPB, as stated earlier, involves two aspects: 
a large prediction error at the end of the prediction period, 
and an obvious error growth occurring during boreal spring. 
Based on this definition of the SPB and the experimental 
strategy described above, from the 432 predictions for the 
six El Niño events, we identify 212 predictions [120 for the 
start month October(−1) and 92 for January(0)] that yield 
a significant SPB. Obviously, the SPB of these predictions 
for the tropical SSTA associated with El Niño is induced 
by initial errors. For convenience, we refer to these initial 
errors as “SPB-related initial errors”. To illustrate the SPB 
phenomenon clearly, we present in Fig. 4 the evolution of 
the prediction errors of Niño-3 SSTA [see Eq.  (3.1)] and 
the ensemble mean of their seasonal growth tendency κ [see 
Eq. (3.2)] corresponding to the SPB-related initial errors. It 
is illustrated that the SPB-related initial errors exhibit sig-
nificant season-dependent evolution for both start months 
(see the upper panel in Fig. 4). For the errors with the start 
month of October(−1), their largest growth tendency tends 

(3.2)κ ≈
T ′(t2)− T ′(t1)

t2 − t1
,

to be in the AMJ season, which is consistent with the rapid 
decline in the spring forecast skill for El Niño in most 
prediction schemes (Latif et  al. 1998; Webster and Yang 
1992), indicating occurrence of an SPB; while the errors 
with the start month of January(0) are inclined to have con-
siderable growth in both AMJ and JAS, with the largest 
growth in JAS. For the latter, Mu et al. (2007b) argued that 
although the largest growth of the initial errors occurs in 
the JAS season, the error growth during AMJ has become 
aggressively large and may cause the drastic decrease in El 
Niño forecast skill across the spring, and also induce the 
SPB phenomenon. To further investigate the uncertainties 
caused by the SPB-related initial errors of El Niño predic-
tion with 1-year lead time, we also determine the prediction 
errors of Niño-3 index, denoted as “E-Niño3”, by subtract-
ing the Niño-3 indices of the “true state” El Niño events 
from the predicted ones (see the lower panel of Fig.  4). 
A positive (negative) value of E-Niño3 shows a positive 
(negative) prediction error in Niño-3 SSTA and indicates 
an over-prediction (under-prediction) of the El Niño event. 
The values of E-Niño3 shown in Fig. 4 demonstrate that the 
SPB-related initial errors usually cause large uncertainties 
of Niño-3 SSTA at the end of the prediction period. Also, 
we can see that all the SPB-related initial errors yield a 
negative error of Niño-3 SSTA and induce an under-pre-
diction of the corresponding El Niño events. Nevertheless, 
from Fig. 4 we notice that the Niño-3 index amplitudes of 
some initial errors are larger than 0.5 °C and are not com-
parable to the realistic initial SSTA errors. Therefore, we 
further select the SPB-related initial errors with Niño-3 
index amplitudes less than 0.5 °C from those in Fig. 4 and 
plot their evolutions in Fig.  5. The results still show the 
season-dependent evolution of prediction errors caused by 
these initial errors, with the significant error growth in AMJ 
and/or JAS, indicating occurrence of a significant SPB for 
El Niño events as well.

Fig. 4   Upper panels show the 
evolution of prediction errors 
of Niño-3 SSTA caused by 
each SPB-related initial error 
(colored curves) and the ensem-
ble mean of seasonal growth 
rate κ (histograms) of the SPB-
related initial errors. Lower 
panels show the corresponding 
prediction errors of Niño-3 
index (colored curves) and their 
ensemble mean (thick black 
lines). The start months of the 
predictions are a October(−1) 
and b January(0)
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As demonstrated above, we identify 212 El Niño pre-
dictions that yield a significant SPB for El Niño events. 
Next, we ask which show the features of SPB-related initial 
errors in the CESM? To address this question, we study the 
spatial characteristics of the 212 SPB-related initial errors 
by conducting Combined Empirical Orthogonal Function 
(CEOF) analysis. Since we try to find the dominant spatial 
characteristic of the initial errors that often cause a signifi-
cant SPB, we therefore concern about the dominant mode 
(i.e. leading CEOF mode) of SPB-related initial errors, 
which may apply to most of SPB-related initial errors. The 
resultant leading CEOF mode (CEOF1, responsible for 
42.5 % of the total variance) and its time series (i.e. PC1) 
indicate that the CEOF1 mode exhibits not only a positive 

phase but also a negative phase, which means that the dom-
inant mode of the initial errors could be either the CEOF1 
pattern or its opposite pattern. Following this, we clas-
sify the 212 initial errors into two groups, with 101 in one 
group corresponding to positive PC1, and 111 in the other 
group possessing negative PC1. That is, the SPB-related 
initial errors are classified into two groups according to the 
PC1’s sign. It should be noted that, classification is oper-
ated on those original SPB-related initial errors rather than 
the CEOF1 mode. Then through composite analysis for the 
two groups of initial errors, we obtain two types of com-
posite patterns of the SSTA and subsurface temperature 
anomaly along the equatorial Pacific (Fig.  6). It is shown 
that one type of initial errors possesses an SSTA pattern 

Fig. 5   As in Fig. 4, but for the 
SPB-related initial errors with 
the Niño-3 index amplitude less 
than 0.5 °C

Fig. 6   Composite patterns of a type-1 initial errors and b type-2 
initial errors that cause a significant SPB for El Niño events. Upper 
panels show the SSTA component; lower panels show the equato-
rial (5°S–5°N) subsurface temperature anomaly (units:  °C). Regions 
A, B and C represent are (5°S–5°N, 150°–85°W; 0–5 m), (5°S–5°N, 

150°–85°W; 5–85  m) and (5°S–5°N, 150°E–135°W; 120–165  m), 
respectively. Dotted areas indicate that the composites of SSTA and 
subsurface temperature anomaly errors exceed the 99 % significance 
level, as determined by a t test
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with negative anomalies over the central–eastern equato-
rial Pacific, plus a basin-wide dipolar pattern in the subsur-
face temperature anomaly with negative anomalies in the 
upper layers of the eastern equatorial Pacific and positive 
anomalies in the lower layers of the central–western equa-
torial Pacific (Fig. 6a; hereafter referred to as type-1 initial 
errors). As for the other type of initial errors, it consists of 
an SSTA component with positive anomalies that are more 
confined over the southeastern equatorial Pacific. Also, 
there is a large-scale zonal dipole pattern of the subsurface 
temperature anomaly, with positive anomalies in the upper 
layers of the eastern equatorial Pacific and negative anoma-
lies in the lower layers of the western equatorial Pacific, but 
its negative pole is located in the central Pacific (Fig. 6b; 
hereafter referred to as type-2 initial errors). For the type-1 
and -2 initial errors, we also compute the similarity coeffi-
cients between their composite patterns and corresponding 
two groups of individual initial errors and show high simi-
larities between them; exactly, the mean of similarity coef-
ficients reach about 0.6 for type-1 errors and 0.7 for type-2 
errors. The above classification is also supported by a clus-
ter analysis with similarity coefficient as a measurement 
(not shown). Therefore, it is reasonable to suggest that the 
type-1 and -2 initial errors could illustrate the dominant 
characteristics of initial errors that often cause a signifi-
cant SPB of El Niño prediction in the CESM model. As for 
the initial errors that fail to cause an SPB, we fail to obtain 
their dominant spatial structure with large explained vari-
ance in numerical experiments. This indicates that the ini-
tial errors that fail to cause a significant SPB do not present 
a uniform spatial structure. As a comparison, the dominant 
characteristics of the SPB-related initial errors may empha-
size the importance of the initial errors with a particular 
spatial structure in yielding SPB for El Niño events.

5 � Dynamical mechanisms of error growth related 
to the SPB for El Niño events

Having demonstrated in Sect. 4 the existence of two types 
of initial errors that often cause predictions of El Niño 
onset to yield a significant SPB in the CESM model, and 
that these errors induce a large prediction error for Niño-3 
SSTA (specifically, both error types cause El Niño events 
to be under-predicted), we therefore naturally ask: why do 
the errors cause a negative prediction error of Niño-3 SSTA 
for El Niño events? That is to say, what is the dynamical 
mechanism underpinning the two types of SPB-related ini-
tial errors? Duan et al. (2009) and Yu et al. (2009) identi-
fied two initial errors of opposite sign that are most likely 
to evolve into El Niño-like and La Niña-like modes, 
respectively, in the ZC model (Zebiak and Cane 1987). 
We therefore also ask: is the behavior of the SPB-related 

error growth in the CESM similar to El Niño and La Niña 
events? To address these questions, we explore the time-
dependent evolution of the prediction errors caused by the 
two types of SPB-related initial errors.

We integrate the CESM model with the initial values 
being the initial sea temperature of each “true state” El Niño 
event plus the type-1 and -2 initial errors; and then, by sub-
tracting the “true state”, obtain the evolution of the prediction 
errors caused by the two types of initial errors, respectively. 
By observing the patterns of prediction errors—including the 
SSTA, sea surface wind anomaly and equatorial subsurface 
temperature anomaly components—we find that the type-1 
initial errors present a growth behavior with a La Niña-like 
evolving mode. In this case, the negative SST anomalies in 
the central–eastern equatorial Pacific in the initial errors are 
rapidly amplified during several months and evolve into a 
mature La Niña-like mode at the prediction time. Whereas, 
for the type-2 initial errors, they initially experience a period 
similar to an El Niño decaying phase, and subsequently 
exhibit a transition to a cold phase, finally evolving into a 
mature La Niña-like mode. Figures 7 and 8 show a compos-
ite of the evolution of the prediction errors caused by the 
two types of SPB-related initial errors, and present the major 
mode of their evolutions. The results illustrate that the two 
types of errors exhibit a growth behavior similar to a La Niña 
event, but they may start from a different phase of the La 
Niña evolving mode. The type-1 initial errors start directly 
from the growth phase of La Niña due to positive feedback, 
while the type-2 initial errors develop including the decaying 
phase of El Niño through negative feedback, and then transi-
tion to a development of La Niña through positive feedback.

Physically, when the type-1 initial errors are superposed 
on the initial state of an El Niño event, a large negative 
SSTA error initially occurs in the central–eastern equato-
rial Pacific and a much weaker positive subsurface tem-
perature anomaly is located in the greater depths of the 
western equatorial Pacific (see the top panel of Fig. 9). On 
the one hand, the large negative SSTA leads to anomalous 
easterlies along the equator, such that Bjerknes positive 
feedback (Bjerknes 1969) develops over the eastern equato-
rial Pacific, and meanwhile the associated larger negative 
subsurface temperature anomalies beneath are transported 
upward by upwelling until they reach the surface, which 
is consistent with the “upwelling pathway” between Z20 
(i.e. the depth of the 20 °C isotherm) and SST suggested in 
Zelle et al. (2004). Both contribute to the sustained growth 
of the negative SSTA errors over the eastern equatorial 
Pacific. On the other hand, the weaker positive subsurface 
temperature anomalies in the western equatorial Pacific 
lower the depth of the thermocline and induce a down-
welling Kelvin wave that travels from the western equato-
rial Pacific to the eastern Pacific, where it causes a positive 
SSTA and hence causes the initial negative SSTA errors to 
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weaken. This remote interaction between wave dynamics 
and SSTAs competes with the Bjerknes positive feedback 
as well as the local “upwelling pathway” over the eastern 
equatorial Pacific. Whether or not the negative SSTA error 
will be amplified depends on the relative importance of 
the two competing mechanisms. During the earlier evolu-
tion of the type-1 errors, these two competing influences 
almost offset each other, and the negative SSTA errors 
remain, showing no significant growth. However, because 
of the weakness of the initial positive subsurface tempera-
ture anomalies in the western Pacific, the negative feedback 
associated with the wave dynamics decays gradually and 
disappears after several months. Afterwards, therefore, the 
positive feedback mechanism plays a dominant role and 
causes the negative SSTA errors to be further amplified, 
ultimately evolving into a La Niña mode and yielding nega-
tive prediction errors for the El Niño events.

For the type-2 initial errors, the initial positive SSTA 
error is confined to the southeast of the equatorial Pacific, 
where a weak westerly anomaly occurs only over the cen-
tral tropical Pacific (Fig.  9a2, b2), and consequently the 

Bjerknes feedback process fails to establish. However, the 
large negative subsurface temperature anomalies lift the 
thermocline of the western equatorial Pacific (Fig.  9c2) 
and generate upwelling Kelvin waves that propagate east-
ward, carrying cold water with them and causing a nega-
tive SSTA in the eastern Pacific. The negative SSTA will 
then induce zonal easterly wind anomalies in the central 
Pacific, leading to the warm SSTA error and westerly 
anomalies to decay and disappear gradually (Fig.  9a2, 
b2). Once the warm SSTA error disappears and the nega-
tive SSTA error subsequently occurs over the eastern 
equatorial Pacific, the cooling error will be further inten-
sified through the easterlies and anomalous upwelling due 
to the Bjerknes positive feedback mechanism, also under-
estimating the El Niño events. In short, for the earlier 
development of the type-2 errors, the negative feedback 
associated with equatorial waves travelling from the west-
ern equatorial Pacific has a first-order effect; while once a 
negative SST anomaly over the eastern equatorial Pacific 
occurs, the Bjerknes positive feedback becomes the lead-
ing factor.

Fig. 7   Composite evolutions of type-1 initial errors: a SSTA 
(units:  °C) and sea surface wind anomaly (units: m/s) over the tropi-
cal Pacific Ocean; b equatorial (5°S–5°N) subsurface temperature 

anomaly (units:  °C). Dotted areas indicate the composites of SSTA 
and subsurface temperature anomaly errors pass the 95  % signifi-
cance level, as determined by a t test
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6 � Implications

The results thus far described have demonstrated that two 
types of SPB-related initial errors exist for El Niño events 
in the CESM model, and that they cause significantly large 
prediction errors (see Sect. 4). In particular, it is apparent 
that the negative prediction errors for Niño-3 SSTA caused 
by the type-1 initial errors grow to be large in the eastern 
equatorial Pacific (see region A in Fig.  6), mainly due to 
the contribution of cold water from the subsurface layers 
of the eastern equatorial Pacific (see region B in Fig.  6). 
Therefore, if we reduce the initial errors in regions A and 
B, the resultant prediction errors for Niño-3 SSTA should 
be greatly decreased. For the type-2 initial errors, the 
resultant negative prediction errors for Niño-3 SSTA first 
originate from the lower layers of the western equatorial 
Pacific (see region C in Fig. 6), and then grow to be large in 
the Niño-3 region. It is therefore reasonable to suggest that 
the El Niño predictions may also be sensitive to the initial 
errors of sea temperature in region C. Since the prediction 
errors for Niño-3 SSTA are sensitive to the initial errors 

in regions A, B, and C, implementing additional observa-
tions in these regions may be superior to doing so in other 
regions for improving the prediction skill of El Niño. This 
argument is related to an observing strategy named as “tar-
get observation”.

Target observation is an observing strategy whose devel-
opment began after the 1990s. To better predict an event at 
a future time t1 (called the verification time) in a focused 
area (called the verification area), additional observations 
are deployed at time t2 (called the targeted time; t2 <  t1) 
in some key areas (generally called the “sensitive area”), 
where additional observations are expected to have a con-
siderable impact on the forecasts in the verification area 
(Snyder 1996; Mu 2013). A key problem in target obser-
vation is the determination of the “sensitive area” where 
additional observations are expected to yield a better 
forecast than observations taken in other regions. Further-
more, given the high cost of observations, a focus on the 
“sensitive area” may represent an economical and effi-
cient strategy aimed at improving the prediction skill of El 
Niño events. From the definition of target observation, it is 

Fig. 8   As in Fig. 7, but for type-2 initial errors
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inferred that the above regions A, B, and C may represent 
the sensitive areas for El Niño predictions.

To illustrate this inference, we conduct additional 
numerical experiments for the type-1 and -2 initial errors, 
respectively. Considering economy and efficiency of target 
observation, we define an index to measure the benefit of 
implementing target observation in regions A, B, and C in 
reducing prediction errors for El Niño.

where T ′
whole-region represents the prediction errors caused 

by initial errors throughout the whole region of the tropi-
cal Pacific, T ′

non-sensitive-area denotes the prediction errors 
caused by initial errors from non-sensitive areas, indicat-
ing initial errors in sensitive areas are eliminated by target 
observations, and Vnon-sensitive-area is the volume of related 
non-sensitive areas. The “Benefit” stands for the degree of 
reduction of the prediction errors after implementing target 
observations in per unit volume of sensitive areas. Com-
pared this “Benefit” with that of implementing additional 
observations in per unit volume of non-sensitive areas (here 

Benefit =
(T ′

whole-region − T
′
non-sensitive-area)/T

′
whole-region

Vnon-sensitive-area

× 100%,

is the outside regions of A, B, and C), we can identify the 
region that is much economical and efficient for target 
observation, i.e. the sensitive area for targeting.

We adopt the strategy described in Sect. 3 to predict 
the six “true state” El Niño events for 1  year starting 
with October(−1) and January(0), but instead separately 
add the type-1 and -2 initial errors in Fig. 6 on the initial 
value of each “true state” El Niño, finally obtaining the 
prediction errors T ′

whole-region caused by whole type-1 and 
-2 initial errors, respectively. Figures  10 and 11 show 
the T ′

whole-region of Niño-3 SSTA [measured by the norm 
described by Eq.  (3.1); see the gray bars in the upper 
panel] and that of Niño-3 index (i.e. E-Niño3; see the 
gray bars in the lower panel) at the prediction time for 
each El Niño event. In the total of 24 predictions, 20 ones 
induce significantly large prediction errors, with its cor-
responding absolute value of E-Niño3 larger than 1.0 °C. 
Specifically, the type-1 and -2 initial errors account for 
10 predictions of 20 ones, respectively. Regarding to the 
prediction errors of Niño-3 SSTA measured by Eq. (3.1), 
the ensemble mean caused by the type-1 initial errors is 
2.43 °C, and 2.14 °C for type-2 initial errors. For these 
20 predictions, the initial errors in regions A and B for 
type-1 initial errors and region C for type-2 are removed, 

Fig. 9   Composite evolution of prediction errors for equatorial 
(5°S–5°N) a zonal wind stress anomaly (units: dyn/cm2), b SSTA 
(units:   °C), and c thermocline depth anomaly (units: m) over the 

tropical Pacific Ocean. The depth of the 20 °C isotherm is used here 
as a proxy for thermocline depth. Upper panels are for the type-1 ini-
tial errors; lower panels for type-2 initial errors



3610 W. Duan, J. Hu

1 3

Fig. 10   Prediction errors of Niño-3 SSTA [measured by Eq. (3.1) in 
Sect. 3; upper panels] and its Niño-3 index component (i.e. E-Niño3) 
with 1-year lead time (lower panels) for six El Niño events [denoted 
as SRi (i  =  1, …, 6)], caused by the type-1 initial errors (gray 
bars) and the initial error generated by keeping the initial sea tem-
perature errors in regions A (10°S–10°N, 150°–85°W; 0–5 m) and B 
(10°S–10°N, 150°–85°W; 5–85 m) (red bars) and eliminating errors 
in regions A and B from the type-1 initial errors (blue bars), respec-
tively. The start months of predictions are a October(−1) and b Janu-

ary(0). There are 10 predictions with E-Niño3 larger than 1.0  °C. 
For these 10 predictions, the ensemble mean of prediction errors of 
Niño3-SSTA caused by the type-1 initial errors is about 2.43  °C. 
The ensemble mean is about 1.96 °C when only the initial errors in 
regions A and B are kept, which amounts to about 81 % of the predic-
tion errors caused by the type-1 initial errors. The ensemble mean is 
about 1.61 °C when only the initial errors outside of regions A and B 
are kept, which amounts to about 66 %

Fig. 11   As in Fig. 10, but for the type-2 initial errors (gray bars) and 
the initial error which is generated by keeping the initial sea tempera-
ture errors in region C (10°S–10°N, 150°E–135°W; 95–165 m) (red 
bars) and eliminating errors in region C from the type-2 initial errors 
(blue bars). There are 10 predictions with E-Niño3 larger than 1.0 °C. 
The ensemble mean of prediction errors of Niño3-SSTA caused by 

the type-2 initial error is about 2.14 °C. The ensemble mean is about 
2.06  °C when only the initial errors in region C are kept, amount-
ing to about 96 % of the prediction errors caused by the type-2 ini-
tial errors. The ensemble mean is about 1.68 °C when only the initial 
errors outside of region C are kept, amounting to about 79 %
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but the errors in other regions are retained, which can be 
understood as that the elimination of initial errors in A, 
B, and C is due to the implementation of target obser-
vation in these regions. The resultant prediction error 
just is the one denoted by T ′

non-sensitive-area. It shows that 
the resultant prediction errors of Niño-3 SSTA for most 
predictions account for about 66  % of that caused by 
the whole type-1 initial errors, and 79  % of the whole 
type-2 initial errors (see blue bars in Figs. 10, 11). If we 
use the “Benefit” index to measure the degree of reduc-
tion of prediction errors, the results show that the pre-
diction errors caused by the whole type-1 and -2 initial 
errors are significantly reduced when implementing 
target observations in per unit volume of regions A, B 
for type-1 errors and C for type-2 errors (see Fig.  12). 
Exactly, the prediction errors are reduced by 23.8 % for 
type-1 errors and 15.0  % for type-2 errors. However, 
when we retain initial errors in regions A, B for type-1 
and region C for type-2 but eliminating initial errors in 
other regions, the subsequent prediction errors can only 
be reduced about 1.9 % for type-1 and 0.4 % for type-2 
errors after implementing additional observations in per 
unit volume of regions outside A, B, and C, which are 
much smaller than those of implementing target observa-
tions in regions A, B, and C. In this sense, we regard A, 
B, and C as sensitive areas for target observation associ-
ated with El Niño predictions. That is to say, implement-
ing additional observation in regions A, B, and C could 
be much greatly to improve the El Niño prediction skill 
compared to doing this in other regions; furthermore, it 
would be much economical in terms of the small volume 
of sensitive area.

7 � Conclusions

In this study, we use the NCAR’s CESM to investigate the 
initial errors that often cause a significant SPB for El Niño 
events, under the assumption that the model physics are per-
fect. From the predictions bestriding spring during the growth 
phase of El Niño events, two types of initial errors are iden-
tified that have significant season-dependent evolutions, with 
the significant growth occurring in the AMJ or JAS season 
and large prediction error related to the significant SPB for 
El Niño events. One of the error types possesses an SSTA 
component with negative anomalies in the central–eastern 
equatorial Pacific, plus a basin-wide dipolar pattern in the 
subsurface temperature anomaly with negative anomalies in 
the upper layers of the eastern equatorial Pacific and posi-
tive anomalies in the lower layers of the western equatorial 
Pacific. The other type consists of an SSTA component with 
positive anomalies in the southeastern equatorial Pacific and a 
large-scale zonal dipole pattern of the subsurface temperature 
anomaly, with positive anomalies in the upper layers of the 
eastern equatorial Pacific and negative anomalies in the lower 
layers of the central–western equatorial Pacific.

In spite of the different patterns of the two types of 
SPB-related initial errors, both cause El Niño events to be 
under-predicted. Specifically, both types of SPB-related 
initial errors exhibit a typical La Niña-like evolving mode, 
causing a large negative prediction error for El Niño events, 
despite presenting different behaviors in their early stages 
of the error growth. In one case, the initial errors grow 
directly in a manner similar to the growth behavior of a 
La Niña event; in the other case, the errors initially exhibit 
a rapid decay of the El Niño-like mode, and then a quick 
transition to a typical La Niña-like evolving mode. Further 
investigation suggests that there are two competing factors 
affecting the SSTA error in the eastern equatorial Pacific. 
One factor is the Bjerknes positive feedback mechanism, 
the coupling of the equatorial zonal wind anomalies and 
changes in SST owing to equatorial upwelling in the east-
ern Pacific, which causes an intensification of the initial 
SSTA error. The second factor is the negative feedback 
mechanism associated with an eastward Kelvin wave from 
the western tropical Pacific, which leads to weakening of 
the initial SSTA error over the eastern equatorial Pacific. 
For the type-1 initial errors, the Bjerknes positive feed-
back mechanism plays a leading role throughout the error 
growth; while for the development of the type-2 errors, the 
negative feedback initially has a first-order effect, and the 
role of Bjerknes feedback is moderate, but once a negative 
SST anomaly over the eastern equatorial Pacific occurs, 
the Bjerknes feedback becomes dominant and the negative 
feedback is negligible. Finally, a La Niña-like mode is then 
quickly established.

Fig. 12   Blue bars the benefit index obtained after performing tar-
get observations in the A (10°S–10°N, 150°–85°W; 0–5  m) and B 
(10°S–10°N, 150°–85°W; 5–85  m) regions of type-1 initial errors 
and C (10°S–10°N, 150°E–135°W; 95–165 m) of type-2 initial 
errors. Red bars the benefit index for additional observations in 
those regions outside of A, B for type-1 and those outside of C for 
type-2 errors. The earth is seemed as a pure sphere with the radius of 
6378  km. The volume of the tropical Pacific (20.19°S–20.05°N, 
130.44°E–84.49°W; 0–165  m), approximated as a 3-D rectangular 
region, is about 11.8 × 1015 m3. The volume of A and B regions or 
C region, accounting for only 12 %, is about 1.42 × 1015 m3, while 
those outside regions are about 10.4 × 1015 m3
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Both type-1 and -2 SPB-related initial errors induce 
large negative prediction errors of Niño-3 SSTA for El 
Niño events. Results show that the large prediction errors 
are mainly attributed to the growth of the initial sea tem-
perature errors in several key regions of the tropical Pacific, 
which are also consistent with the regions bearing large 
initial errors. For the type-1 initial errors, the errors in the 
upper layer of the eastern equatorial Pacific (i.e. regions 
A and B in Fig. 6) tend to make a greater contribution to 
the final prediction error of Niño-3 SSTA; while for the 
type-2 initial errors, the prediction errors for Niño-3 SSTA 
mainly originate from the initial sea temperature errors in 
the lower layer of the western equatorial Pacific (i.e. region 
C in Fig. 6). In particular, when the initial errors in regions 
A and B for the type-1 initial errors and region C for the 
type-2 initial errors are eliminated, without changing the 
initial errors in other regions, the resultant predictions 
errors normalized by related region’s volume are more 
significantly reduced than those by only removing initial 
errors outside of A, B, and C regions. The regions A, B, 
and C may therefore represent the “sensitive area” for tar-
get observation of El Niño predictions. That is to say, if we 
implement the additional observation in these regions and 
assimilate them to the initial fields, the El Niño forecasting 
skill could be greatly improved, as compared to doing so in 
other regions.

Yu et  al. (2009) recognized two types of initial errors 
using the simple ZC model. These two types of initial 
errors are of almost opposite sign and cause a significant 
SPB for El Niño events. One type possesses an SSTA pat-
tern with negative anomalies in the central–western equa-
torial Pacific, positive anomalies in the eastern equatorial 
Pacific, and a thermocline depth anomaly pattern with 
positive anomalies along the equator; while the other type 
possesses patterns that are almost opposite to those of the 
former type. To facilitate the following discussion, we 
refer to the former type as type-A initial errors and the lat-
ter type as type-B initial errors (also see Duan et al. 2009). 
Yu et  al. (2009) illustrated that the type-A and -B initial 
errors possess dynamic behavior similar to El Niño and 
La Niña events, and are explained by the Bjerknes posi-
tive feedback mechanism. Furthermore, Mu et  al. (2014) 
demonstrated that the precursory perturbations that are 
most likely to develop into El Niño or La Niña events bear 
a strong resemblance with the initial errors that induce a 
significant SPB with the ZC model. This indicates that ini-
tial anomalies with the structure of type-A and -B initial 
errors also act as precursory disturbances for El Niño and 
La Niña events, respectively (Duan and Wei 2012; Zhang 
et al. 2014). In the present study, we also obtain two types 
of SPB-related initial errors (i.e. the type-1 and type-2 ini-
tial errors in Fig. 6) for El Niño predictions in the CESM, 
both of which include not only the SST component but 

also the subsurface temperature component. However, the 
type-1 and -2 initial errors in this study are asymmetrical 
in pattern, which is not the case in the type-A and -B initial 
errors in the ZC model. Actually, the type-1 initial errors 
show negative anomalies in both surface and subsurface 
layers of the eastern equatorial Pacific, and suggest a pat-
tern comprising negative SST anomalies and a shoaling 
thermocline in the eastern equatorial Pacific. This pattern 
mirrors that presented by the type-B initial errors in the ZC 
model. In spite of asymmetrical pattern, both the type-1 
and -2 initial errors exhibit a growth behavior similar to 
the La Niña evolving mode. Similarly, the initial anoma-
lies with the structure of type-1 and -2 initial errors could 
be a precursory disturbance for La Niña events. However, 
unlike type-1 initial errors that grow directly starting from 
a cold phase, the type-2 initial errors experience a decaying 
period of positive SST anomalies in the eastern equatorial 
Pacific due to a negative feedback process associated with 
wave dynamics, and then a transition to a cold phase, fol-
lowed quickly by growth into a La Niña-like mode because 
of Bjerknes positive feedback. Therefore, if we regard the 
initial anomaly with type-2 initial error structure as a pre-
cursory disturbance for La Niña, it is clearly preceding the 
initial anomaly with the type-1 initial error structure (simi-
lar to type-B in the ZC model). In other words, the initial 
anomaly with type-2 initial error structure may present a 
much earlier signal for the occurrence of La Niña events, 
favoring prediction of La Niña events with a much longer 
lead time. Besides, considering the onset of El Niño and 
La Niña often occurs in spring due to the fast growth of 
anomalies in this season (Wang and Fang 1996), we infer 
that the predictions for a neutral year may also yield SPB 
phenomenon because of the effect of type-1 and -2 errors.

8 � Discussions

To investigate the spatial characteristics of initial errors that 
cause a significant SPB for El Niño events, we chose the sea 
temperature differences between a particular month and the 
start month in the tropical Pacific as initial errors. Therefore, 
this strategy may not guarantee that the constructed initial 
errors cover all kinds of realistic initial error patterns. That 
is to say, the sensitive areas identified in this paper may not 
consist of all sensitive areas for target observation associated 
with El Niño predictions. Especially, mounting evidences sug-
gest that El Niño changes and its predictability can also be 
due to the influence from outside of the tropical Pacific. For 
example, within the tropic, the variability in the Indian Ocean 
sector [e.g. Indian Ocean dipole (IOD); Saji et al. 1999] can 
influence El Niño through both the Indonesian Throughflow 
and Walker circulation, and the initial conditions of the tropi-
cal Atlantic have a stronger impact on the predictability of El 
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Niño (Frauen and Dommenget 2012; Keenlyside et al. 2013; 
Zhou et  al. 2015). While, outside of the tropic, SST in the 
North Pacific, South Atlantic, and South Indian Oceans can 
offer important source of predictability for El Niño (Boschat 
et al. 2013). In this sense, these regions may also contain the 
“sensitive area” for target observations for El Niño predictions.

In this study, we emphasize the role of oceanic initial error 
pattern in leading to a significant SPB for El Niño events. 
Some studies also suggested the annual cycle plays a signifi-
cant role in occurrence of the SPB (Webster and Yang 1992; 
Moore and Kleeman 1996; Thompson and Battisti 2001). 
Especially, recently, basing on a damped and noise driven 
conceptual model, Levine and McPhaden (2015) examined 
the effectiveness of the annual cycle in producing the SPB 
and found that only inclusion of the annual cycle of ENSO 
growth rate gives rise to the SPB phenomenon. And others 
put an emphasis on the ENSO event itself as well (Samel-
son and Tziperman 2001). With a conceptual ENSO model, 
Mu et  al. (2007a) combined above arguments and stated 
that the SPB may result from combined effect of the annual 
cycle, the El Niño event itself and the initial error pattern. In 
particular, Duan et al. (2009) further stressed that even with 
the annual cycle, there are still some initial errors that can 
induce SPB while others cannot. Then, in the present study, 
we just explored the characteristics of those initial errors that 
induce a significant SPB for El Niño events. Apparently, in 
addition to the influence from ocean, the prediction skill of 
El Niño events may also be affected by atmospheric states. 
With an intermediated coupled model, Zheng and Zhu (2010) 
have shown that better representation of zonal wind stress 
anomalies through coupled assimilation can reduce SST 
forecast errors through improve accuracy of ocean currents. 
Moreover, increasing studies highlight the potential impact 
of atmospheric stochastic forcing [e.g. westerly wind burst 
(WWB)] on the diversity and predictability of El Niño events 
(Hu et  al. 2014; Chen et  al. 2015). Particularly, Lopez and 
Kirtman (2014) indicated the SPB is due to the presence of 
WWB because significant WWB activities can contribute to 
a rapid drop off in signal-to-noise ratio of coupled system in 
spring. Actually, comparison between these studies associ-
ated with atmospheric effects and the present study proposes 
a new question to the SPB: is the SPB more sensitive to ocean 
state or variations in atmosphere? That is to say, ones should 
further explore sensitive variables for ENSO predictions and 
then the associated target observation, which may be much 
important for improving ENSO forecast skill.

The SPB may also affect the prediction of La Niña. In this 
paper, we did not pay attention to it because main character-
istics of La Niña events, for example, phase locking, cannot 
be well modeled by the CESM control simulation. Yu et  al. 
(2009) adopted the simple ZC model (Zebiak and Cane 1987) 
and demonstrated that the SPB-related initial errors associated 
with the predictions bestriding spring in the growth phase of 

El Niño have patterns for SSTA and thermocline depth anom-
aly components similar to those across spring in the decay 
phase of El Niño. However, ones do not know whether or not 
the results from the ZC model are applied to complex coupled 
GCMs. Therefore, to make it much clear, ones should further 
explore this question by using CESM or other coupled GCMs.

In addition, it is well-known that there are two types 
of El Niño events. One type consists of canonical El Niño 
events, which have their maximum SST anomaly center 
located in the eastern equatorial Pacific attached to the coast 
of South America (Rasmusson and Carpenter 1982), and has 
been referred to as ‘‘Eastern Pacific El Niño’’ (EP-El Niño) 
(Kao and Yu 2009). The other type is often called ‘‘Central 
Pacific El Niño’’ (CP-El Niño) (Kao and Yu 2009), in which 
warm SST is mainly concentrated in the central Pacific and 
it propagation is weaker and less clear (Ashok et al. 2007; 
Kao and Yu 2009; Kug et al. 2009). In the present study, we 
pay more attention on the SPB problem of the EP-El Niño 
events and identified two types of initial errors that often 
cause a significant SPB and explored corresponding dynam-
ical mechanisms for error growth and further revealed their 
implications for target observation of EP-El Niño predic-
tions. However, recent studies have shown that the CP-El 
Niño events have become more frequent and common than 
the EP-El Niño during the late twentieth century, especially 
after the 1990s (Ashok et al. 2007; Kao and Yu 2009; Kug 
et  al. 2009). Unlike the EP-El Niño events, the evolution 
of CP-El Niño events are mainly due to the zonal advec-
tive feedback rather than the thermocline feedback, which 
may be linked to the shift of the relationship between SST 
anomalies and WWV anomalies. Since 2000, the lead time 
between WWV and SST anomalies has decreased from 2 
to 3 seasons to only one season (McPhaden 2012). Conse-
quently, for the CP-El Niño, whether there exists the SPB 
phenomenon? If so, what kind of initial error will be the 
most likely to cause a significant SPB, and whether it is the 
same to that of EP-El Niño or not? In fact, the relevant work 
is currently underway within a simple coupled model and 
will hopefully be reported in the future, expecting to pro-
vide useful information for identifying and predicting two 
different flavors of El Niño.
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