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ABSTRACT

Conditional nonlinear optimal perturbation (CNOP) is the initial perturbation that satisfies a certain

physical constraint and causes the largest nonlinear evolution at prediction time. To yield mutually in-

dependent initial perturbations in ensemble forecasts, orthogonal CNOPs are developed. Orthogonal CNOPs

are then applied to a Lorenz-96model to generate initial perturbations for ensemble forecasting, as compared

with orthogonal singular vectors (SVs). When the initial analysis errors are fast growing, the ensemble

forecasts generated by orthogonal CNOPs of the control forecasts perform much more skillfully. Never-

theless, for slow-growing initial analysis errors, the ensemble forecasts generated by orthogonal SVs achieve

higher skill when the ensemble initial perturbations are large, whereas the ensemble forecasts generated by

orthogonal CNOPs achieve almost the same forecast skill as those generated by orthogonal SVs when the

ensemble initial perturbations are sufficiently small. The initial analysis errors that possessmuch faster growth

behavior are easily influenced by nonlinearity, and extreme events (extreme here refers to strong), because of

strong nonlinear instability, may bemuchmore likely to cause fast growth of initial analysis errors. Therefore,

the ensemble forecasts generated by orthogonal CNOPs may have higher skill than those generated by or-

thogonal SVs for extreme events; in particular, the ensemble forecasts generated by orthogonal CNOPs,

compared with those generated by orthogonal SVs, require a much smaller number of ensemble members to

achieve high skill. Therefore, orthogonal CNOPs may provide another useful technique to generate initial

perturbations for ensemble forecasting.

1. Introduction

A forecast is an estimate of the future state of the

atmosphere or ocean. Forecasts are generally conducted

by estimating the current states using observations and

then investigating how these states evolve using nu-

merical models. Because of the effect of instability and

related nonlinearity, very small errors in initial states

can be nonlinearly amplified and lead to large errors in

the forecast results (Lorenz 1963). Because we cannot

observe every detail of the atmospheric and oceanic

initial states, we cannot construct a perfect forecast

system, and the initial uncertainties result in large

forecast errors. Therefore, there is a limit to how far

ahead we can make predictions.

To estimate the forecast uncertainty, Epstein (1969)

suggested explicitly integrating the Liouville equation

to obtain a probability distribution of the atmospheric

state, which could then describe the uncertainties of

the forecast results. However, for complex weather and

climate models, this approach is computationally un-

feasible. Later, Leith (1974) introduced the Monte

Carlo forecasting (MCF) method, which generates a
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group of forecast members to estimate the probability

distribution function of forecast states by superimposing

random initial perturbations on the initial analysis. This

is the basic idea of ensemble forecasting, which pro-

duces an estimate of the forecast uncertainties and in-

dicates the probability of the occurrence of weather and

climate events. The ensemble mean of the forecasting

members is often regarded as the result of a determin-

istic forecast. The ensemble mean may filter the un-

predictable parts and leave the common parts of the

forecasting members, ultimately decreasing the uncer-

tainties of single forecast results (Leith 1974; Leutbecher

and Palmer 2008).

With its benefit of producing probabilistic distribution

information of forecast results, ensemble forecasting has

become a major technique in numerical weather and

climate forecasting. Various approaches have been

introduced to generate initial perturbations for en-

semble forecasting and have been applied in opera-

tional weather and climate predictions. Among these

approaches, singular vectors (SVs) (Lorenz 1965;Molteni

et al. 1996; Mureau et al. 1993) have been adopted in

operational forecasts by the European Centre for

Medium-Range Weather Forecasts (ECMWF) and

have achieved great success in reducing forecast un-

certainties. SVs are a group of orthogonal initial per-

turbations that possess the largest growth rate in

different but mutually orthogonal subspaces of initial

perturbations in linearized models, which are conse-

quently expected to dominate the forecast errors at

prediction time and to describe the probabilistic distri-

bution of the forecast results. However, Gilmour and

Smith (1997) noted that there are limits in the con-

struction of ensemble perturbations based on their lin-

ear approximations. Anderson (1997) indicated that SVs

are only sensitive to the evolution of the perturbations

in a linear regime, and they fail to provide information

about the likelihood of extreme perturbations in non-

linear fields. Therefore, SVs are unable to consider the

effect of nonlinearity, and limitations exist in estimating

forecast uncertainties.

Considering the limitations of the linear theory of

SVs, Mu et al. (2003) proposed the approach of condi-

tional nonlinear optimal perturbation (CNOP) to study

the growth behavior of prediction errors caused by

initial errors. CNOP is a nonlinear generalization of the

leading SV (LSV) that corresponds to the largest

growth rate of the initial perturbations in a linearized

model and represents the initial perturbations that

satisfy a certain physical constraint and possess the

largest nonlinear evolution at prediction time (Duan

et al. 2004; Mu and Zhang 2006; Duan and Mu 2009;

Zhou andMu 2011; Dijkstra and Viebahn 2015). CNOP

can be approximated by LSV when the initial pertur-

bations are sufficiently small and/or the forecast time

period is short; however, with increasing initial pertur-

bation magnitudes and forecast time periods, consid-

erable differences occur between CNOP and LSV

gradually. In such a case, CNOP cannot be approxi-

mated by LSV because of the effect of nonlinearity. For

ensemble forecasting, to consider the effect of non-

linearity on the ensemble initial perturbations, Mu and

Jiang (2008a,b) applied the CNOP method to yield

ensemble initial perturbations by replacing LSV with

CNOP (see also Jiang and Mu 2009) and attempted to

improve the related ensemble prediction skill. How-

ever, such an approach still involves linear approxima-

tion because nonleading SVs are regarded as ensemble

initial perturbations. This limitation encouraged us to

further investigate the application of CNOP in ensem-

ble forecasting.

Ensemble forecasts, if the ensemble initial perturba-

tions are orthogonal, may provide a better estimation of

forecast uncertainties (Annan 2004; Feng et al. 2014).

SVs, although they are orthogonal, do not consider the

effect of nonlinearity and may not be sufficient for

sampling effective initial errors and the related forecast

uncertainties in nonlinear models. As such, SVs are

limited in their ability to yield ensemble initial pertur-

bations. As mentioned above, CNOP is a natural gen-

eralization of LSV in nonlinear regimes. Therefore, it

would be useful to calculate orthogonal CNOPs to

generate ensemble initial perturbations and to estimate

forecast uncertainties. However, how to compute or-

thogonal CNOPs is an unresolved question. In this pa-

per, we first explore an approach to calculating

orthogonal CNOPs, then apply the results to producing

ensemble initial perturbations and, finally, study the

validity of orthogonal CNOPs in improving ensemble

forecast skill. In section 2, we introduce a method to

compute orthogonal CNOPs. Then we describe the

Lorenz-96 model (Lorenz 1996) adopted in this study in

section 3. The experimental strategy is described in

section 4. The skill of ensemble forecasts generated by

orthogonal CNOPs and SVs is evaluated in section 5. In

section 6, we discuss the implications of the results from

section 5. Finally, we present a summary and discussion

in section 7.

2. Orthogonal CNOPs

If we denote the state vector as U (which can repre-

sent, e.g., the atmospheric temperature, surface current,

and sea surface temperature), then the evolution of the

state vector can be described by the following nonlinear

partial differential equation:
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where U(x, t) 5 [U1(x, t), U2(x, t), . . . , Un(x, t)] is the

state vector, F is a nonlinear differential operator, U0 is

the initial state, (x, t) 2 V 3 [0, T], V is a domain in R
n,

0 , T , 1‘, x 5 (x1, x2, . . . , xn), and t is the time.

Assuming that the dynamic system Eq. (1) and the re-

lated initial states are known exactly, then the solutionU

(x, t) at time t can be given by

U(x, t)5M
t
(U

0
) , (2)

where Mt is the propagator of Eq. (1). If u0 represents

the initial errors, the resultant prediction errors ut at

prediction time t can be estimated by

u
t
5M

t
(U

0
1 u

0
)2M

t
(U

0
) . (3)

Based on Eqs. (2) and (3), Mu et al. (2003) defined the

CNOP, which represents the initial error that satisfies a

certain physical constraint and causes the largest pre-

diction error at the prediction time. Specifically, an ini-

tial perturbation u*
0
is called CNOP if and only if

J(u*
0
)5 max

ku0ki#d
J(u

0
) ,

where

J(u
0
)5 kM

t
(U

0
1 u

0
)2M

t
(U

0
)k

f
, (4)

where k ki is a norm to measure the magnitude of the

initial errors, ku0ki # d is the constraint condition of

the initial error magnitudes (d is a constant), and k kf is
the norm to measure the magnitude of the forecast

errors at the prediction time t, which is also the op-

timization period associated with the maximization of

Eq. (4). From Eq. (4), it is seen that the CNOP is

superimposed on the solution U(x, t), and the de-

viation from U(x, t) caused by the CNOP is explored.

Therefore, the solutionU(x, t) can be understood as a

reference state when investigating the effect of

CNOP.

As described in the introduction, Anderson (1997)

argued that orthogonal SVs are optimal initial pertur-

bations in linearized models, and they fail to provide

information about the likelihood of extreme perturba-

tions in ensemble forecasts. CNOP is the initial pertur-

bation that has the largest nonlinear evolution at the

final time of the interval [0, t], so it may capture in-

formation about extreme perturbations, which therefore

encouraged us to explore orthogonal CNOPs associated

with ensemble forecasts. The CNOP can be calculated

along the descending direction of the gradient of the

objective function with respect to the initial perturba-

tions by optimization solvers, such as sequential qua-

dratic programming (SQP; Powell 1983), limited-memory

Broyden–Fletcher–Goldfarb–Shanno (L-BFGS; Liu and

Nocedal 1989), and spectral projected gradient 2

(SPG2; Birgin et al. 2000). CNOP u*
0
is the global

maximum of J(u0) in the constraint condition ku0ki # d,

and there may also exist a local maximum ul
0. In this

case, we call CNOP a global CNOP and ul
0 a local

CNOP. Previous studies showed that the spatial struc-

tures of the global CNOP have significant similarities to

local CNOPs (Mu et al. 2003; Duan et al. 2004; Jiang

et al. 2008). The similarities between these CNOPs are

unfavorable for the diversity of ensemble members and

may result in a failure to track the error between the

control forecast and the true state when they evolve.

Moreover, orthogonal initial perturbations lead to a

relatively large spread for ensemble members and are

favorable for the diversity of ensemble members. In

particular, there is a greater possibility that the spread

covers the actual atmospheric state to be predicted.

To guarantee the diversity of the ensemble initial

perturbations and to take nonlinearity into consider-

ation, orthogonal CNOPs are explored. To obtain or-

thogonal CNOPs, we first calculate the global (or the

first) CNOP using an optimization solver (see last

paragraph). Then the second CNOP can be obtained in

the subspace orthogonal to the first CNOP; the third

CNOP can be calculated in the subspace orthogonal to

the first and second CNOPs; the fourth CNOP can be

achieved in the subspace orthogonal to the first, sec-

ond, and third CNOPs; and so on. Mathematically, the

related optimization problem for calculating orthogo-

nal CNOPs is as follows. The jth CNOP is the initial

perturbation u*
0j
, satisfying the following optimization

equation:

J(u�
0j
)5 max

u0j2Vj

kM
t
(U

0
1 u

0j
)2M

t
(U

0
)k

f
, (5)

where

V
j

5

(fu
0j
2R

njku
0j
k
i
#dg, j51

fu
0j
2R

njku
0j
k
i
#d,u

0j
?V

k
,k51, . . . , j21g, j.1

.

(6)

Here, Vj is one subspace of the whole space, the symbol

f g here represents the set of vectors, ? is the orthogo-

nality of vector spaces, u0j is the initial perturbation in

the subspace Vj, and ku0jki # d is the constraint condi-

tion of the initial perturbations (d is the constraint
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radius). According to Eqs. (5) and (6), the first CNOP

(i.e., u*
01
) possesses the largest nonlinear evolution in

the first subspace (i.e., the whole space) and the jth

CNOP (i.e., u*
0j
) possesses the largest nonlinear evolu-

tion in the subspace orthogonal to the j 2 1 CNOPs

(i.e., u*
01
, u*

02
, . . . , u*

0j21
). Orthogonal CNOPs, compared

with orthogonal SVs, further consider the effect of

nonlinearity.

In this paper, we use the SPG2 solver to compute

orthogonal CNOPs. We adopt the L2 norm for mea-

suring the initial errors and the related prediction errors:

that is,

kxk
L2
5

ffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

x2i

s
, (7)

where x 5 (x1, x2, . . . , xn) 2 R
n is the vector to be

measured.

3. The Lorenz-96 model

In this paper, we use the Lorenz-96 model (Lorenz

1996) to compute orthogonal CNOPs and to evaluate

the related ensemble forecast skill. This model has been

used to study various questions associated with pre-

dictability. For example, it has been applied in studies of

data assimilation (Fertig et al. 2007; Whitaker and

Hamill 2002; Hunt et al. 2004; Ott et al. 2004) and

adaptive observation (Khare and Anderson 2006). In

particular, the model has been used to explore the the-

ory of ensemble forecasting (Roulston and Smith 2003;

Revelli et al. 2010; Koyama and Watanabe 2010;

Descamps and Talagrand 2007; Basnarkov and Kocarev

2012; Li et al. 2013). Therefore, we chose the Lorenz-96

model to investigate the role of orthogonal CNOPs in

generating ensemble initial perturbations.

The model is governed by the following differential

equation:

dX
j

dt
5 (X

j11
2X

j22
)X

j21
2X

j
1F , (8)

where j5 1, . . . ,mwith cyclic boundary conditions. The

variables in Eq. (8) are nondimensional. Despite the

model being artificial, it describes the main basic char-

acteristics of atmospheric motion and is commonly used

to simulate atmospheric dynamics over a single lat-

itudinal circle, such as the dynamical behavior of vor-

ticity, temperature, and gravitational potential (Lorenz

1996; Lorenz and Emanuel 1998; Basnarkov and

Kocarev 2012). The three terms on the right-hand side of

Eq. (8) stand for the nonlinear advection, damping, and

forcing of the atmosphere, respectively. The nonlinear

behavior of this system changes with the number (i.e.,

m) of variables and the magnitude of the external forc-

ing F. Lorenz and Emanuel (1998) demonstrated that

the model is chaotic when m 5 40 and F 5 8, and in

such a case, one time unit is 5 days in reality. For the

parameter values used here, once the system has

reached its attractor, the expectation and standard de-

viation of Xj (j 5 1, . . . , m) are approximately 2.3 and

3.6, and the cross correlation betweenXj (j5 1, . . . ,m) is

negligible. In addition, Lorenz and Emanuel (1998)

demonstrated that if the model is discretized with a

fourth-order Runge–Kutta scheme and the related time

step is 0.05 time units (i.e., 6 h), the error-doubling time

is approximately 0.4 time units (i.e., 2 days) which is

consistent with realistic weather forecast models. These

results suggest that the Lorenz-96 model, with the above

configuration, is acceptable for studying ensemble

forecasts associated with orthogonal CNOPs.

4. Experimental strategy

After a spinup run of 4000 time steps (i.e., 1000 model

days), we continue to integrate the Lorenz-96 model for

730 000 time steps (i.e., 500model years) and obtain time

series of Xj ( j5 1, . . . , m), where Xj can be regarded as

being the discrete component of the variable X along

one latitudinal circle. From the time series of the vari-

able X, we take the state values of X every 1460 time

steps (i.e., 1 model year) as initial values and integrate

the model over 40 time steps (i.e., 10 model days), ulti-

mately obtaining 500 ‘‘truth runs,’’ which are regarded

as the future states to be forecasted.

To forecast the truth run, an initial analysis field is

determined. Here, we use the four-dimensional varia-

tional data assimilation (4DVAR) method to generate

the initial analysis fields. The corresponding observa-

tions are produced by adding random-noise (observa-

tional) errorswith a standard normal distribution,N(0, I),

to the truth run every 6 h (i.e., one time step), where

the standard deviation of the observational errors is

28% of the standard deviation of Xj (j 5 1, . . . , m).

Therefore, the magnitude of the observational errors is

acceptable. We also used other magnitudes of observa-

tional errors and found that the results were qualita-

tively less sensitive to the magnitudes of observational

errors. Therefore, in this paper, we use the above ob-

servational error magnitude to describe the results.

When forecasting the truth run, we use 4DVAR to

generate the initial analysis by assimilating the obser-

vations at the initial and the next time step. With this

initial analysis field, we integrate the Lorenz-96 model

and obtain a forecast for the truth run. The difference

between the initial analysis field and the initial value of
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the truth run to be predicted is the initial analysis error.

The related prediction errors are estimated by evaluat-

ing the differences between the forecasts and the truth

runs. For convenience, the corresponding initial analysis

error is referred to as ‘‘4DVAR-type analysis error’’

(the related amplitude is denoted by da), and the re-

sultant forecast is called the control forecast.

For each of the chosen 500 truth runs (i.e., cases), we

regard the control forecast as a reference state to com-

pute the orthogonal CNOPs. CNOPs depend on the

amplitudes of the initial perturbation (indicated by the

constraint radius d in section 2) and optimization time

period T. Therefore, we take different combinations of

d and T to calculate the orthogonal CNOPs of each

reference state and conduct ensemble forecast experi-

ments. We adopted 16 combinations of d and T (see

Table 1), and the first 15 orthogonal CNOPs of the ref-

erence state are obtained for each combination. The 15

orthogonal CNOPs are then superimposed on the initial

analysis field of the corresponding control forecast (i.e.,

the reference state) to yield 15 perturbed initial analysis

fields. In addition, we also superimpose the initial per-

turbations on the initial analysis with patterns opposite

to the orthogonal CNOPs to generate another 15 per-

turbed initial analysis fields. As a result, 30 perturbed

initial analysis fields are obtained for the control fore-

cast. By integrating the Lorenz-96 model with each

perturbed initial analysis field, we obtain a forecast of

the corresponding truth run. For 30 perturbed initial

analysis fields, 30 forecasts can be obtained for the truth

run. Combinedwith the control forecast, 31 forecasts are

obtained. We regard these forecasts as ensemble mem-

bers to evaluate the skill of the ensemble forecasts as-

sociated with orthogonal CNOPs. For the 500 truth

runs, a total of 15 500 forecast members are obtained.

Based on these forecast members, we evaluate the skill

of the ensemble forecast of the orthogonal CNOPs.

The skill of an ensemble forecast is often evaluated

using the root-mean-square error (RMSE; Murphy and

Epstein 1989), anomaly correlation coefficient (ACC;

Murphy and Epstein 1989), Brier score (BS; Brier 1950),

and relative operating characteristic curve area (ROCA;

Mason 1982). The RMSE and ACC are generally used

to evaluate the forecast skill of the ensemble mean. The

former measures the difference between the ensemble

mean and the observation (here, the ‘‘truth state’’), and

the smaller the RMSE is, the more accurate the en-

semble mean. The latter estimates the anomaly corre-

lation between the ensemble mean and the truth state,

and the larger the value of the ACC is, the higher the

forecast skill. BS and ROCA are often applied to esti-

mate the probabilistic forecast skill of an ensemble

forecast. The BS is the mean-square error of the

probability forecasts for a binary event and compre-

hensively evaluates the forecast reliability, the forecast

resolution, and the observational uncertainty of the

ensemble forecast. Smaller BS values indicate better

probability forecasts. ROCAmeasures the resolution of

the forecast system and evaluates the probabilistic

forecast skill of the occurrence of a binary event. Larger

values of ROCA indicate higher skill for ensemble

forecasts. Generally, forecasts can be regarded as skillful

when the value of ROCA is larger than 0.5. A more

detailed description of the four scores is provided in

appendixes A through D.

BS and ROCA are computed for the frequent event

ev1,Xj . 2.0 ( j5 1, . . . , 40), and the less frequent event

ev2,Xj . mj 1 sj ( j5 1, . . . , 40), where mj and sj are the

corresponding climatological mean and standard de-

viation of Xj. The former indicates that Xj occurs with a

frequency of 0.5, whereas the latter implies a frequency

of approximately 0.175. Here, the climatological mean is

obtained by taking the mean of 10-yr integrations of

the model.

5. Results

In this section, we adopt the Lorenz-96 model and the

experimental strategy shown in section 4 to evaluate the

validity of orthogonal CNOPs for improving the en-

semble forecast skill in a perfect model scenario, which

is then compared with orthogonal SVs to investigate

whether the former is better than the latter in improving

forecast skill.

a. The ensemble forecast experiments associated with
orthogonal CNOPs

The skill level of 10-day ensemble forecasts is first

assessed by RMSE and ACC, which measure the fore-

cast skill of the ensemble mean. For each truth run and

lead time (6 h, 12 h, 18 h, 1 day, 30 h, . . . , 10 days), we

calculate the RMSE and ACC for each S–i (i5 1, 2, . . . ,

16) and plot the mean of RMSE (and ACC) for all truth

runs and lead times in Fig. 1. The ensemble forecast skill

measured by the mean RMSE (and ACC) varies with

TABLE 1. Shown are 16 combinations of perturbation magnitude

d and optimization time T (da: magnitude of the initial analysis

error; S–i: combination of d and T).

T (days)

d

30%da 50%da 80%da 100%da

2 S–1 S–2 S–3 S–4

3 S–5 S–6 S–7 S–8

4 S–9 S–10 S–11 S–12

5 S–13 S–14 S–15 S–16
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d and T (d measures the amplitude of CNOPs, and T is

the optimization time period used to calculate the

CNOPs; see section 4). In particular, for each T, the

RMSE (ACC) presents the minimum (maximum)

values of d. Of the minima (maxima) corresponding to

different T, the value with T5 3 days and d5 80%da (da
is the amplitude of the initial analysis error; see section

4) is the smallest (largest), which indicates that the en-

semble forecast is generally muchmore skillful when the

orthogonal CNOPs of T 5 3 days and d 5 80%da are

used to generate the ensemble initial perturbations.

We also use BS andROCA tomeasure the probability

prediction skill of the ensemble forecasts, where all

forecast variables and truth runs are combined to com-

pute theBS andROCAat every lead timewithin 10 days

(6 h, 12 h, 18 h, 1 day, 30 h, 36 h, . . . , 10 days; Fig. 1), and

the number of realizations of the prediction processes is

N 5 40 3 500 5 20 000. The results illustrate that the

ensemble forecasts with CNOPs of T 5 3 days and

d 5 80%da provide a better estimation of the forecast

uncertainties and have higher forecast skill, which is

accordant with the results obtained by RMSE andACC,

which measure the forecast skill of the ensemble mean.

Orthogonal CNOPs are developed based on orthog-

onal SVs and take the effect of nonlinearity into con-

sideration. As such, orthogonal CNOPs and SVs should

have different spatial structures. As an example, we plot

in Fig. 2 the first and seventh CNOPs (and SVs) for one

truth run with constraint bound d being the 4DVAR-

type analysis error 30%da and da and the optimization

time period being 2 days. The CNOPs with large mag-

nitudes are different from the corresponding SVs, which

may indicate that the ensemble forecasts made by

CNOPs and SVs have different skill scores. To confirm

this result, we compute orthogonal SVs for the control

forecast of each truth run and take the first 15 orthog-

onal SVs, similar to orthogonal CNOPs. We scale the

SVs to possess the same amplitude as the CNOPs. If uL
is the ith SV for an optimization time period T, then the

scaled ith SV ûL can be defined as follows:

FIG. 1. The scores of the ensemble forecasts generated by orthogonal CNOPs (red) and SVs (green) measured by

(a) RMSE, (b) ACC, BS for (c1) the frequent event ev1 and (c2) the less frequent event ev2, and ROCA for (d1) the

frequent event ev1 and (d2) the less frequent event ev2, averaged over 500 truth runs and all lead times in 10 days.

The horizontal axis denotes the combinations of the optimization the time period T and the initial perturbation

magnitude d, and the vertical axis indicates the scores measured by the corresponding measurements. The intervals

with dashed lines divide the S–i that correspond to the same optimization time period T. In each interval of S–i, the

values of d increase with increasing i values. The dots indicate the combination of T and d that corresponds to the

highest skill for the ensemble forecasts generated by orthogonal CNOPs (red) and SVs (green).
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û
L
5 (21)n

ku
d
k

ku
L
kuL

, n5 1, 2, (9)

where ud is the ith CNOP, with the optimization period

T being the same as the corresponding ith SV. Thus,

kû
L
k5 ku

d
k ; (10)

that is, the scaled ith SV ûL possesses the same ampli-

tude as that of the ith CNOP ud. By this approach, we

can obtain orthogonal SVs with different combinations

of T and d. From Eq. (9), there are two scaled SVs for

one SV; furthermore, they are of opposite signs. That is

to say, for the first 15 SVs, we can obtain 15 pairs of SVs

(i.e., a total of 30 SVs). These 30 scaled SVs, together

with the control forecast, are used in ensemble fore-

casting to compare the forecast skill between SVs and

CNOPs. To facilitate the description, we continue to

refer to the scaled SVs hereafter as SVs.

Similar to CNOPs, the skills of the ensemble forecasts

generated by the SVs are also evaluated using RMSE,

ACC, BS, and ROCA for 500 truth runs and all of the

related lead times within 10 days (see Fig. 1). The results

show that the ensemble forecasts have different skill scores

for different S–i; for each T, the skill scores present a

minimum forRMSEandBS and amaximum forACCand

ROCA for values of d. Among these minima or maxima,

the one showing with a skill score of T 5 5 days and

d 5 100%da is the smallest for RMSE and BS and the

largest for ACC and ROCA. However, when comparing

the forecast skill associated with SVs and CNOPs, almost

all ensemble forecasts generated by the CNOPs have

much higher skill than those generated by the SVs. In

particular, the ensemble forecast generated by CNOPs

withT5 3 days and d5 80%da has the highest skill among

all forecasts generated by both CNOPs and SVs. These

results indicate that orthogonal CNOPs may be more ap-

plicable than orthogonal SVs in generating ensemble ini-

tial perturbations and improving forecast skill.

Therefore, the skill of ensemble forecasts generated by

CNOPs is higher than that generated by SVs. However,

the skill is evaluated by taking the mean of the forecast

skill scores for the 500 truth runs and/or all of the related

lead times within 10 days. To validate the ensemble fore-

cast skill of the orthogonal CNOPs, we also calculate the

skill scores of the ensemble forecasts corresponding to

each lead time for 500 truth runs. Figure 3 illustrates the

results, which show that, as the lead time gradually

FIG. 2. The first and seventh CNOPs and SVs for one of the truth runs with a 4DVAR-type

analysis error of d of (a) 30%da and (b) da and an optimization period of 2 days. For d equal to

30%da, the similarity coefficient (see appendix E) between the CNOPs and SVs in (a) exceeds 0.88;

and for d equal to da, the similarity coefficient between the CNOPs and SVs in (b) is less than 0.76.

This indicates that the CNOPs are different from the SVs when the initial perturbations are large.
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increases, the skill of the ensemble forecasts generated by

orthogonal CNOPs and SVs is substantially different, with

the former being higher than the latter. Nonlinearities

have greater effects when the lead times are long. CNOPs

are directly derived from a nonlinear model and contain

the effect of nonlinearities, which may cause the related

ensemble forecasts to possess higher skill than those gen-

erated by SVs. We also explore the dependence of the

ensemble forecast skill associated with CNOPs on truth

runs to be predicted. However, the ensemble forecasts

related toCNOPs for different truth runs are not always of

higher skill than those related to SVs. Therefore, we nat-

urally ask the following question: What conditions are

responsible for the ensemble forecasts generated by

CNOPs being more skillful than those generated by SVs?

In the next section, we address this question.

b. Conditions responsible for the superior
performance of the ensemble forecasts generated
by CNOPs

For each of the 500 truth runs, we evaluate the en-

semble forecast skill by combining all variables to

calculate the forecast skill scores measured by RMSE,

ACC, BS, and ROCA for 31 forecast members gener-

ated by the CNOPs and SVs at each lead time. We then

use the mean of the forecast skill scores obtained at all

lead times to compare the ensemble forecast skill gen-

erated by CNOPs with that generated by SVs for each

truth run. The ensemble forecasts generated by CNOPs

are not always of higher skill than those generated by

SVs for different truth runs. Specifically, there are 236

(76) truth runs whose ensemble forecasts generated by

CNOPs (SVs) possess much higher skill than those

generated by SVs (CNOPs), in terms of each of the four

forecast skill scores. For convenience, we classify the 236

truth runs as category 1 and the 76 truth runs as

category 2.

For the truth runs in category 1 and category 2, we use

the empirical orthogonal function (EOF) to extract the

leading EOF mode (EOF1) of the time-dependent

prediction errors (measured by the L2 norm) gener-

ated by the corresponding control forecasts. The EOF1

for the truth runs in category 1 and category 2 explains

more than 92% of the total variance, which indicates

FIG. 3. The skill scores of the ensemble forecasts generated by orthogonal CNOPs (T5 3 days and d5 80%da; red

lines) and SVs (T5 5 days and d5 100%da; green lines) for lead times of 1, 2, 3, . . . , 10 days, measured by (a) RMSE,

(b) ACC, BS for (c1) the frequent event ev1 and (c2) the less frequent event ev2, and ROCA for (d1) the frequent

event ev1 and (d2) the less frequent event ev2. The horizontal axis denotes the lead time, and the vertical axis

indicates the skill score. The blue lines represent the skill scores of the control forecasts for 500 truth runs. The dashed

lines are the reference lines, denoting the skill scores of 0.6 for ACC and 0.5 for ROCA.
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that the respective EOF1s can describe the common

characteristics of the evolutionary tendency of the pre-

diction errors generated by the control forecasts. To

compare the evolutionary tendencies of prediction er-

rors generated by control forecasts of the truth runs in

category 1 and category 2, we shift their EOF1s to have

the same value at the initial time (Fig. 4). The results

show that the prediction errors generated by the control

forecasts for the truth runs in category 1 tend to grow

faster than those in category 2; furthermore, for the truth

runs in category 1, the ensemble forecasts generated by

CNOPs have much higher skill than those generated by

SVs, which may indicate that orthogonal CNOPs are

more useful than orthogonal SVs in achieving high en-

semble forecast skill for truth runs with control forecasts

possessing faster-growing forecast errors. In particular,

the initial analysis errors of the control forecasts in

category 1 are more similar to the CNOP-type error of

the corresponding truth runs than those in category 2

(see Table 2). Here, the so-called CNOP-type error is

superimposed on the truth runs and acts as the fastest-

growing initial error for the truth runs, which is a global

CNOP and is computed with the optimization time pe-

riods being those of the orthogonal CNOPs of the con-

trol forecasts and the initial perturbation magnitude

being the magnitude of the initial analysis errors. The

similarities between the CNOP-type errors and initial

analysis errors in category 1 may explain why the initial

analysis errors in category 1 growmuch faster than those

in category 2, where the similarities are measured by a

similarity coefficient (see the appendix E). As a result,

the faster-growing CNOPs of the control forecasts may

be more likely than the SVs to describe the initial

analysis errors in category 1; therefore, the ensemble

forecasts generated by CNOPs in category 1 are of

higher skill than those generated by SVs. That is to say,

the orthogonal CNOPs are more appropriate than the

orthogonal SVs for describing initial analysis errors that

grow faster.

To further validate the above argument, we conduct

two additional experiments. Because the CNOP-type

errors of truth runs grow much faster than the SV-type

errors, we directly take the CNOP-type errors (and SV-

type errors) of the truth runs as the initial analysis error,

where the SV-type errors are superimposed on the truth

FIG. 4. The EOF1 of the time-dependent prediction errors generated by the control forecasts

for the 236 truth runs in category 1 (red solid line) and the 76 truth runs in category 2 (green

solid line). The EOF1s of the truth runs in category 1 and category 2 are each moved to the

dashed lines to have the same value at the initial time.

TABLE 2. Mean similarity coefficient between the 4DVAR-type

analysis errors for the truth runs in category 1 and category 2 and the

CNOP-type errors of truth runs with different optimization times.

Optimization

time (days) 2 3 4 5

Category 1 0.0291 0.0224 0.0007 0.0243

Category 2 20.0215 20.0051 0.0004 20.0185
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run and represent the lead one of SVs. Now we in-

vestigate whether the ensemble forecasts generated by

orthogonal CNOPs (and SVs) have higher skill than

those generated by orthogonal SVs (and CNOPs). The

first experiment involves taking the CNOP-type errors

of the truth run as the initial analysis errors, and the

second experiment involves regarding the SV-type error

of the truth run as the initial analysis error. To facilitate

the following description, we use ‘‘CNOP-type analysis

error,’’ and ‘‘SV-type analysis error’’ to denote the ini-

tial analysis errors obtained by CNOP-type errors and

SV-type errors, respectively. We have denoted the ini-

tial analysis error of the aforementioned control fore-

casts as 4DVAR-type analysis errors in section 4.

1) EXPERIMENT 1

In this experiment, we use the CNOP-type errors as

the initial analysis error to yield control forecasts for the

truth runs. Specifically, the CNOP-type errors of the

truth runs are calculated with optimization time periods

of 2 days and an initial perturbation amplitude con-

strained by the corresponding 4DVAR-type analysis

error. Based on these control forecasts corresponding to

CNOP-type analysis errors, we compute the orthogonal

CNOPs and SVs for all combinations ofT and d in Table

1 and use the results to generate initial perturbations of

ensemble forecasts for 500 truth runs. The results show

that the ensemble forecasts generated by the orthogonal

CNOPs have higher skill than those generated by or-

thogonal SVs (Fig. 5). In particular, for each optimiza-

tion time period T adopted in computing the orthogonal

CNOPs and SVs, the ensemble forecast skill generated

by CNOPs gradually increases with S–i as i increases;

furthermore, the skill becomes increasingly higher than

that generated by SVs, which indicates that, for each T,

the extent to which the ensemble forecast skill gener-

ated by CNOPs is higher than that generated by SVs

becomes increasingly significant as the magnitudes of

CNOPs increase toward those of the 4DVAR

analysis errors.

We also use the CNOP-type analysis errors with op-

timization time periods of 3, 4, and 5 days to yield con-

trol forecasts and to calculate their orthogonal CNOPs

and SVs. We then compare the related ensemble fore-

cast skill associated with CNOPs and SVs and find

similar results (i.e., the ensemble forecasts generated by

CNOPs show greatly improved skill compared with the

ensemble forecasts generated by SVs). For simplicity,

FIG. 5. As in Fig. 1, but for 500 truth runs with CNOP-type analysis errors, where the magnitudes of the CNOP-

analysis errors are the same as those of the 4DVAR-type errors and the optimization time period is 2 days (see

section 5b).
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the related figures and tables are omitted here. These

results indicate that the orthogonal CNOPs of the con-

trol forecasts may be better able to capture the fast

growth behavior of the CNOP-type analysis errors, in-

dicating that the related ensemble forecasts would pos-

sess higher skill than those generated by SVs.

2) EXPERIMENT 2

In this experiment, we examine whether the ensemble

forecasts generated by orthogonal SVs possess higher

skill when the initial analysis errors are taken as the SV-

type analysis errors.

The SV-type analysis errors, similar to the CNOP-

type analysis errors, are computed for the optimization

time periods of the orthogonal SVs superimposed on the

control forecasts in section 5a. Then the obtained SV-

type analysis errors are scaled to have the same ampli-

tude (measured by the L2 norm) as the corresponding

4DVAR-type analysis error. We use these SV-type

analysis errors to yield control forecasts for the corre-

sponding truth runs. Based on these control forecasts,

we compute the orthogonal CNOPs and SVs for all

combinations of T and d in Table 1 and use the results to

generate ensemble initial perturbations for ensemble

forecasts. The results show that, for each optimization

time period associated with calculating the CNOPs and

SVs, the ensemble forecasts generated by the SVs are

not always of higher forecast skill than those generated

by CNOPs for different magnitudes (denoted by d; see

section 4) of ensemble initial perturbations, despite the

initial analysis errors being taken as the SV-type errors

of the truth runs. Specifically, for each optimization time

period T, when d is smaller, the skill of the ensemble

forecasts generated by the CNOPs and SVs is nearly the

same, with that generated by CNOPs a little higher than

that generated by SVs. When d is larger, the skill of the

ensemble forecasts generated by SVs is significantly

higher than that generated by CNOPs (Fig. 6). The SV-

type analysis errors are relatively slowly growing and

present more stable dynamical growing behavior.

Therefore, when d is sufficiently small, the nonlinear

evolution of the initial perturbations can be approxi-

mated by the linear counterparts (Duan et al. 2009), and

the nonlinear effect can be neglected. In this case,

CNOPs are trivially different from the SVs (also see

Fig. 2a); therefore, the difference between the ensemble

forecast skill associated with CNOPs and SVs is small.

Nevertheless, when d is larger, the CNOPs include the

FIG. 6. As in Fig. 1, but for 500 truth runs with SV-type analysis errors, where the magnitudes of the SV-type analysis

errors are the same as those of the 4DVAR-type errors and the optimization time period is 2 days (see section 5b).
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full nonlinear effects, whereas the SVs are completely

linear; therefore, the CNOPs are significantly different

from the SVs (see Fig. 2b). Consequently, the corre-

sponding orthogonal CNOPs superimposed on the

control forecasts may overestimate the nonlinearity of

the growth of the SV-type analysis error, ultimately

causing the corresponding ensemble forecast skill to be

lower than that generated by SVs.

c. Influence of the number for ensemble members
associated with orthogonal CNOPs and SVs on
forecast skill

In sections 5a and 5b, we compare the role of or-

thogonal CNOPs and SVs in improving ensemble fore-

cast skill by taking the equivalent number of ensemble

members. In this section, we explore the impact of the

change of ensemble members’ number on the forecast

skill associated with orthogonal CNOPs and SVs. Spe-

cifically, we adopt the approach shown in sections 4 and

5a to yield the orthogonal CNOPs and SVs and use the

results to obtain 7, 11, 15, 19, 23, 27, and 31 ensemble

members for each control forecast of the truth runs. For

each of these ensemble members’ numbers, we conduct

numerical experiments similar to section 5a. The results

demonstrate that the combination of T and d with the

highest ensemble forecast skill varies with the ensemble

members’ number. Based on the combination of T and

d showing the highest forecast skill for each number of

ensemblemembers, we study the effect of the number of

ensemble members on the related forecast skill.

The results show that, for the control forecast gener-

ated by the 4DVAR-type analysis errors, the CNOPs

always perform better than SVs regardless of the num-

ber of ensemble members (Fig. 7), which indicates that

even if we obtain a small number of ensemble members

associated with CNOPs, there could be a high forecast

skill compared with that associated with SVs. In addi-

tion, we notice that the skill of the ensemble forecasts is

higher when the number of ensemble members becomes

large. This does not mean that the larger the number of

ensemble members is, the higher the ensemble forecast

skill. In fact, there may exist an upper limit to the

numbers of ensemble members for achieving a high

forecast skill. For example, the highest skill of ensemble

FIG. 7. The averaged skill scores over 500 truth runs and all lead times in terms of the score when the forecast skill

associated with CNOPs (red lines) and SVs (green lines) is the highest for different combinations of T and d. Here,

the related control forecast is generated by the 4DVAR-type analysis errors. The horizontal axis represents the

numbers of ensemble members, and the vertical axis denotes different evaluation scores, as in Fig. 1. The dots

indicate the ensemble forecast members’ number that corresponds to the highest skill for different numbers of

ensemble members.
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forecasts associated with orthogonal CNOPs in terms of

RMSE and ACC is achieved when the number of en-

semble members is 23 rather than 27 or 31.

The CNOP- and SV-type analysis errors are similarly

used to examine the effect of the ensemble members’

number. The results associated with the CNOP-type

analysis errors demonstrate that the ensemble forecasts

generated by CNOPs always perform better than those

generated by SVs regardless of number of ensemble

members (Fig. 8). In particular, when the number of

ensemblemembers is only seven, the ensemble forecasts

generated by the CNOPs achieve the highest forecast

skill in terms of RMSE, ACC, and ROCAmeasurements,

which is much higher than the highest forecast skill that the

SVs achieve. For the results associated with the SV-type

analysis errors, the ensemble forecasts generated by or-

thogonal SVs always behavebetter than those generatedby

orthogonal CNOPs, regardless of the number of ensemble

members, which further validates the conclusion in section

5b: that is, the ensemble forecasts generated by orthogonal

SVs achieve higher forecast skill when the initial analysis

errors are slow growing. For simplicity, the related figure is

omitted here.

In sections 5a, 5b, and 5c, we demonstrate that or-

thogonal CNOPs are superior to orthogonal SVs in

yielding ensemble initial perturbations for the control

forecast with fast-growing analysis errors. In this case,

only a small number of ensemble members generated by

orthogonal CNOPs are required to achieve higher

forecast skill.

6. Discussion

We have shown that for fast-growing initial analysis

errors, orthogonal CNOPs have higher forecast skill

than orthogonal SVs. Several studies showed that fast-

growing initial analysis errors are easily influenced by

nonlinearity (Mu et al. 2003; Duan and Mu 2006). Mu

et al. (2007) andDuan et al. (2009) showed that, whether

the initial analysis error grows significantly is dependent

on both its spatial structure and the related reference-

state events. That is to say, one initial analysis error may

be significantly growing for some events but slowly

growing for other events. Because the high skill of the

ensemble forecasts generated by CNOPs is determined

by the dynamically growing behavior of the initial

analysis errors, the skill is also dependent on the related

reference-state events. Extreme events are much more

likely to induce fast growth of initial errors (Mu et al.

2007; Duan et al. 2009), which, combined with the

FIG. 8. As in Fig. 7, but with the related control forecast generated by CNOP-type analysis errors, where the

magnitudes of the CNOP-type analysis errors are the same as those of the 4DVAR-type errors and the optimization

time period is 2 days (also see section 5b).
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conclusion that CNOPs possess higher forecast skill than

orthogonal SVs for fast-growing initial analysis errors,

indicates that the ensemble forecasts generated by

CNOPs have higher skill than those generated by SVs in

forecasting evolutions of extreme events.

In addition, Duan et al. (2013) demonstrated that the

spatial structure of precursory disturbance may indicate

the dynamic growth behavior of future events (also see

Qin et al. 2013). Therefore, if we can observe the pre-

cursor of an event in advance in realistic forecasts, we

may estimate whether the event will be strong or weak

and then determine which method (CNOPs or SVs)

should be chosen to yield the initial perturbations for the

ensemble forecasts. For a precursor whose resultant

event is weak andwhose evolution can be approximately

described by a linear dynamic system, orthogonal SVs

should be used to generate the ensemble initial pertur-

bations; otherwise, orthogonal CNOPs should be se-

lected to yield the ensemble initial perturbations,

yielding a higher skill.

7. Summary

In this paper, we extend orthogonal SVs to the non-

linear regime and propose the concept of orthogonal

CNOPs. Orthogonal CNOPs describe a group of or-

thogonal initial perturbations, each of which represents

the initial error that causes the largest prediction error at

the prediction time in the related initial perturbation

subspace. We use orthogonal CNOPs to yield ensemble

members and investigate their role in improving forecast

skill by comparing the related ensemble forecast skill

with that using orthogonal SVs to generate the initial

perturbations, in which the Lorenz-96 model is used as a

platform for the ensemble forecast experiments.

Three types of initial analysis error are used. The first

is obtained through the 4DVAR approach and is re-

ferred to as ‘‘4DVAR-type analysis errors.’’ The related

results show that the ensemble forecast skill associated

with orthogonal CNOPs is statistically higher than that

associated with orthogonal SVs. Further investigation

shows that orthogonal CNOPs are more applicable than

orthogonal SVs for yielding mutually orthogonal initial

perturbations for ensemble forecasts when the initial

analysis errors are fast growing. To further address this

issue, the CNOP errors and the leading SV errors of the

truth runs are continuously used as the second and third

initial analysis errors, referred to as ‘‘CNOP-type anal-

ysis errors’’ and ‘‘SV-type analysis errors,’’ respectively.

The ensemble forecasts generated by orthogonal

CNOPs greatly improve the forecast skill when using the

CNOP-type analysis errors. However, for the SV-type

analysis errors, the related ensemble forecasts generated

by orthogonal SVs are not always of higher forecast skill

than those generated by CNOPs. Specifically, for small

magnitudes of orthogonal initial perturbations, the

evolution is weakly influenced by nonlinearity, causing

the ensemble forecasts generated by orthogonal CNOPs

to possess almost the same skill as those generated by

orthogonal SVs. Nevertheless, for each of the given

optimization time periods, as the magnitude of the or-

thogonal initial perturbations increases, orthogonal

CNOPs overestimate the nonlinearity of the growth of

SV-type analysis errors and have substantially worse

forecast skill than the orthogonal SVs. These compari-

sons further validate that orthogonal CNOPs are more

appropriate than orthogonal SVs in describing the un-

certainties in the evolution of fast-growing initial anal-

ysis errors. Generally, fast-growing initial analysis errors

are related to extreme events (here referred to as strong

events); therefore, ensemble forecasts generated by or-

thogonal CNOPs have higher skill than the orthogonal

SVs in forecasting the evolution of such extreme events.

We demonstrate that much smaller numbers of ensem-

ble members generated by orthogonal CNOPs are re-

quired to achieve the highest skill. For different

atmospheric and oceanic phenomena, the numbers of

ensemble members to achieve the highest skill are dif-

ferent and depend on the attractor dimension of the

related systems (Carrassi et al. 2009). In addition, if one

can observe the precursor of an event in advance in re-

alistic forecasts, whether orthogonal CNOPs or SVs

should be used to generate the initial perturbations for

the ensemble forecast can be determined, and a higher

forecast skill for the evolution of the precursor can be

expected.

Bowler (2006) compared random initial perturbations

(RPs) with SVs using the Lorenz-96 model and dem-

onstrated that, because of the simplicities of the model,

the superiority of SVs in the ensemble forecast cannot

be revealed. The present study also compared RPs with

CNOPs using the Lorenz-96 model. Unfortunately, the

result fails to reveal the superiority of CNOPs in en-

semble forecasts. We follow Bowler (2006) in proposing

that the simplicity of the Lorenz-96 model may be re-

sponsible for the result. Toth and Kalnay (1993, 1997)

showed that RPs cannot describe the spatial structure of

initial analysis errors and fails to develop baroclinic

unstable modes in the baroclinically unstable regions in

realistic numerical weather forecast models, which in-

dicates the usefulness of the initial perturbations of

particular structures in ensemble forecasts. Therefore,

to demonstrate the superiority of CNOPs in ensem-

ble forecasting compared to RPs, realistic weather

models, such as the Fifth-generation Pennsylvania State

University–National Center for Atmospheric Research
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Mesoscale Model (MM5; Dudhia 1993) or Weather

Research and Forecasting (WRF; Skamarock et al.

2005) Model, should be used. Such studies are under

investigation, and satisfactory results have been ob-

tained, which will be reported in a future paper.

Bred vectors (BVs; Toth and Kalnay 1993, 1997)

represent another approach that yields ensemble initial

perturbations and have been used at the National Cen-

ters for Environmental Prediction. Nevertheless, BVs

and SVs possess different dynamic characteristics in

terms of optimal perturbation growth. So comparisons

between ensemble forecasts generated by orthogonal

CNOPs and BVs must be performed in future work. In

addition, model errors also influence the forecast skill,

so the application of ensemble forecast in decreasing

model errors should be investigated. Duan and Zhou

(2013) proposed the approach of nonlinear forcing sin-

gular vectors (NFSVs; also see Duan and Zhao 2015),

which describes the model tendency error that causes

the largest prediction error at the prediction time. If one

considers the orthogonal NFSVs and disturbs the model

in mutually independent subspaces of the model ten-

dency perturbations, the forecast errors induced by the

model errors are significantly decreased by ensemble

forecasts. If one combines orthogonal CNOPs and

NFSVs and applies them in ensemble forecasts, the

impact of both the initial errors and the model errors

would be reduced, and the forecast skill may be signifi-

cantly increased. To perform this combination, there are

several theoretical and technical problems to be ad-

dressed. For example, how to obtain orthogonal

NFSVs? What is the theoretical basis associated with

orthogonal NFSVs? In addition, computations of or-

thogonal CNOPs and NFSVs are expensive, although

the results shown in this paper demonstrate only a small

number of ensemble members generated by orthogonal

CNOPs are required to achieve the highest forecast skill.

Reducing computation costs is important, and effective

algorithms should be developed to calculate the or-

thogonal CNOPs and NFSVs. It is expected that en-

semble forecasts can be improved by the application of

orthogonal CNOPs and NFSVs.
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APPENDIX A

Root-Mean-Square Error

The RMSE is commonly adopted to measure the

difference between the forecast (here, the mean of en-

semble members; i.e., the ensemble mean) and the ob-

servation. The smaller the RMSE is, the more accurate

the ensemble mean. The RMSE is calculated by the

following equation:

RMSE5
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where m is the number of spatial grids, and yi and oi are

the forecast value and observation at grid i, respectively.

APPENDIX B

Anomaly Correlation Coefficient

The ACC is one of the most widely used measures in

the verification of spatial fields (Murphy and Epstein

1989). ACC is the correlation between forecasts (here,

the ensemble mean of the forecast results) and observed

anomalies [as shown in Eqs. (B1) and (B2)]. The larger

the ACC is, the higher the forecast skill:
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where for grid i, yi and oi are the forecast value and

observation, respectively; ci is the climatological state; y0i
and o0

i are the forecast anomaly and observed anomaly,

respectively; and y0 and o0 are the spatial mean of the

forecast and observed anomaly field, respectively.

APPENDIX C

Brier Score

The BS is the mean square error of the probability

forecasts (Brier 1950) with the representation [Eq.

(C1)]. BS comprehensively evaluates the forecast re-

liability, the forecast resolution, and the observational

uncertainty of the ensemble forecasting system for
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probabilistic prediction of the occurrence of a binary

event. BS is negatively oriented (i.e., it gives smaller

values for better probability forecasts):

BS5
1

N
�
N

i51

(f
i
2 o

i
)2 , (C1)

where N is the number of realizations of the prediction

process, and fi and oi are the forecast and observational

probability for the ith prediction process, respectively. The

observational probability oi is equal to 1 or 0 depending on

whether the binary event has been observed to occur.

APPENDIX D

Relative Operating Characteristic Area

The ROCA [i.e., the area under the relative operating

characteristic (ROC) curve (Mason 1982)], is used to

represent the forecast skill according to a contingency

table. By considering whether an event happens at every

grid and checking the forecasts with the truth (or the

observations), the result is one of the following out-

comes: a hit (i.e., an event occurred and a warning was

provided); a false alarm (i.e., an event did not occur but a

warning was given); a miss (i.e., an event occurred but a

warning was not given); or a correct rejection (i.e., an

event did not occur and a warning was not given). A two-

by-two contingency table can then be generated, as il-

lustrated in Table D1.

In Table D1, X is the number of hits, Y is the number

of misses, Z is the number of false alarms, and W is the

number of correct rejections. The hit rateH and the false

alarm rate F can be represented as

H5
X

X1Y
and F5

Z

Z1W
. (D1)

Different values ofH and F can be obtained according

to different probability thresholds, which means that an

event is deemed to occur when the probability forecast is

not smaller than the given threshold. The ROC curve

can then be drawn with paired values of (F,H) related to

different thresholds. ROCA can then be calculated as

follows:

ROCA5

ð1
0

H(x) dx

5 �
M

i51

1

2
(H

i11
1H

i
)(F

i11
2F

i
) , (D2)

where M is the number of categories relative to the

probability threshold. ROCA is positively oriented (i.e.,

it gives larger values for better forecasts). Generally,

forecasts are skillful when the value of ROCA is greater

than 0.5.

APPENDIX E

Similarity Coefficient

The similarity coefficient is defined as follows:

S5
hx, yi
kxk kyk , (E1)

where S is the similarity coefficient between the vectors

x and y, h�, �i is the Euclidean inner product, and k�k is

the L2 norm.
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