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Abstract The seasonal predictability of sea surface temperature anomalies (SSTA) in the
Kuroshio-Oyashio Extension (KOE) is explored by performing perfect model predictability experiments from
the viewpoint of initial error growth in a global coupled model. It is found that prediction errors of
KOE-SSTA always increase in the boreal summer and decrease in the boreal winter. This leads to smaller
(larger) prediction errors and higher (lower) prediction skills in boreal winter (summer). This seasonal
characteristic of the KOE-SSTA error growth implies a season-dependent predictability that is lower in
summer and higher in winter. The mechanism responsible for error growth associated with seasonal
predictability is also explored. The error increase in summer and error decrease in winter in the KOE-SSTA
are both largely attributed to the seasonal evolution of latent heat flux error and mean temperature
advection by vertical current error in the KOE region, both of which are forced by the prediction error of

1 month leading zonal wind stress per unit mass for the mixed layer over the KOE region. The shallowest
(deepest) mixed layer in summer (winter) amplifies (reduces) the forcing of zonal wind stress errors on the
error growth of KOE-SSTA, thereby causing the seasonal evolution of prediction errors of KOE-SSTA and
ultimately resulting in the season-dependent predictability of the KOE-SSTA, i.e., low in summer and high in
winter.

1. Introduction

Accurate prediction of sea surface temperature (SST) in the North Pacific is of great importance for many
societal endeavors [e.g., Latif and Barnett, 1994; Englehart and Douglas, 2003]. Recent studies of North Pacific
SST predictions have generally focused on the decadal timescale because of the dominant low-frequency
variability, such as the Pacific Decadal Oscillation [e.g., Meehl and Hu, 2006; Meehl and Teng, 2012; Kim et al.,
2014; Hu et al., 2014]. However, the seasonal prediction skill and predictability of sea surface temperature
anomalies (SSTA) in the North Pacific have received less attention. In the North Pacific, the Kuroshio-
Oyashio Extension (KOE) is located in the region in which the SST variability is most significant, and the sea-
sonal evolution of SSTA in the KOE region plays a critical role in modulating the weather and climate in
North America and East Asia. For example, the summer rainfall in eastern China is most likely to be influ-
enced by the SSTA in the KOE region in the preceding spring [Zhu et al., 2000; Sun et al., 2008]. However,
several attempts have demonstrated that the seasonal prediction skill of North Pacific SSTA, especially the
SSTA in the KOE region, is quite low [Landman and Mason, 2001; Auad et al., 2004; Alexander et al., 2008;
Wen et al., 2012]. Therefore, exploring the seasonal predictability is very necessary for us to better under-
stand the variability of SSTA in the KOE region and improve the prediction skill.

The persistence of sea temperature largely implies its predictability. Previous studies have examined the
large-scale SSTA persistence in the North Pacific and indicated that the persistence of North Pacific SSTA is
seasonally dependent, i.e., highest in winter and lowest in summer [Namias and Born, 1970, 1974]. An and
Wang [2005] found that the North Pacific SSTA displays a persistence barrier during August-September.
Ding and Li [2009] confirmed the existence of the July-September persistence barrier in the North Pacific
SST. Motokawa et al. [2010] demonstrated that the structure of the dominant North Pacific SSTA patterns in
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: : . : : the boreal summer (especially
60N - - in August and September) is
quite different from those in
other seasons, and described an
abrupt change in the evolution,
indicating that the evolution of
North Pacific SSTA may have its
weakest memory when bestrid-
0 L L R R ing boreal summer. Moreover,

120E 150E 180 150W  120W  90W Zhao et al. [2012] showed that
the SSTA in the central and
western Northern Pacific (i.e.,
the KOE region) exhibits a sig-
nificant “summer persistence barrier”, the phenomenon in which the persistence of SSTA shows a signifi-
cant decline in the boreal summer. These results imply that the North Pacific SSTA, especially the SSTA in
the KOE region, may be difficult to predict in summer. Moreover, the persistence of the North Pacific SSTA
is much higher in winter. Namias and Born [1970, 1974] noted a tendency for midlatitude SSTA in the North
Pacific to recur from one winter to the next without persisting through the intervening summer (regarded
as “winter-to-winter reemergence”), which leads to the North Pacific SSTA in winter persisting for more than
1 year. The summer persistence barrier and winter-to-winter reemergence suggest season-dependent per-
sistence of North Pacific SSTA.

30N - L

Figure 1. The study area. The rectangle marks the KOE-SSTA region (30°-50°N,
145°E-150°W).

The matter of how the seasonal persistence affects the forecast of North Pacific SSTA in numerical models
should be addressed. It has been demonstrated that the summer persistence barrier of KOE-SSTA (the SSTA
in the region 30°-50°N, 145°E-150°W; marked by the black box in Figure 1) shows itself in numerical fore-
casts as the “summer prediction barrier” (SPB) [Duan and Wu, 2015]. From the point of view of initial error
growth, Duan and Wu [2015] pointed out that the SPB refers to the phenomenon that prediction errors of
KOE-SSTA grow much more rapidly in summer and cause large prediction uncertainties, finally showing the
lowest prediction skill when the forecasts bestride summer. In this paper, we further find that the KOE-SSTA
shows the smallest error growth in winter (see the section 3). Therefore, we address whether the season-
dependent growth of prediction errors of KOE-SSTA with the largest growth in summer and lowest in winter
imply its season-dependent predictability, and whether or not the related error growth mechanism in win-
ter is opposite to that in summer proposed by Duan and Wu [2015]. The answers of these questions will be
helpful for us to reasonably choose the start month in the KOE-SSTA predictions and then achieve high pre-
diction skills. Herein, we investigate these issues in a fully coupled global model by performing perfect mod-
el predictability experiments from the point of view of initial error growth. Perfect model predictability
experiments involve numerical models that are assumed to be perfect, and only the effect of initial errors
on the prediction uncertainties is considered [Duan et al., 2009]. This approach stems from studies of the
first kind of predictability problems proposed by Lorenz [1975].

The remainder of this paper is organized as follows. In section 2, the model and approach used are
described. The seasonal predictability of KOE-SSTA is reported in section 3. In section 4, we investigate the
mechanisms responsible for the seasonal predictability. Finally, a summary of the key findings is presented
in section 5.

2. Model and Approach

2.1. Numerical Model

The model used in this study is the fully coupled global Fast Ocean Atmosphere Model (FOAM) [Jacob,
1997], developed jointly at the University of Wisconsin and the Argonne National Laboratory. The atmo-
spheric component (PCCM3-UW), with a horizontal resolution of R15 (equivalent to 7.2° longitude X 4.75°
latitude) and 18 vertical levels, is a parallel version of the National Center for Atmospheric Research Commu-
nity Climate Model version 2 (CCM2), but with the atmospheric physics replaced by those of CCM3. The oce-
anic component, with a z-coordinate and a resolution of 1.4° latitude X 2.8° longitude X 32 vertical levels,
was developed following the Geophysical Fluid Dynamics Laboratory Modular Ocean Model. Without flux
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Figure 2. (a) The lag correlation of observed KOE-SSTA as a function of start month (ordinate) and lag month (abscissa), where the
observation is from ERSST.v3b/NOAA. (b) As Figure 2a, but for FOAM-simulated KOE-SSTA. The contour interval is 0.1 and shading indicates
correlation coefficients greater than the 95% confidence level.

adjustment, the fully coupled model has been integrated for over 1000 years after a spinup and we found
that it does not present any apparent climate drift. FOAM has been widely used in addressing a variety of
issues of tropical [e.g., Vavrus et al., 2006] and extratropical Pacific climate variability [e.g., Liu and Wu, 2004;
Yang and Liu, 2005]. In particular, its performance in simulating the KOE-SSTA is reasonable. Figure 2 shows
the lag correlation of observed and FOAM-simulated KOE-SSTA. As illustrated in Figure 2a, the persistence
of the observed KOE-SSTA decreases below the 95% confidence level in summer for most of the 12 starting
months and recurs in winter, implying the existence of the summer persistence barrier and winter-to-winter
reemergence. FOAM-simulated KOE-SSTA shows similar features to the observations (Figure 2b). Therefore,
FOAM provides us with an acceptable platform to explore the predictability of KOE-SSTA [Duan and Wu,
2015].

2.2. Experimental Strategy

Duan and Wu [2015] demonstrated that warm and cold KOE-SSTA occur alternately and display an oscilla-
tion cycle with a period of approximately 2-5 years; and the standard deviation of KOE-SSTA is ~0.5 K. A
warm (cold) SSTA event can thus be defined when KOE-SSTA larger (smaller) than 0.25 K (—0.25 K) persists
for at least 5 months. In this study, we use the warm and cold SSTA events as the prediction targets to per-
form the perfect model predictability experiment and explore seasonal predictability of KOE-SSTA. Ten
warm SSTA events and ten cold ones lasting 12 months in the KOE region are selected from the control run
of the fully coupled simulation in FOAM. These SSTA events are regarded as the “true states” (i.e., reference
states) to be predicted, and their predictions are obtained by integrating the model for 12 months with 20
perturbed initial fields starting from Nov(—1) (November(—1), i.e,, November in Year(—1)), Feb(0) (Febru-
ary(0), i.e,, February in Year(0)), May(0), and Aug(0) (August(0)). Year(0) denotes the year in which the warm
and cold SSTA events attained their peak values, and Year(—1) is the year before Year(0). The perturbed ini-
tial fields are constructed with the same strategy as in Duan and Wu [2015]. We apply an Empirical Orthogo-
nal Function (EOF) analysis to the North Pacific SSTA (20°-60°N, 120°E-100°W) in FOAM and obtain the first
20 EOF patterns (denoted as A1-A20) and their related PCs. The sea temperature anomalies at the 40, 60,
80 and 100m levels are then separately regressed onto the 20 PCs to obtain 20 regressed patterns for each
level, denoted as B1-B20, C1-C20, D1-D20, and E1-E20. Each of the 20 EOFs along with its PC-regressed
patterns in the four levels are composed of one initial error including five levels (i.e., An, Bn, Cn, Dn, and En;
n=1,2...20). Then we have 20 initial sea temperature errors respectively superimposed on different start-
ing months of the predetermined twenty SSTA events to obtain their predictions. We denote the initial
errors as T(’),jk, where (i}, k) represents grid points in the region with latitude i ranging from 120°E to 100°W
by 1.48°% longitude j ranging from 20°N to 60°N by 2.88° and with vertical levels k of 20,40,60,80 and 100m.
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We scale the initial errors T, to have the same magnitude using Tj, =0 - To; /|| Toull, in which [|Tg, =

Dijk (Téijk> - The magnitude of the initial errors is constrained by ||Ty; [|=5, which guarantees that the

magnitude of initial errors is about 30-50% of the initial anomalies of the SSTA events to be predicted, and
in this case the absolute value of initial error at each grid point is approximately 0.2 K on average. Therefore,
a total of 400 predictions (20 events X 20 initial errors) and their related prediction errors are obtained for
each of the four starting months, including 200 ones for warm events and 200 ones for cold events.

With the results of this perfect model predictability experiment, the seasonal predictability of KOE-SSTA can
be investigated by analyzing the evolutionary characteristics of prediction errors. Usually, a large prediction
error represents low prediction skill and fast error increase implies a rapid decline of predication skill.
Therefore, large prediction error together with fast error increase indicates poor prediction skill and low
predictability. The magnitude of the SSTA prediction error is calculated by y(t)=|TP(t)—T"(t)||=

\/ny AG! Xy()) [(x,y) represents the longitude and latitude in the KOE region] at time

=1,2,---12 months). T'(t) and TP(t) are the SSTA events to be predicted and their predictions, respec-
tlvely. The growth tendency of prediction errors at time t is computed by the slope « (t)=0y(t)/ot. In this
study, the model outputs are the monthly means and we consider the error growth tendency from 1 month
to next month. Therefore, the monthly growth tendency of prediction errors can be roughly estimated by
evaluating « (t) ~ [y (t+1)—(t)]/[(t+1)—t] =y(t+1)—yp(t). A positive (negative) value of x (t) corre-
sponds to an increase (decrease) of prediction errors, and the larger the absolute value of x (t), the faster
the increase or decrease. In the following analysis, prediction error y(t) and error growth tendency « (t) will
be used to investigate the seasonal predictability of KOE-SSTA.

3. Seasonal Predictability of
a7 ' ' ' KOE-SSTA

start month: Nov

25 <ot mon el 1 The perfect model predictability experi-
start month: Aug ment in this study can be considered

start month: May as an ensemble hindcast for four tar-

get seasons August-September-October
(ASO), November-December-January
(NDJ), February-March-April (FMA) and
May-June-July (MJJ) with perturbed ini-
tial conditions starting from Nov(—1),
Feb(0), May(0), and Aug(0), respectively.
The ensemble prediction errors of four
target seasons from different start
months are illustrated in Figure 3a, dem-

onstrating that the sum of prediction
| ] errors during two winter seasons (ND)J

201

prediction error

25
20+
and FMA) are smaller than that in sum-
15F E mer seasons (MJJ and ASO) with the
smallest prediction errors in FMA season
and the largest in ASO. Figure 3b illus-
trates the prediction errors in different
5 seasons independent of start months:
0

the results are similar to those in Figure
3a. A signal-to-noise-ratio-like measure-

prediction error
>
T

FMA MJJ ment is used to investigate the relative
prediction errors against the SSTA to be
Figure 3. (a) Prediction errors of four target seasons, ASO, NDJ, FMA, and MJJ, predicted, which is defined by a ratio of

predicted from start months November, February, May, and August. (b) Prediction h dicti . lized
errors of four target seasons ASO, NDJ, FMA, and MJJ, independent of start the prediction error variance normalize
months. by the signal variance (the variance of
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Figure 4. (a) The seasonal mean error-to-signal-ratio of the predicted KOE-SSTA; (b) The seasonal mean root-mean-square-error of the
predicted KOE-SSTA, Unit: K. (c) As Figure 4b, but for the continuous ranked probability score, Unit: K. The results are calculated by the
ensemble hindcasts from four starts months, November (—1), February (0), May (0) and August (0) in the perfect model predictability
experiments.

KOE-SSTA). This ratio is denoted as error-to-signal-ratio here. In Figure 4a, we plot this ratio as a function of sea-
sons. It is shown that the error-to-signal-ratio in winter seasons are much smaller than that in summer seasons.
This suggests that the prediction errors are less likely to conceal the signal in the boreal winter than in the boreal
summer, thus indicating the higher (lower) predictability of KOE-SSTA in the boreal winter (summer). The predict-
ability are also confirmed by the measurements of root-mean-square-error (RMSE; Figure 4b) and continuous
ranked probability scores (CRPS, see the Appendix A; Figure 4c). RMSE represents the sample standard deviation
of the differences between predicted values and observed values and is a good measure of accuracy of predic-
tion results. The sum of RMSE in the FMA and NDJ seasons are smaller than in the MJJ and ASO seasons, indicat-
ing a higher prediction skill in the boreal winter (Figure 4b). In Figure 4c, a smaller value of CRPS represents a
better forecast of predicted distribution compared with observed distribution: therefore, the smaller values of
CRPS in the winter seasons indicate a better KOE-SSTA forecast. Overall, the results illustrated in Figures 3 and 4
demonstrate that the prediction skill of KOE-SSTA is higher in the boreal winter and lower in summer.

Figure 5 shows the monthly evolution of prediction errors (colored lines) and the monthly error growth ten-
dencies (red and blue bars) for all the predictions from four start months. The error growth tendencies are
always negative from the period November to March and positive from April to October, indicating that the
prediction errors always decrease during the boreal winter and increase during the boreal summer. The
continuous decrease of prediction errors during the boreal winter leads to the smallest prediction error
occurring at the end of winter, i.e., the FMA season (Figure 3). In the same manner, the prediction error in
the ASO season (i.e., the end of summer) is larger than in the other three seasons (Figure 3) due to the con-
tinuous error increase during summer. Therefore, the decrease (increase) of prediction errors in winter (sum-
mer) causes the rise (decline) of prediction skill and explains why the prediction skill is higher (lower) in the
boreal winter (summer) as shown in Figures 3 and 4.

In fact, Duan and Wu [2015] demonstrated that, no matter what the start month is, the largest error growth
tendency (fastest error growth) often occurs in the ASO season and causes the large prediction uncertain-
ties. This phenomenon is referred to as the “summer prediction barrier” and is considered as one of the
main reasons limiting the predictability of North Pacific SSTA in the boreal summer. In this study, we further
find that the error growth is smaller and the prediction skill is higher in the boreal winter than in summer,
indicating a higher predictability of KOE-SSTA in the boreal winter. Therefore, combining the results of
Duan and Wu [2015] and the present study, the large (small) prediction error together with continuous
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Figure 5. Monthly evolution of prediction errors of KOE-SSTA in terms of y(t) (color lines; left ordinate; each line corresponds to one initial error) and the monthly error growth tenden-
cies k (t) (color bars; right ordinate). The results are obtained by taking the ensemble mean of all the predictions from the start months November(—1), February(0), May(0) and
August(0). The red bars represent error increase and blue bars denote an error decrease. The sums of the total error increase and total error decrease are also plotted in the figure.

decline (rise) of prediction skill during the boreal summer (winter) indicates a seasonal predictability of
KOE-SSTA, i.e., higher predictability in winter and lower in summer.

In addition, it is noticed that the error increase in summer and decrease in winter are not symmetrical. In
Figure 5, we find that the total error increase (sum of red bars) is larger than the total error decrease (sum
of blue bars), indicating that the error increase dominates the error evolution although existing the error
decrease in the predictions. The reason of this asymmetry of error growth is explained in section 4.

4. Possible Mechanisms for the Season-Dependent Predictability

In this section, we explain why the prediction errors of KOE-SSTA tend to increase in summer and decrease
in winter. Duan and Wu [2015] demonstrated that the fastest error growth during the ASO season is mainly
due to the largest prediction errors of latent heat flux and linear vertical oceanic temperature advection
associated with the mean state in the KOE region, both of which are most likely to be driven by the predic-
tion errors of sea surface wind stress. Naturally, we wonder whether the prediction errors of latent heat flux
and linear vertical oceanic temperature advection associated with the mean state also dominate the error
growth of KOE-SSTA in the other seasons (especially in winter). We also address whether the season-
dependent predictability arises from the seasonal evolution of latent heat flux error and linear vertical oce-
anic temperature advection error associated with mean state.

Following the analysis in Duan and Wu [2015], we focus on the equation governing the evolution of SSTA
prediction errors to trace the related error growth:
oT' _ O(T+T*+T)

e L
ot ot 0
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In equations (1)-(3), a bar represents the climatological mean state, an asterisk denotes the anomalies of
the SSTA events to be predicted, and a prime signifies the prediction errors caused by initial errors. In equa-
tion (1), the SSTA prediction error is denoted by T’, and 9T’ /Jt represents the error growth tendency. p and
¢, are the density of sea water and the specific heat capacity, respectively. h is the climatological monthly
mean mixed-layer depth in FOAM, which, as shown in observations [Wang et al, 2012], is season-
dependent, being deeper in the boreal winter and shallower in the boreal summer. Equation (2) describes
the effect of the net sea surface heat flux errors on the SSTA error growth, which is the sum of latent heat
flux error LH' (term 1), sensible heat flux error SH' (term 2), shortwave radiation flux error SWH' (term 3), and
long-wave radiation flux error LWH' (term 4). Equation (3) indicates the effect of oceanic temperature advec-
tions on the SSTA error growth, where Ugg,, Vaay, and W g, (terms 5-7) represent the linear zonal, meridio-
nal, and vertical oceanic temperature advection errors associated with the mean state; Uy, V,,, and W},
(terms 8-10) describe the linear oceanic temperature advection errors associated with the anomalies of
SSTA events to be predicted; and UM, VML “and WAL (terms 11-13) reflect the nonlinear oceanic tempera-
ture advection errors.

From equations (1)-(3), it can be approximately established that the contributions to the SSTA error growth
are from the sea surface heat fluxes denoted by Q' and the oceanic dynamics described by equation (3). In
the following analysis, we explore how the sea surface heat fluxes and oceanic dynamics contribute to the
error growth associated with the season-dependent predictability of KOE-SSTA.

4.1. Sea Surface Heat Fluxes and Oceanic Dynamics

According to equation (1), four kinds of sea surface heat flux errors and all types of oceanic dynamical
errors, i.e., terms 1-13 in equations (1) and (2), all contribute to the SSTA error growth. Figure 6 illustrates
the contributions from terms 7-13 to the SSTA error growth in summer (JJASO) and winter (NDJFM), which
are the ensemble mean of all the predictions of the predetermined warm and cold events. In Figure 6, term
0 is the region-mean SSTA error growth tendency (i.e., 9T’ /9t in the left side of equation (1)). The sum of
region-mean terms 1-13 is approximately equal to term 0.

For warm events, a positive SSTA error growth tendency (term 0) in summer indicates an error increase, and
a negative value indicates an error decrease. Warm events have a positive SSTA error growth tendency in
summer and a negative one in winter (Figures 6a and 6b), denoting an error increase in summer and error
decrease in winter. The error increase in summer is primarily dominated by the contributions of latent heat
flux error LH' (term 1) and linear vertical oceanic temperature advection error associated with mean state
W 44, (term 11) (Figure 6a), which is in accordance with the results of Duan and Wu [2015]. In winter, the
error decrease also largely arises from LH' and W44, (Figure 6b).

Moreover, terms 14 and 15 denote A=—w' - 9T /Ot and B=—w - 9T’ /Ot which make up the term 11 (the
linear vertical oceanic temperature advection error associated with mean state W 44,). A=—w’ - 9T /Ot and
B=—w - 9T’ /0t describe the mean temperature advection by vertical current error and the temperature
advection error by mean vertical current, respectively. As illustrated in Figures 6a and 6b, A=—w’ - 9T /Ot
dominates the contribution of W4, in both summer and winter; thus, the effects of the latent heat flux

WU ET AL. SEASONAL PREDICTABILITY OF KOE-SSTA 7
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Figure 6. (a) The region-mean of terms 1-15 in the KOE region in summer (JJASO), which are the ensemble means of all the predictions of
predetermined KOE-SSTA warm events; (b) As Figure 6a, but for the results in winter (NDJFM). (c and d) As Figures 6a and 6b, but for the
cold events. Units: K/month.

error LH' and mean temperature advection by vertical current error A=—w’ - 9T /0t to a large extent cause
the error increase in summer and error decrease in winter. In addition, the nonlinear vertical oceanic tem-
perature advection error WM
value, thus favoring the SSTA error increase in winter (Figure 6b), i.e., the nonlinear vertical oceanic temper-

ature advection error WXt has the effect of suppressing the error decease in winter.

(term 13), which is significant in winter other than in summer, has a positive

The results of cold events are similar (Figures 6¢c and 6d). Therefore, the latent heat flux error LH and the
mean temperature advection by vertical current error A=—w’ - 9T /0t not only cause the SSTA error
increase in summer, but also lead to the error decrease in winter. Therefore, the seasonal evolutions of LH’
and A=—w' - 9T /Ot are the main reasons resulting in the error increase (decrease) in the boreal summer
(winter), indicating the similar but just opposite effect of the physical mechanisms for the error growth in
the boreal summer and winter. There also exists difference in the mechanisms: the nonlinear vertical ocean-
ic temperature advection error suppresses the error decrease in winter but has little effect on the error
increase in summer, which therefore leads to more error increase in summer and explains the asymmetry of
error growth mentioned in section 3.

4.2. Sea Surface Wind Stress

In fact, the sea surface wind stress errors can give rise to SSTA prediction errors in the KOE region through the
latent heat flux error and the mean temperature advection by vertical current error which dominate the error
increase in summer and error decrease in winter. Duan and Wu [2015] suggested that the anomalous north-
westerly or cyclonic (southeasterly or anticyclonic) winds over the KOE region can bring dry and cold (warm
and wet) air and enhance the anomalous release (absorption) of net latent heat flux, which is favorable for a
negative (positive) SSTA prediction error in the KOE region. The anomalous wind stress also strengthens the
upwelling (downwelling) in the KOE region, leading to the prediction errors of vertical oceanic temperature
advection, ultimately causing the SSTA error growth. Moreover, previous studies have suggested that atmo-
spheric surface wind is likely to be responsible for the evolution of North Pacific SSTA [e.g., Newman et al.,
2003; Miller et al., 2004; Carton et al,, 2008]. The maximum variability of the SSTA in the KOE region in late
spring and early summer is largely determined by the seasonal changes in the variance of Ekman heat flux,
latent and sensible heat fluxes, and the seasonal variation of the mean mixed-layer depth (MLD). All of these
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fluxes are closely related to the atmospheric surface
, wind [Wang et al, 2012]. Therefore, exploring the
impact of seasonal evolution of surface wind stress on
the predictability of KOE-SSTA is necessary.

Firstly, we illustrate the time-dependent signal-noise
L ratio of the zonal wind stress in the KOE region in Fig-
1 2 3 4 5 6 7 8 9 10 11 12 ure 7a. The signal-to-noise ratio can describe the
information loss of a system. The smallest signal-to-

noise ratio from May to September and the largest
4—(b) 1 ratio between January and April in Figure 7a indicate
3l ] a minimum “predictive signal” in the boreal summer
ol | and a maximum “predictive signal” in the boreal win-

ter, which implies a higher (lower) potential predict-
i ] ability in the boreal winter (summer). However, the
ob— L ‘

1 2 3 4 5 6 7 8 9 10 11 12 largest prediction error of zonal wind stress averaged
in the KOE region occurs in winter other than in sum-
mer (Figure 7b). This indicates that the prediction
error of zonal wind stress alone clearly cannot explain
the seasonal error growth of KOE-SSTA. As it is the
| mixed layer in the upper ocean that directly responds
to the atmospheric forcing (the time scale for the SST
response to atmospheric wind forcing is approxi-
: : mately 1 month), the MLD is also expected to play a

2 3 4 5 6 7 8 9 10 11 12 . . .
key role in determining the effectiveness of SST

Figure 7. (a) The monthly signal-noise ratio of the zonal wind response to atmospheric forcing [Wang et al,, 2012].
stress in the KOE region; (b) The monthly region-mean predic- To illustrate this, Figure 7c shows the monthly predic-
tion errors of zonal wind stress averaged in the KOE region . . . .

averaged by all the predictions of KOE-SSTA events. Unit: N/m?; tion errors of 1 month leadmg zonal wind stress in
(c) The monthly prediction errors of 1 month leading zonal the KOE region divided by the climatological mean
wind stress in KOE region divided by the climatological mean MLD. As divided by MLD, the zonal wind stress errors

mixed-layer depth. Unit: N/m>, . . .
display a remarkable increase in the boreal summer,

attaining a peak in the ASO season, and subsequently
decreasing very fast in the boreal winter, consistent with the evolution of SSTA prediction errors. Figure 7c
demonstrates that the relatively small (large) prediction errors of zonal wind stress in summer (winter) may
induce a large (small) SSTA prediction error over a shallower (deeper) mixed layer. This is because the influ-
ence of atmospheric forcing (zonal wind stress) on the KOE-SSTA is approximately estimated by the forcing
per unit mass for the mixed layer. Therefore, the relatively larger forcing effect by prediction errors of sur-
face wind stress induces a larger latent heat flux error and the mean temperature advection by vertical cur-
rent error in the boreal summer than in the boreal winter, leading to the seasonal evolution of prediction
errors, ultimately causing the season-dependent predictability of KOE-SSTA: low in summer and high in
winter.

5. Summary and Discussion

In this paper, the predictability of KOE-SSTA in a global coupled model is explored from the viewpoint of ini-
tial error growth. By conducting perfect model predictability experiments, ten typical KOE-SSTA warm
events and ten cold ones are predicted with perturbed initial conditions starting from Nov(—1), Feb(0),
May(0) and Aug(0). By investigating all of the prediction errors, it is found that prediction errors of KOE-
SSTA display season-dependent evolution with an error increase in the boreal summer and an error
decrease in the boreal winter. Due to the continuous error increase (decrease) during the boreal summer
(winter), the SSTA prediction error in summer is larger than that in winter. Moreover, it is found that the pre-
diction skills in the boreal winter are higher than that in summer. Therefore, the larger (smaller) prediction
error together with the error increase (decrease) in summer (winter) causes the decline (rise) of prediction
skill, indicating a season-dependent predictability of KOE-SSTA: lower in summer and higher in winter.
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The possible mechanism of the error growth associated with the season-dependent predictability is
explored. It is found that latent heat flux error and linear vertical oceanic temperature advection error asso-
ciated with the mean state dominate the contributions to the SSTA error growth tendency in summer as
well as in winter, and they are both responsible for the error increase in summer and error decrease in win-
ter. In addition, the nonlinear vertical temperature advection errors have the effect of suppressing the error
decrease in winter, causing the error decrease in winter to be smaller than the error increase in summer.
Moreover, the impact of the seasonal evolution of sea surface wind stress is also explored. The prediction
error of zonal wind stress alone cannot explain the seasonal error growth of KOE-SSTA. The season-
dependent predictability is strongly modulated by the seasonal variation of climatological mean MLD. The
shallowest (deepest) mixed layer in summer (winter) amplifies (reduces) the forcing of zonal wind stress
errors on SSTA error growth in the KOE region, leading to a relatively larger (smaller) SSTA error growth in
summer (winter), ultimately causing the season-dependent predictability of KOE-SSTA.

In Duan and Wu [2015], the phenomenon that prediction errors exhibit significant growth in summer and
cause large prediction uncertainties is referred to as the “summer prediction barrier”, which can be consid-
ered as a portion of the seasonal predictability of KOE-SSTA. It is also known that there are seasonal varia-
tions in the persistence of North Pacific SSTA, referred as to the “summer persistence barrier” [Namias and
Born, 1970, 1974; An and Wang, 2005; Ding and Li, 2009; Zhao et al., 2012]. Namias and Born [1970, 1974] dis-
cussed the physical processes responsible for the seasonal variations in the persistence of North Pacific
SSTA. They speculated that the seasonal evolution of wind speed and the associated mixed-layer depth are
crucial factors. The thermal anomalies in the deep winter mixed layer are difficult to alter, while the thermal
anomalies in the shallow summer mixed layer tend to undergo considerable change. This physical mecha-
nism responsible for the summer persistence barrier is similar to the one in this study. The point of differ-
ence is that this study focuses on the SSTA error growth in the KOE region. We consider that the physical
mechanisms of SST anomalies and errors are similar, and the “summer prediction barrier” is a reflection of
the “summer persistence barrier” in numerical forecasting.

The season-dependent predictability of KOE-SSTA, especially the “summer prediction barrier”, may be one of
the main factors limiting the prediction skill of the North Pacific SSTA. How to improve the prediction skills is a
key issue to be addressed. The targeted observation strategy, which places additional observations in specific
regions according to weather or climate event, is aimed at reducing the uncertainty of the initial conditions in
specific regions and improving the skill of numerical prediction [Mu, 2013]. Previous studies have investigated
whether the prediction can be improved by implementing additional observations over sensitive area (i.e., tar-
geted observation area). For the well-known EIl Nino-Southern Oscillation (ENSO), Morss and Battisti [2004] sug-
gested that observations over the eastern equatorial Pacific play an important role in forecasting ENSO with
leading times of several months, using an observation system simulation experiment. Yu et al. [2012] utilized
the conditional nonlinear optimal perturbation [Mu et al.,, 2003] method to identify sensitive areas for ENSO
predictions, and found that additional observations of SST in the sensitive area could reduce the initial error
of SST, and is expected to improve forecast skill. The season-dependent predictability of KOE-SSTA is very sim-
ilar to the predictability of ENSO, which is apparent in numerical predictions as the spring prediction barrier.
Many studies have explored the spring prediction barrier for ENSO events from the point of view of error
growth [Lau and Yang, 1996; Moore and Kleeman, 1996; Samelson and Tziperman, 2001]: one of findings is that
the spring prediction barrier of ENSO is related to the fastest growth of prediction errors during spring. There-
fore, this encourages us to identify the sensitive area of KOE-SSTA predictions in future work, in an attempt to
provide useful information for improving the forecast skill of KOE-SSTA. Moreover, this study emphasizes the
important roles of wind stress and mixed-layer depth on the dynamics of the coupled ocean-atmosphere sys-
tem, which also have been demonstrated in previous theoretical works in an idealized coupled model [Gallego
and Cessi, 2009] and in a low-order coupled ocean-atmosphere model [Vannitsem, 2015]. Therefore, pursuing
the current work in the more theoretical models may contribute to the deeper understanding of the ocean-
atmosphere system in the North Pacific.

Appendix A: Continuous Rank Probability Score (CRPS)

Let the parameter of interest be denoted by x. For instance, x could be KOE-SSTA in the paper. The contin-
uous ranked probability score [Brown,1974; Matheson and Winkler, 1976, Unger, 1985], expressing one kind
of distance between the probabilistic forecast and truth, is defined as
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Here Ff(x) is the cumulative distribution function (CDF) of forecast probability for the i forecast case and
F?(x) is the CDF of observation.

The CRPS measures the closeness of the predicted and occurred cumulative distributions. Its minimal value
of zero is only achieved for Ff(x)=F?(x), that is, in the case of a perfect deterministic forecast.

In practice, the CRPS is often computed discretely, since observations and forecast distributions are
reported in discrete intervals. The reference Hersbach [2000] gives useful guidance on the computation of
the score using a discrete representation of the forecast CDF.
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