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ABSTRACT

A timescale decomposed threshold regression (TSDTR) downscaling approach to forecasting South China early summer
rainfall (SCESR) is described by using long-term observed station rainfall data and NOAA ERSST data. It makes use of
two distinct regression downscaling models corresponding to the interannual and interdecadal rainfall variability of SCESR.
The two models are developed based on the partial least squares (PLS) regression technique, linking SCESR to SST modes
in preceding months on both interannual and interdecadal timescales. Specifically, using the datasets in the calibration
period 1915-84, the variability of SCESR and SST are decomposed into interannual and interdecadal components. On
the interannual timescale, a threshold PLS regression model is fitted to interannual components of SCESR and March SST
patterns by taking account of the modulation of negative and positive phases of the Pacific Decadal Oscillation (PDO). On the
interdecadal timescale, a standard PLS regression model is fitted to the relationship between SCESR and preceding November
SST patterns. The total rainfall prediction is obtained by the sum of the outputs from both the interannual and interdecadal
models. Results show that the TSDTR downscaling approach achieves reasonable skill in predicting the observed rainfall
in the validation period 1985-2006, compared to other simpler approaches. This study suggests that the TSDTR approach,
considering different interannual SCESR-SST relationships under the modulation of PDO phases, as well as the interdecadal
variability of SCESR associated with SST patterns, may provide a new perspective to improve climate predictions.
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1. Introduction

An important task for flood and drought management is
the provision of accurate rainfall prediction. The rainfall dis-
tribution in China is generally characterized by a “southern
flood and northern drought” pattern, due to the weakening of
the East Asian summer monsoon after the late 1970s (Nitta
and Hu, 1996; Wang, 2001; Gong and Ho, 2002). Accom-
panied by the northward seasonal march of the East Asia
summer monsoon, abundant rainfall first appears over South
China (SC) in mid-May (Tao, 1987; Lau and Weng, 2001;
Ding et al., 2008; Wu et al., 2012), and leads to the peak
of annual rainfall in early summer (June) over the region
(Fig. 1a). Because SC is one of China’s largest economic
zones with a large population, extreme flood events in early
summer often cause a large number of human casualties and
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considerable economic loss (Chan and Zhou, 2005; Zhou et
al., 2006). Thus, improving seasonal forecasting skill for
early summer rainfall over SC is of great importance for dis-
aster prevention and mitigation.

There are several approaches to forecasting rainfall. One
is using numerical models (e.g. Collischonn et al., 2005;
Aligo et al., 2009). The raw model prediction is dynamically
meaningful, but still has low skill for many reasons; for in-
stance, because of the model resolution (Martin, 1999), sub-
grid processes (Grotch and MacCracken, 1991) and parame-
terization schemes (Eitzen and Randall, 1999). Hence, pre-
cipitation modeling is regarded as one of the most difficult
issues in climate modeling, resulting in low skill on the basis
of the pure numerical approach. Another approach to fore-
casting rainfall is based on statistical downscaling models
(Liu and Fan, 2012a, 2014; Sun and Chen, 2012). A statisti-
cal downscaling method combining the GCM-simulated and
observed information is developed, which shows much bet-
ter predictability for global precipitation forecasting (Sun and
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Fig. 1. (a) The annual climatological cycle of the rainfall at the stations of Guangzhou, Hong Kong and Macao, as
well as the 3-station average, during 1910-2011. (b) Detrended correlation of the 3-station averaged rainfall with the
160-station rainfall from CMA in June during 1951-2011. The stations at Guangzhou, Hong Kong and Macao are
indicated by the three red dots. The grey shading indicates CCs significant at the 99% confidence level based on the
t-test, presenting the SC region. (c) Power spectrum for June rainfall. The peak over the red dashed line indicates the

confidence level is greater than 80% against red noise.

Chen, 2012). In addition, pure statistical downscaling mod-
els are also used to forecast rainfall. The method is gener-
ally based on an empirical observed relationship between the
large-scale climate anomalies and local rainfall fluctuations.
There are various methods that can be used to develop statisti-
cal downscaling models, including multiple linear regression
(Wilby, 1998), principle components (Li and Smith, 2009),
and singular value decomposition (Zhu et al., 2008; Liu and
Fan, 2012b). Other more sophisticated methods include par-
tial least squares (PLS) regression (Zhang et al., 2011; Wu et
al., 2013).

Pure statistical downscaling models show reasonable skill
in predicting regional rainfall. For example, Sahai et al.
(2003) made optimum use of global SST for Indian sum-
mer monsoon rainfall prediction nine months in advance.
Rainfall may contain variabilities on various timescales, with
low-frequency interdecadal variability associated with pro-
nounced wetting or drying trends (Ding et al., 2008) and
high-frequency interannual variability related to severe floods
or droughts (Huang et al., 2006). Guo et al. (2012) described
a timescale decomposition (TSD) approach to statistically

downscale the late summer rainfall over North China, which
made use of two distinct downscaling models corresponding
to the interannual and interdecadal rainfall variability, respec-
tively. However, the TSD approach by Guo et al. (2012) ne-
glected the possibility that the interannual rainfall variability
may be modulated by an interdecadal climatic background.
Recently, an increasing number of studies have sug-
gested that the interannual relationships of large-scale climate
anomalies with local or remote climate fluctuations are not
stationary (e.g. Torrence and Webster, 1999; Wang, 2002;
Wu and Wang, 2002; Gao et al., 2006; Sun and Wang, 2012;
Chen et al., 2013a; Chen et al., 2015a, 2015b; Cao et al.,
2015, 2016). In particular, the modulation of a decadal-scale
coupled ocean atmospheric mode named the Pacific Decadal
Oscillation (PDO) (Mantua et al., 1997; Mantua and Hare,
2002) has attracted more attention in the last decade (Ger-
shunov and Barnett, 1998; Power et al., 1999; Chan and
Zhou, 2005; Wang et al., 2008; Mao et al., 2011; Chen et al.,
2013b; Duan et al., 2013). For example, it has been found that
the typical influences of ENSO on the North American cli-
mate are strong and consistent only during preferred phases
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of the PDO (Gershunov and Barnett, 1998). The ENSO-
East Asian summer monsoon relationship during 1962-77
has been found to be significantly different from that dur-
ing 1978-93 (Wu and Wang, 2002), which is actually con-
sistent with a phase transition from negative to positive PDO
in the late-1970s. In the SC region, the interannual rainfall
variation has also been suggested to be modulated by the
PDO (Chan and Zhou, 2005; Mao et al., 2011; Duan et al.,
2013). It has been proposed that incorporating information on
the PDO could improve the long-term predictability of early
summer SC rainfall changes (Chan and Zhou, 2005; Zhou et
al., 2006). Therefore, a statistical model that takes into ac-
count the modulation of the PDO may lead to better skill in
seasonal rainfall prediction over SC. This naturally raises two
key questions: How can the modulation effect of the decadal-
scale coupled oceanic—atmospheric mode of the PDO be in-
corporated when developing a statistical downscaling model
to forecast the early summer rainfall over SC? And can the
forecasting skill be improved?

The aim of this paper is to describe a TSD threshold re-
gression (TSDTR) downscaling approach for the statistical
forecasting of South China early summer rainfall (SCESR).
The TSDTR downscaling approach includes two distinct re-
gression downscaling models, called the interannual model
(IAM) and interdecadal model (IDM), respectively link-
ing SST patterns prior to early summer to the interannual
and interdecadal variability of SCESR. On the interannual
timescale, the TAM, based on a threshold PLS regression
model, is fitted to interannual components of SCESR and
March SST patterns by taking account of the modulation of
negative and positive phases of the PDO. On the interdecadal
timescale, the IDM, based on a PLS regression model, is em-
ployed to fit the relationship between SCESR and preceding
November SST patterns. The total rainfall prediction is ob-
tained by the sum of the outputs from both the ITAM and IDM.

The rest of this paper is arranged as follows: Section 2
introduces the datasets used in this work. The TSDTR down-
scaling approach is described in section 3. Results of the TS-
DTR approach in forecasting SCESR are presented in section
4. Section 5 is a summary and discussion.

2. Data

Long-term reliable observed rainfall data are derived
from the monthly rain gauge datasets from three sta-
tions: Hong Kong (22.11°N, 114.14°E), Macao (22.16°N,
113.35°E) and Guangzhou (23.08°N, 113.16°E). These rain-
fall data have been used by previous studies (Chan and Zhou,
2005; Mao et al., 2011; Duan et al., 2013) and are chosen
here because of their long-term reliability since 1910. The
maximum rainfall of these three stations occurs in June (Fig.
la), which purely belongs to the South China Sea summer
monsoon rainfall (Tao, 1987; Wang et al., 2004). Another
set of monthly rainfall data derived from 160 Chinese meteo-
rological stations provided by the China Meteorological Ad-
ministration (CMA) is also used in this study, available from
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1951. The simultaneous correlation pattern of three-station
averaged rainfall in June with the 160-station rainfall from
CMA during the period 1951-2011 shows significant positive
correlation over the region of SC (Fig. 1b). Thus, it is reason-
able to use the long-term, high-quality three-station (Hong
Kong, Macao and Guangzhou) averaged rainfall in June to
represent the SCESR 1in this study.

The PDO index, defined as the leading EOF of SST
anomalies in the North Pacific Ocean poleward of 20°N af-
ter removing the global warming signal (Mantua et al., 1997,
Mantua and Hare, 2002), is taken from the website of the
Joint Institute for the Study of the Atmosphere and Ocean
(http://jisao.washington.edu/pdo/PDO.latest), which contains
data from 1900 onward. An 11-year running mean of winter-
time (October—March averaged) PDO index is used to obtain
the interdecadal variability of the PDO (Mantua and Hare,
2002; Mao et al., 2011) over the period 1910-2011 (Fig. 2a).
Note that 10 years are missing, caused by the 11-year running
mean, and thus the period for the forecasting experiment in
this work is chosen as 1915-2006. Monthly SST data are ex-
tracted from NOAA ERSST.v3b (Smith and Reynolds, 2004;
Smith et al., 2008) on 2.0° x2.0° grid, which is available from
the year 1854 at http://www.esrl.noaa.gov/psd/data/gridded/.
Monthly atmospheric data are obtained for the period from
1948 from the NCEP-NCAR reanalysis products on 2.5° X
2.5° grid (Kalnay et al., 1996), including horizontal winds
and specific humidity at different levels (also available at
http://www.esrl.noaa.gov/psd/data/gridded)).

3. Methods

Two primary peaks with periods of about 4 years and 17
years exist in the SCESR, as determined by spectrum analy-
sis (Fig. 1c), indicating apparent interannual and interdecadal
variability. Therefore, the observed time series of total rain-
fall (RainT) is decomposed into interannual (variation less
than 11 years, denoted as Raina) and interdecadal (varia-
tion longer than 11 years, denoted as Rainp) components by
an 11-year high-pass and low-pass filter (Fig. 2b). That is,
Raint = Rainp + Rainp.

SST anomalies have been found to be important in influ-
encing the East Asian climate (Huang and Wu, 1989; Wang
et al., 2000; Lau and Weng, 2001; Wu et al., 2012), have a
relatively long “memory” (Sahai et al., 2003), and can there-
fore be regarded as a preceding predictor for SCESR. This
motivates us to explore the relationships between SCESR
and associated SST patterns on both interannual and inter-
decadal timescales. As such, we also decompose the SST
field into interannual (SSTA) and interdecadal (SSTp) com-
ponents. To reveal the dominant SST patterns associated with
SCESR variations, we employ the PLS regression method.
Specifically, PLS embodies the well-known concept of par-
tial correlation, as it seeks the predictors Z, which are lin-
ear combinations of the factors X, being referred to as latent
vectors or PLS components, and maximizes the variance ex-
plained in Y and the correlation between X and Y (Haenlein
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Fig. 2. (a) The standardized time series of wintertime (October—March) PDO in-
dex and their 11-year running mean during 1915-2006. As an example, the year
1915 denotes October—December 1914 and January—March 1915. (b) Total rain-
fall (RainT, units: mm) in June during 1915-2006, which is decomposed into
an interannual component (Raina ) with variation less than 11 years and an inter-
decadal component (Rainp) with variation longer than 11 years.

and Kaplan, 2004; Smoliak et al., 2010). Unlike EOF anal-
ysis, which identifies major patterns explaining SST varia-
tions, using PLS regression we can find the PLS components
of SST variations that best explain the covariance between
SST variations and the SCESR variations. In other words, it
reveals the dominant SST patterns that not only account for
most of the SST variations but are also closely related to the
SCESR variability.

Figure 3 shows a schematic plot of the TSDTR ap-
proach to forecasting the SCESR based on the PLS regres-
sion method. On the interannual timescale, in order to incor-
porate the modulation effect of the PDO on the interannual
variability of SCESR (Mao et al., 2011; Duan et al., 2013),
a threshold PLS regression model is calibrated for the re-
lationship between Raina and SSTa under the positive and
negative phase of the PDO. On the interdecadal timescale,
a standard PLS regression model is calibrated for the rela-
tionship between Rainp and associated SSTp patterns. The
total rainfall prediction is obtained by the sum of the outputs
Raina (7) and Rainp(7) from both the IAM and IDM (Fig. 3).
To test the performance of the TSDTR approach in forecast-
ing the SCESR, the study period 1915-2006 (N = 92) is sep-
arated into a calibration period [1915-84 (n = 70)] and val-
idation period (1985-2006). The two PLS-based regression
downscaling models in the TSDTR approach are calibrated
by using the calibration data in 1915-84, and the forecast-

ing skill of the TSDTR is tested by the independent valida-
tion data in 1985-2006. To obtain the forecasted values in
the independent validation period, we use the running fore-
casting method based on the calibrated models. That is, for
t=n+1,n+2,...,N (=92), when the observed preceding
SST(r) data and wintertime PDO are available over the vali-
dation period 1985-2006, we add these new SST data to those
in the training period, and then decompose the combined SST
data into interannual SST (#) and interdecadal SSTp(7) com-
ponents. The forecasted value of interannual [interdecadal]
rainfall can be estimated by using SSTa(#) [SSTp(#)] and
the calibrated IAM [IDM]. The performance of the TSDTR
downscaling approach is assessed through the correlation co-
efficient (CC) between predicted and observed values and the
RMSE (Zhang et al., 2011; Guo et al., 2012). The uncertainty
of the forecast is indicated by the spread of bootstrapping pre-
diction intervals [see appendix in Li and Smith (2009)].

4. Forecasting SCESR

This section provides details of the TSDTR downscal-
ing approach to building the IAM and IDM based on the
PLS regression for the relationship between the preceding
month SST and the SCESR on the interannual and inter-
decadal timescales, respectively.
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Fig. 3. Schematic plot of the TSDTR approach to forecasting the SCESR.
4.1. Calibrating the IAM SCESR by up to 3 months from March to May. This result

The interannual variation of SCESR is remarkably dif-
ferent under different PDO phases. Chan and Zhou (2005)
demonstrated that the interannual relationship between
ENSO and SCESR is modulated by the phase of the PDO.
Mao et al. (2011) indicated that the interannual SCESR vari-
ations are remarkably different under different PDO phases,
based on a comparison in two typical epochs of 1958-76
and 1980-98. Furthermore, it was suggested by Duan et al.
(2013) that the predictability of interannual SCESR variabil-
ity is modulated by different PDO-phase backgrounds, and
they also indicated that the relationship between interannual
rainfall and preceding Pacific SST anomalies experienced
a robust interdecadal change due to the PDO’s modulation
through the so-called “seasonal footprinting mechanism”.

To further explore the predictability of interannual
SCESR variability modulated by different PDO-phase back-
grounds, Fig. 4 shows the lag-correlation patterns of interan-
nual SCESR with preceding interannual monthly (May, April
and March) SST4 over the Pacific and Indian oceans in neg-
ative and positive phases of the PDO, denoted by PDO(-)
and PDO(+), respectively. It is evident that the interannual
relationship between Rainy and SST exhibits very different
structures during the positive and negative PDO phases. A
striking difference in Fig. 4 is that there is a traditional east-
ern Pacific warming ENSO-like correlation pattern between
Rainp and SSTy during the PDO(+) phase, but a central Pa-
cific warming ENSO-like pattern is more pronounced during
the PDO(—) phase. Such correlation patterns may lead the

is consistent with the result of Duan et al. (2013), who com-
pared 1955-76 PDO(-) and 1977-98 PDO(+). The result
supports the fact that the interannual SCESR variability and
its relationship with ENSO are modulated by the PDO phases
(Chan and Zhou, 2005; Zhou et al., 2006; Mao et al., 2011).
Therefore, the interannual relationship between large-scale
SST anomalies and the SCESR is not stationary due to the
modulation of the PDO. As such, in order to incorporate the
modulation effect of the PDO on the interannual variability of
SCESR, we need to consider the nonstationary relationship
between Rainy and SSTx in the Pacific and Indian oceans.
To this end, a threshold PLS regression model (Fig. 3) is em-
ployed to establish the relationship between Rains and the
leading SST4 modes, which best explain the co-variations
of Rainy and SSTa under the PDO(-) and PDO(+), sepa-
rately. After a series of tests using SST4 predictors in each
preceding month, including the preceding May, April, March,
February, January, December and November, it is found that
SSTa conditions in the preceding March tend to yield the
best results. Thus, we concentrate on reporting the dominant
SSTa modes in March over the Pacific and Indian oceans that
influence Rainp.

Figure 5 shows the first two leading interannual modes of
March SST (SST-I and SSTx-II) represented by PLS load-
ings in PDO(—) and PDO(+), respectively. The significance
of each mode is reflected by two numbers: the first is the per-
centage of Rainy variance explained by the SST-PLS mode;
the other is the percentage of SST4 variance explained by the
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Fig. 4. Lead—lag correlation of Raina with SSTy in the Pacific and Indian oceans in the (a—c) negative phase and (d—f) positive
phase of the PDO. The contour lines present the CCs of +0.3, statistically significant at the 95% confidence level.

same SST-PLS mode. In PDO(-), the first two leading modes
together explain 73.2% of the total variance of Rains. The
first dominant mode (Fig. 5a) during the negative phase of
the PDO is, by and large, an El Nifio Modoki-like pattern in
the tropical Pacific region, with positive loadings in the cen-
tral Pacific and negative loadings in the western and eastern
Pacific. Another significant positive loading occurs over the
South-central Pacific region around New Zealand. The tropi-
cal Indian Ocean is characterized by weak positive loadings.
As shown in Fig. 6a with respect to the corresponding pat-
terns of precipitation and vertically integrated moisture flux
to the SSTa-I mode, notable southwesterly moisture trans-
portation to the SC region is observed in the troposphere,
which is accompanied by a significant low-level anomalous
anticyclone located in the South China Sea and Philippine
Sea (not shown). At the same time, southward penetration of
northerly moisture transportation from a large part of North
and Northeast China also exists and leads to significant mois-
ture convergence over the SC region. Therefore, abundant

interannual rainfall is received in this region (Fig. 6a).

The second dominant SST mode (Fig. 5b) in PDO(-) has
strong negative loadings in the central-eastern tropical Pacific
and weaker negative loadings in the tropical Indian Ocean,
indicating a La Nifia—like pattern. Signals can also be found
in the midlatitudes, with anomalous warming in the North
Pacific region and South-central Pacific region around New
Zealand. The pattern in the tropical and midlatitude North Pa-
cific resembles the anomalous SST features of negative PDO
phase. Correspondingly, one can see notable southerly mois-
ture transportation over the majority of eastern China (Fig.
6b), which is accompanied by an anomalous low-level anti-
cyclone located in the north to northeast of the Philippine Sea
(not shown). The SC region is under the control of southerly
moisture transport, but the moist flows are strong enough to
advance more northward. Thus, distribution of anomalous
precipitation in China shows weak above-normal interannual
rainfall over SC (Fig. 6b).

In PDO(+), the first two leading modes together explain
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Fig. 5. First two leading modes of March SST in the Pacific and Indian oceans from PLS regression analyses in the (a, b) negative
phase and (c, d) positive phase of the PDO. The first percentage value is the total variance of Raina explained by the SST4 mode,
and the second value is the total SST variance explained by the same mode.

58.3% of the total variance of interannual rainfall. The lead-
ing interannual SST modes (SSTa-I and SST4-II) dramat-
ically change in contrast with those in PDO(-). The first
dominant mode (Fig. 5¢) tends to suggest a strengthened tra-
ditional El Nifio-like signal in influencing the interannual
early summer rainfall over SC during the positive phase of
the PDO, with very strong positive loadings in the tropical
eastern Pacific. Another positive loading occurs in the trop-
ical Indian Ocean. In addition, the positive loading in the
South-central Pacific region around New Zealand in PDO(-)
is replaced by negative loading. Meanwhile, the pattern in
the midlatitude North Pacific shares similar features with SST
anomalies during the positive phase of the PDO. The circu-
lation responses to this mode (Fig. 6¢) show notable south-
westerly moisture transportation from the South China Sea
to the southeast coast of China, which leads to above-normal
precipitation over the SC region. The second dominant inter-
annual SST mode (SSTa-II) in PDO(+) has negative loadings
in the central-eastern tropical Pacific that display a La Nifia—
like pattern (Fig. 5d), but has reduced in this mode compared
with that in PDO(-) (Fig. 5b). The Indian Ocean is occupied
by weak negative loadings. In addition, a warming anomaly
occurs in Peru’s inshore waters. Figure 6d shows the cor-
responding interannual circulation responses. The vertically

integrated moisture flux pattern indicates that the main mois-
ture source region for interannual rainfall over SC in this
mode is from the Bay of Bengal. Through the westerly flows
carrying warm and wet air, the SC region tends to receive
above-normal interannual rainfall.

Based on the above analysis, the different leading interan-
nual SST modes related to the interannual early summer rain-
fall over SC in PDO(-) and PDO(+) may indicate that dif-
ferent PDO “backgrounds” modulate the connection between
the interannual early summer SC rainfall and SST anomalies
over the Pacific and Indian oceans. Therefore, when building
a statistical forecasting model for interannual rainfall with
preceding SST conditions, one needs to consider such non-
linearity. As previously mentioned, a threshold PLS regres-
sion model (Fig. 3) is employed to establish the relationship
between Rainy and the leading SSTA modes by taking into
account the modulation of PDO(-) and PDO(+).

Figure 7a compares the interannual variation of predicted
and observed Rainy values from the threshold PLS regres-
sion model (i.e. the IAM in Fig. 3) based on the first two
leading interannual SST modes, which is derived using ob-
served data over the training period of 1915-84 (n =70). The
results indicate that Raina can be reconstructed with signif-
icant skill for the training period (Fig. 7a), with a CCy of
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0.87 and RMSE) of 54.45 mm between the predicted and ob-
served Rainp values (Model IV in Table 1). Here, CCy and
RMSE, are the CC and RMSE between the observed rainfall
and reconstructed rainfall in the calibration period. To obtain
the forecasted values [ﬁain A(9)] in the independent validation
period of 1985-2006, we use the running forecasting method
based on the calibrated IAM. The forecasted value of inter-
annual rainfall [Raina ()] can be estimated by using SSTx(7)
and the calibrated IAM (i.e. the calibrated threshold PLS
regression model based on the preceding wintertime PDO
phases). Figure 7a shows the forecasted values [ﬁainA(t)]
in the validation period of 1985-2006 and their uncertainty
in terms of bootstrapping 95% confidence intervals.

4.2. Calibrating the IDM

Next we develop an IDM for the interdecadal variabil-
ity of the SCESR. Previous studies have noted that temporal
variations of the SCESR exhibit an interdecadal oscillation
related to the PDO, with more dry (wet) years during peri-
ods of positive (negative) PDO index (Chan and Zhou, 2005;
Duan et al., 2013). Chan and Zhou (2005) also mentioned that
the effect of the PDO is more important than that of ENSO
in the control of SCESR, although such a conclusion might
be premature given our limited understanding of the PDO
and ENSO, as well as their possible interaction. Because
the rainfall and PDO index have a close negative relationship
on the interdecadal timescale, and the most visible climatic
fingerprints of the PDO exist in the North Pacific (Mantua
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Fig. 7. (a) PLS regression model results for forecasting Raina. PDO negative (positive) years are
marked with “0” (“*”). The black line is the time series of observed Rainp; the red line is the re-
constructed Raina during 1915-84; and the blue line is the hindcasted Raina during 1985-2006. (b)
PLS regression model results for forecasting Rainp. The black line is the time series of observed
Rainp; the red line is the reconstructed Rainp during 1915-84; and the blue line is the hindcasted
Rainp during 1985-2006. (c) Model results for forecasting the total rainfall. The black line is the
time series of observed Rainr; the red line is the reconstructed Raint during 1915-84; and the blue
line is the hindcasted Raint during 1985-2006. The blue shading in each of the panels represents the

upper and lower bands of the bootstrapping 95% confidence intervals for the hindcasted values.
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et al.,, 1997; Mantua and Hare, 2002), it is supposed that
the most important interdecadal SST signal influencing the
interdecadal rainfall variability may exist in the midlatitude
North Pacific region. With the aim to develop a PLS-based
regression downscaling model with preceding interdecadal
SST conditions to forecast the interdecadal rainfall variabil-
ity, a series of tests using SSTx predictors in each preceding

month, including the preceding May, April, March, February,
January, December and November, are conducted, and the
results show that interdecadal SST conditions over the mid-
latitude western-central North Pacific [(20°-50°N, 120°E~
140°W)] in the preceding November give the best results.
Thus, we focus on reporting the leading interdecadal SST
modes in November over the western-central Pacific region



1080

Table 1. Comparison of results from our rainfall forecasting model
(Model I-1V) experiments. CCy and RMSE( (CC; and RMSE)) are
the CC and RMSE between the observed rainfall and reconstructed
(predicted) rainfall in the calibration (validation) period.

Raint Rainp Rainp
Model I CCy - - -
(P5YSA) RMSE, - - -
CC, 0.13 - -
RMSE; 167.22 mm - -
Model 1T CCy 0.69 - -
(PLS) RMSE, 94.14 mm - -
CCy 0.06 - -
RMSE; 183.81 mm - -
Model Il CCy 0.72 0.86 0.69
(TSD-PLS) RMSE, 90.06 mm 2550 mm  81.14 mm
CC, 0.46 0.56 0.18
RMSE; 148.06 mm 6246 mm  157.53 mm
Model IV CCy 0.88 0.86 0.87
(TSDTR-  RMSEg 62.67mm 2550 mm  54.45 mm
PLS) CCy 0.56 0.56 0.41
RMSE; 13947 mm 6246 mm  143.32 mm

and the corresponding atmospheric circulation responses to
the SST modes influencing the interdecadal SC rainfall vari-
ability. To this end, the PLS regression model (Fig. 3) is em-
ployed to establish the relationship between Rainp and the
leading SSTp modes using the training data in the period
1915-84.

(a) Mode1

50N

40N

150E
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Figure 8 shows the first two leading interdecadal SST
modes (SSTp-I and SSTp-II) represented by PLS loadings.
These two leading modes together explain 74.1% of the vari-
ance of Rainp, with the majority contributed from the first
leading mode (58.1%). The SSTp-I mode (Fig. 8a) is char-
acterized by significant positive loadings that almost cover
the entire western-central North Pacific, with two maximum
anomalous SST centers located in the Yellow Sea and midlat-
itude central North Pacific located at about (35°N, 160°W).
However, these positive loadings in the western-central North
Pacific shrink in the second mode (SSTp-II); instead, neg-
ative loadings widely expand (Fig. 8b). The SSTp-I mode
resembles the characteristics of the PDO negative phase to
some extent, with a typical warm SST anomaly pattern in the
central North Pacific (Mantua et al., 1997; Mantua and Hare,
2002). This is therefore consistent with previous results in
which persistent wet conditions over the SC are related to pe-
riods of negative PDO index (Chan and Zhou, 2005; Zhou et
al., 2006). In the second dominant SST mode (SSTp-II), the
shrinking of positive loadings may imply a phase transforma-
tion from negative to positive PDO.

To examine the corresponding atmospheric circulation
anomalies associated with the above two dominant SST
modes on the interdecadal timescale, we show the correla-
tion patterns of the scores of SST modes with the vertically
integrated moisture flux between 1000 hPa and 300 hPa (Fig.
9). The anomalous precipitation distributions in China are
also displayed in Fig. 9. For the SSTp-I mode, remarkable
southwesterly moisture flux enters into the SC region, which

Rainp(58.1%),SSTp(35.3%)

180

150W

Fig. 8. First two leading modes of November SSTp in the western-central North Pacific from PLS re-
gression analyses. The first percentage value is the total variance of Rainp explained by the SSTp mode
and the second number is the total SSTp variance explained by the same mode.
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would lead to persistently wet conditions in the region (Fig.
9a). As a result, a significant positive correlation with in-
terdecadal rainfall variability over the SC region ultimately
occurs (Fig. 9a). The atmospheric circulation responses to
the second mode (SSTp-II) are basically similar to those for
the first mode, only with small differences in magnitude, thus
also exerting a beneficial influence on above-normal inter-
decadal rainfall variability over the SC region (Fig. 9b). The
SST anomalies in the North Pacific associated with the PDO
can persist for 20-30 years, from winter to summer (Man-
tua et al., 1997), and thus seem to be important in the control
of the persistently wet or dry conditions in early summer over
SC. Note that since the anomalies associated with persistently
wet and dry conditions generally tend to have opposite polari-
ties, the reverse is true for interdecadal below-normal rainfall
variability.

Figure 7b compares the interdecadal variation of pre-
dicted and observed Rainp values from the PLS regression
model (i.e. the IDM in Fig. 3) based on the first two lead-
ing modes (SSTp-I and SSTp-II), which is derived using ob-
served data over the training period of 1915-84 (n =70). It is
evident that the IDM can reproduce the time series of inter-
decadal rainfall variability in the training period well, with a
CCy of 0.88 and RMSEj of 62.67 mm between the predicted
and observed values of Rainp. To obtain the forecasted inter-
decadal values [ﬁainD(t)] in the independent validation pe-
riod of 1985-2006, we use the running forecasting method
based on the calibrated IDM. The forecasted value of inter-
decadal rainfall [Rainp(7)] can be estimated by using SSTp()
and the calibrated IDM. Figure 7b shows the forecasted val-
ues [ﬁainD(t)] in the validation period of 1985-2006 and their
uncertainty in terms of bootstrapping 95% confidence inter-
vals.

4.3. Forecasting the SCESR

It is straightforward to forecast the values of the SCESR
(i.e. Raint) by summing up the forecasted values Raina (7)
and ﬁainD(t) from the IAM and IDM models (i.e. the TSDTR
downscaling approach). Figure 7c shows the performance of
forecasting the SCESR. In general, the performance in the
training period is maintained in the subsequent validation pe-
riod. For example, compared to the observed climatological
rainfall of 343.80 mm during the training period of 1915-84
and 367.70 mm during the validation period of 1985-2006,
the statistical model provides a preproduction of 343.80 mm
and 351.15 mm, respectively. The TSDTR downscaling ap-
proach provides reasonable forecasting skill by using pre-
ceding SST as the only predictor. Table 1 shows the fore-
casting skill of total rainfall by showing the associated CC
(CCp =0.88) and RMSE (RMSE( = 62.67 mm) between the
downscaled and observed rainfall for the training period of
1915-84. This skill is maintained reasonably well in the val-
idation period with a CC; of 0.56 and RMSE; of 139.47 mm
(Table 1, Model IV). Here, CC; and RMSE; are the CC and
RMSE between the observed rainfall and predicted rainfall
in the validation period. The bootstrapping 95% confidence
intervals associated with the forecasted values are shown in
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Fig. 9. Correlations of the detrended scores of November SSTp
modes in Fig. 8 with low-pass filtered June precipitation (color
shaded) and vertically integrated moisture flux between 1000

hPa and 300 hPa (vectors).

Fig. 7c, indicating the uncertainty of the TSDTR downscaling
approach. All these results indicate that the TSDTR down-
scaling approach can achieve some reasonable rainfall fore-
casting skill over SC.

To see how well the TSDTR downscaling approach per-
forms in forecasting the SCESR, compared to other simple
methods, we examine three different methods for forecast-
ing the SCESR. We analyze the use of the previous 5 years’
SCESR average (P5YSA), a single PLS model, and a TSD-
PLS model. The P5YSA is a computationally convenient
and frequently used technique to forecast a regular time se-
ries, which is carried out without recourse to a formal sta-
tistical model. The single PLS model is calibrated by di-
rectly regressing the SCESR onto the SST field, while the
TSD-PLS model is calibrated by two steps; namely, decom-
posing the rainfall and SST field into interannual and inter-
decadal components, and then applying the PLS method to
them. All these three methods do not integrate the modu-
lation of the PDO on the interannual relationship between
SCESR and SST. Note that the first two dominant SST pat-
terns are used in both the PLS and TSD-PLS models for a
fair comparison with the TSDTR downscaling approach. Ta-
ble 1 summarizes how the forecasting skill of the TSDTR
downscaling approach compares with the three simpler mod-
els. The CC between the forecasted and observed SCESR
values in the validation period for PSYSA, PLS and TSD-
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PLS are CCy = 0.13, 0.06 and 0.46, respectively, which is
smaller than that (0.56) from the TSDTR downscaling ap-
proach. In addition, the RMSE between the forecasted and
observed SCESR values in the validation period for PSYSA,
PLS and TSD-PLS are RMSE; = 167.22, 183.81 and 148.06
mm, respectively—larger than the RMSE (RMSE; = 139.47
mm) for the TSDTR downscaling approach. Therefore, the
more complex TSDTR downscaling approach performs bet-
ter than the simpler PSYSA, PLS and TSD-PLS models in
forecasting the SCESR. We thus emphasize that the appli-
cation of the newly proposed TSDTR method can improve
regional rainfall prediction skill by incorporating the PDO
modulation effect, even when the skill of the pure PLS model
is low.

In summary, the rationale behind the TSDTR downscal-
ing approach is that it allows a model parameter change
for the unstable relationship between the interannual rain-
fall variability and preceding SST conditions in different
PDO phases. As a result, the TSDTR downscaling approach
can further improve rainfall forecasting skill by consider-
ing the modulation effect of decadal-scale coupled oceanic—
atmospheric modes on interannual climate variability, com-
pared to other simpler methods (e.g. PSYSA, PLS and TSD-
PLS), without considering the preceding SST conditions in
different PDO phases.

5. Summary and discussion

This paper puts forward the TSDTR downscaling ap-
proach to forecast SCESR by using preceding SST over the
Indian and Pacific oceans through modeling the interannual
and interdecadal rainfall variability via an IAM and IDM.
The TAM is built upon a threshold PLS regression by tak-
ing account of the modulation effect of the PDO on the inter-
annual variability of the SCESR. Through the IAM, the first
two leading March SST modes (an El Nifilo Modoki-like pat-
tern and a La Nifla—like pattern) are linked to the interannual
rainfall in the negative phase of the PDO, while the first two
leading modes (a strengthened traditional El Nifio-like pat-
tern and a La Nifia—like pattern) are linked to the interannual
variability of the SCESR in the positive phase of the PDO.
The first two leading interdecadal SST modes are linked to
the interdecadal component of the SCESR via the IDM based
on the PLS regression method. The forecasted total rainfall
is obtained by summing up the values of the two forecasted
components from the IAM and IDM.

In applying the TSDTR approach to forecasting SCESR,
it is found that the interannual relationship between the pre-
ceding Pacific-Indian Ocean SST and SCESR experiences
interdecadal changes, displaying remarkable differences in
the negative and positive phases of the PDO. In particular, the
traditional ENSO-like anomalous SST pattern is robust only
in the PDO positive phase. For interdecadal rainfall variabil-
ity, the dominant interdecadal SST patterns over the North
Pacific resemble some characteristics of the PDO. When the
North Pacific SST is persistently warming (cooling), the in-
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terdecadal variability of SCESR tends to be below-normal
(above-normal). This is consistent with previous studies in
which persistently wet (dry) conditions over SC in early sum-
mer are related to periods of negative (positive) PDO index
(Chan and Zhou, 2005; Duan et al., 2013).

A central implication of this study is that regional rain-
fall forecasting skill can be improved via the TSDTR ap-
proach, wherein the unstable relationship between interan-
nual rainfall and large-scale variability, such as SST, can be
taken into the process of model development. For a statisti-
cal downscaling model, it is important to select the predictors
that have the most stable relationships with observed rain-
fall (Sun and Chen, 2012): If the predictor has a stable rela-
tionship with the predictand, the predictability of the statis-
tical downscaling scheme developed using this predictor will
be stable; otherwise, a predictor with an unstable relation-
ship with the predictand could result in unstable predictabil-
ity of the statistical downscaling scheme. As the TSDTR ap-
proach considers the modulation effect of decadal-scale cou-
pled oceanic—atmospheric modes on interannual climate vari-
ability, it may provide a new perspective to improve climate
prediction. In this paper, we demonstrate that the TSDTR
downscaling forecasting skill is superior to three other sim-
pler methods (P5YSA, PLS and TSD-PLS), without consid-
ering the preceding SST conditions in different PDO phases.
The results suggest that the TSDTR approach has a higher
predictive capability SCESR.

In spite of the improvement in forecasting skill, the TS-
DTR downscaling forecasting model for SCESR encounters
a problem in that it fails to predict some extreme flood events,
such as in 2001. This failure is attributable to the interannual
rainfall model, because the preceding interannual spring SST
condition used as the predictor in 2001 displays no signifi-
cant anomalies (not shown), indicating that the SST anomaly
itself is not the only factor that can exert an important influ-
ence on the interannual SC rainfall. Thus, research gaps exist
insofar as other potential factors need to be considered in the
development of the TSDTR model. We expect in the future
to include some of these other factors [e.g. the atmospheric
circulation variability over the extratropics and tropics, and
soil moisture conditions (e.g. Thompson and Wallace, 1998;
Zhao et al., 2007; Chen et al., 2014)], with the aim to improve
the statistical forecasting skill further.
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Appendix A
PLS regression

PLS regression is usually described as a two-staged ap-
proach. Following Butler and Denham (2000), the first stage
is to produce a sequence of k < m PLS components Z; of
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length n to be included in the regression. However, unlike
principal components, which are only formed by accounting
for the maximum amount of joint variability of X, the PLS
component Z;(i = 1,2,...,k) is chosen to explain as much as
possible the covariance between X and Y. That is,

Z,‘ ZXCI' (Al)

is chosen to maximize ZY subject to the loadings ¢; that
llcill = 1 and that Z; is orthogonal to the space spanned by
the basis {Z1,2>,...,Z;i—1}. The second stage of PLS regres-
sion is to regress Y on the PLS components Z;(i = 1,2,...,k),
which gives a simple linear model

k
Y= Z biZi+&r (A2)
i=1

where g is the appropriate error term. The parameter b; is
derived by minimizing the sum of squares,
biZi] = (Y = XBprs) (Y = XBrLs) »
1

k /’
[Y— Zb,-z,»] [Y—
i (A3)

where Sprs = Zle bic; is the PLS parameter vector. From
Helland (1988), we have

k

=

k
s = ) 3 X'X)7'X'Y
i=1
where the parameter ¥; can be estimated by using the PLSR1
algorithm. Predictions v of future responses can then be
made by

k
Yo =y+ ZﬁPLS,j(x;' -X)).
g

Note that the selected Z;(i = 1,2,...,k) is obtained by ac-
counting for the maximum amount of the covariance between
X and Y. Thus, PLS components are obtained by not only ac-
counting for the variance of explanatory variables X, but also
the variances in the predicant Y.
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