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Abstract This study explored the spatial patterns of winter predictability barrier (WPB)-related optimal initial errors and optimal
precursors for positive Indian Ocean dipole (IOD) events, and the associated physical mechanisms for their developments were
analyzed using the Simple Ocean Data Assimilation dataset. Without consideration of the effects of model errors on “predictions,”
it was assumed that different “predictions” are caused by different initial conditions. The two types of WPB-related optimal
initial errors are almost opposite for the start months of July (-1) and July (0), although they both present a west-east dipole
pattern in the tropical Indian Ocean, with the maximum errors located at the thermocline depth. Bjerknes feedback and ocean
waves play important roles in the growth of prediction errors. These two physical mechanisms compete during July-December
and ocean waves dominate during January—June. The spatial patterns of optimal precursors and the physical mechanisms for
their developments are similar to those of WPB-related optimal initial errors. It is worth noting that large values of WPB-related
optimal initial errors and optimal precursors are concentrated within a few locations, which probably represent the sensitive areas
of targeted observations for positive IOD events. The great similarities between WPB-related optimal initial errors and optimal
precursors suggest that were intensive observations performed over these areas, this would not only reduce initial errors and thus,
prediction errors, but it would also permit the detection of the signal of IOD events in advance, greatly improving the forecast skill

of positive IOD events.
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1. Introduction

The Indian Ocean dipole (IOD) is a famous coupled ocean-at-
mosphere phenomenon of interannual time scales in the
tropical Indian Ocean (Saji et al., 1999; Webster et al.,
1999; Li et al., 2003). Positive IOD events have positive
sea surface temperature anomalies (SSTAs) in the western
Indian Ocean and negative SSTAs in the southeastern Indian
Ocean, accompanied by an anomalous surface easterly wind
at the equator (Saji et al., 1999; Webster et al., 1999; Li et
al., 2002, 2003). Negative IOD events show the converse
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SSTA and surface wind patterns. The strength of IOD events
is usually measured using the Dipole Mode Index (DMI),
which is the difference in SSTAs between the western Indian
Ocean (50°-70°E, 10°S—10°N) and southeastern Indian
Ocean (90°-110°E, 10°S—Equator) (Saji et al., 1999). 10D
events often reverse the sign of the DMI during the winter
preceding the IOD year, then peak in September or October
of the IOD year, before finally reversing the sign again in
the following winter (Wajsowicz, 2004; Feng et al., 2014a).
Because of the considerable climatic effects of IOD events
on nearby and distant areas (Birkett et al., 1999; Black et
al., 2003; Annamalai and Murtugudde, 2004), it is vital and
meaningful to be able to predict IOD events accurately.
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Considerable progress has been made in the study of the
predictability of IOD events. Previous research has suggested
that the lead time for skillfully predicting IOD events is about
one season, and that it can be extended to two seasons for
strong events (Wajsowicz, 2004, 2005; Luo et al., 2005, 2007;
Zhao and Hendon, 2009; Shi et al., 2012). It is likely that this
low forecast skill is closely related to the winter predictabil-
ity barrier (WPB) phenomenon (Luo et al., 2007). From a
statistical viewpoint, the WPB indicates that, regardless of
start month, forecast skill drops rapidly across the boreal win-
ter (Luo et al., 2007). From the viewpoint of error growth,
the WPB means that prediction errors grow fastest in win-
ter (Feng et al., 2014a). It should be noted that the WPB is
demonstrated to exist not only in the growing phase but also
in the decaying phase of IOD events. By carrying out perfect
model predictability experiments, Feng et al. (2016) showed
that the dominant spatial pattern of initial errors, which are
most likely to cause a significant WPB in the growing and de-
caying phases of the IOD, presents a west-east dipole pattern
in sea temperatures, both at the surface and at 95-m depth.
Nevertheless, the initial errors in this study were only super-
imposed on two levels of the sea temperatures in the model.
However, initial errors might exist within the entire ocean in
practical forecasting. Therefore, further analysis is needed
to explore the effects of initial errors within the entire Indian
Ocean on 10D predictions.

In addition to the aforementioned initial errors that cause a
significant WPB and have large effects on IOD predictions,
the precursor is another important issue in the predictability
of IOD events. A precursor is an initial anomaly that is likely
to develop into an IOD event under the constrained condi-
tions. The study of precursors is favorable for the identifica-
tion of IOD events in advance and for then improving forecast
skill. Horii et al. (2008) showed that the TRITON floats in
the tropical eastern Indian Ocean had successfully detected
the precursors for the three consecutive positive IOD events
in 2006-2008. These were manifested as significant negative
signals at the thermocline depth several months preceding the
appearance of the SSTAs. This made us consider whether all
positive IOD events have the same precursor with negative
signals in the subsurface ocean in the tropical eastern Indian
Ocean. Furthermore, Mu et al. (2016)" explored the spatial
patterns of the optimal initial errors and optimal precursors
using a coupled model, and they demonstrated the great sim-
ilarity between them. The current study considered whether
this conclusion holds true using reanalysis data. Based on the
above discussion, several questions are proposed: (1) What
are the spatial patterns of the initial errors in the Indian Ocean
that cause a significant WPB (referred to as WPB-related ini-
tial errors in the following discussion) in the growing and de-
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caying phases of IOD events and of the initial anomalies that
develop into an IOD event (i.e., the precursor)? (2) What are
the respective physical mechanisms for their developments?
(3) What is the relationship between the WPB-related initial
errors and the precursors of positive IOD events?

Zhang et al. (2015) explored the optimal initial errors
related to the spring predictability barrier and the associated
physical mechanisms using pre-industrial control runs of
several Coupled Model Intercomparison Project Phase 5
(CMIPS) models. They assumed the sea temperatures of 1
El Nifio year in the model outputs as the “observation” and
the sea temperatures of another 19 years around the El Nifio
year as the “predictions” to this year, where the prediction
errors were caused only by the initial errors, because the
external forcing related to the pre-industrial control run was
time-invariant. This meant there was no effect related to
model error during the predictions. Based on these assump-
tions, they analyzed the initial errors that caused a significant
spring predictability barrier. Similarly, this approach was
used by Kramer and Dijkstra (2013) to explore the sensitive
areas of targeted observations for El Nifio-Southern Oscil-
lation (ENSO). The objective of this study was to answer
the questions above by applying reanalysis data using a
similar method. With consideration that positive IOD events
generally have larger magnitudes and greater climatic impact
than negative events (Ashok et al., 2001, 2003; Abram et
al., 2003; Annamalai and Murtugudde, 2004; Behera et
al., 2005; Cai et al., 2009), only positive IOD events were
considered in this study.

2. Data and method

The Simple Ocean Data Assimilation (SODA) 2.2.4 reanaly-
sis dataset (Carton and Giese, 2008), which covers the period
1921-2008, was used in this study to explore the WPB-re-
lated optimal initial errors and optimal precursors of positive
10D events. Its horizontal resolution is 0.5° x 0.5°, and its
vertical resolution varies with depth; here, SST was taken at
the depth of 5 m. The sea temperatures at different depths and
wind stress were derived. As greenhouse gases are emerging
as the dominant forcing during the twentieth century (Mann
et al., 1998), with the linear trend of the dataset removed, the
effects of external forcing could be ignored and a method sim-
ilar to Zhang et al. (2015) used in the present study.

To explore the WPB-related initial errors, 10 positive IOD
events (i.e., the DMI exceeds 0.5 standard deviations for
three consecutive months) were chosen at random from the
88-year reanalysis dataset. The signs of the DMI of these
10D events tended to be reversed in boreal winter, reach a
peak in September and October, and then decay during the

1) Mu M, Feng R, Duan W S. 2016. Relationship between optimal precursors for Indian Ocean Dipole events and optimally growing initial errors, in its
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following winter, consistent with the results in Wajsowicz
(2004). Then, the sea temperatures of each IOD event (i.e.,
the reference year) were assumed an “observation,” and the
sea temperatures in the 10 years preceding and the 10 years
following each reference year were assumed the “predic-
tions” to this “observation”. Thus, there were 20 predictions
for each “observed” IOD year and each prediction had a
12-month lead time. As mentioned above, with the linear
trend of the dataset removed, the effects of external forcing
could be neglected and therefore, the prediction errors here
could be assumed caused only by initial errors, i.c., the dif-
ferent “predictions” could be assumed the results of different
initial conditions.

The start months of the “predictions” were defined as July
(=1) and July (0) (where “—1” signifies the year preceding the
IOD year and “0” signifies the IOD year). The “predictions”
starting from July (—1) (July (0)) spanned the winter of the
growing (decaying) phase of the positive IOD events. The
so-called growing phase signifies the period from the sign re-
versal of the DMI in winter to the peak of the positive IOD
event. The decaying phase covers the period from the peak
of the IOD event to the following sign reversal in the fol-
lowing winter. Specifically, for the start month July (—1), the
sea temperatures from July (-1) to June (0) in each reference
year were considered as the “observations,” and the sea tem-
peratures from July (-2) to June (—1) (where “-2” signifies
the year preceding year “—1”") were considered as 1 of the 20
“predictions,” and so on (Figure 1a). Similarly, for the start
month July (0), the sea temperatures from July (0) to June (1)
(where “1” signifies the year following the IOD year) in each
reference year were considered as the “observations,” and the
sea temperatures from July (1) to June (2) (where “2” signi-
fies the year following the year “1”’) were considered as 1 of
the 20 “predictions,” and so on (Figure 1b). The prediction
errors were defined as the absolute values of the difference
between the “predicted” DMI and the “observed” DMI. As
there were no model errors, the prediction errors were caused
only by the initial errors. The initial errors of sea temperatures
in the tropical Indian Ocean, which are closely related with
positive IOD events, were the subject of interest in this study.
They were defined as the difference in sea temperatures be-
tween the first month of the “predictions” and the first month
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of the corresponding “observations.” To explore the WPB-re-
lated initial errors, the growth rates of prediction errors x in
each month were analyzed:

 — oP(t) _ P(t,) — P(1)
o -t

, (¢))

2 1

where P(#)) and P(t,) represent the prediction errors at time
t1 and £, respectively (->t; where t,—t; is one month and
sufficiently small). A positive (negative) value of « signifies
that the prediction errors increase (decrease), and the larger
the positive value of «, the faster the prediction errors grow
within one month. As the prediction errors were caused only
by the initial errors, the first kind of predictability experi-
ments were conducted to identify the role of the initial errors
in IOD predictions.

Similar experiments were conducted to explore the precur-
sors of positive IOD events. The main difference from the
experiments that explored the WPB-related initial errors was
that 10 normal years (i.e., not positive or negative IOD years)
were chosen at random as the reference state. As IOD events
usually reverse the sign of the DMI and occur in winter (Wa-
jsowicz, 2004; Feng et al., 2014a), the start month of the pre-
dictions was defined as January. Thus, the sea temperatures
of each normal year (January—December) were considered as
the “reference year.” The sea temperatures in the 10 years pre-
ceding and the 10 years following this reference year were
assumed the “predictions” with different initial perturbations
superimposed on the initial fields of this “reference year.” The
DMI was calculated based on the difference in sea tempera-
tures between the “predictions” and the corresponding “ref-
erence year.” If the DMI exceeded 0.5 standard deviations
for three consecutive months, a positive IOD event occurred.
Then, the initial perturbations, which were superimposed on
the initial fields of the “normal year,” developed into a posi-
tive IOD event and they could be defined as one precursor of
apositive IOD. Here, the initial perturbations were calculated
as the difference in sea temperatures in January between the
“predictions” and the corresponding reference year.

3. Results

This section presents the results of the analysis of the season-
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Figure 1 Schematic of the experimental design for one reference year with start months (a) July (-1) and (b) July (0). July (-11), July (-10), ..., July (11) in
different years along the x-axis indicate the first month of the predictions and observations. P1, P2, ..., P20 indicate the 20 predictions for each “observation”

with different initial conditions.
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ally dependent evolution of prediction errors, and it identi-
fies the dominant spatial patterns of initial errors that caused
a significant WPB for positive IOD events. Then, by analyz-
ing the evolution of these initial errors, the physical mecha-
nism of the error growth associated with the WPB is explored.
Similarly, the dominant spatial patterns of initial anomalies
that develop into positive IOD events, as well as the physical
mechanisms of their development, are also explored.

3.1 Spatial patterns of WPB-related optimal initial er-
rors for positive IOD events

According to the method in section 2, we calculated the pre-
diction errors for each “observed” positive IOD event, and the
error growth rates in each month were estimated using eq. (1).
As there were 20 predictions for each “observed” IOD event
for start month July (-1) or July (0), the ensemble means of
the monthly error growth rates for each “observed” I0OD year
were calculated. The ensemble means of the monthly error
growth rates for the 10 reference IOD years are shown in Fig-
ure 2. It is apparent that the error growth rates are large and
positive in the periods December (—1) to February (0) and
April (0) to May (0) during the lifetime of positive IOD events
for most reference years for start month July (-1), i.e., the

(a) July(-1)

Samples

- N W A OO O N 0 © O

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May
Months
(b) July(0)

Samples
_ N W A OO N o © O

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May
Months

-1 -08 -06 -04 -02 0

02 04 06 08 1

Figure 2 Ensemble mean of the monthly error growth rates for each ref-
erence 10D year (units: month™) for start months (a) July (~1), and (b) July
(0). The horizontal axes denote the months from July to May. The vertical
axes denote 10 reference 10D events.
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prediction errors grow fastest during these two periods. Ac-
cording to the definition of the WPB in Feng et al. (2014a), a
significant WPB occurs in the growing phase of positive IOD
events. Similarly, the fast error growth in the period April (0)
to May (0) corresponds to the summer predictability barrier
(SPB; Luo et al., 2007), which might have a close relation-
ship with ENSO (Luo et al., 2007). For start month July (0),
the error growth rates are large and positive in the periods
July (0) to August (0) and January (0) to March (0). The fast
error growth in these periods corresponds to two predictabil-
ity barriers: the first being the SPB and the second being the
WPB in the decaying phase of positive IOD events. Based
on the above discussion, it is evident that a significant WPB
exists in both the growing and the decaying phases of posi-
tive IOD events, which is consistent with the results in Feng
et al. (2014a). Furthermore, a significant SPB also exists
during the IOD predictions. In this study, we were mainly
concerned with the initial errors that cause significant WPBs
in the growing and decaying phases of positive IOD events,
which have great effect on predictions for the occurrence and
decay of positive IOD events.

By analyzing the evolutions of prediction errors, we found
that some prediction errors showed significant seasonally de-
pendent evolution with the fastest growth in boreal winter,
whereas other prediction errors presented no such character-
istic. According to the discussion in section 2, the predic-
tion errors in this study were caused only by initial errors.
Therefore, not all initial errors are predisposed to cause sig-
nificant WPBs. The initial errors that presented seasonally
dependent evolution, with the fastest error growth in winter
in the growing or decaying phases, were chosen and signified
as the initial errors that cause significant WPBs. In consid-
eration that realistic initial SST errors are usually small, the
selected initial errors were constrained further by the condi-
tions that the average absolute values of the initial SST errors
in the tropical Indian Ocean should be <0.5°C. After screen-
ing, there were 46 and 39 initial errors for start months July
(=1) and July (0), respectively. To explore the dominant spa-
tial patterns of these initial errors, we performed Combined
Empirical Orthogonal Function (CEOF) analysis of the initial
temperature errors in the tropical Indian Ocean and analyzed
the leading CEOF mode (i.e., the dominant mode of the ini-
tial errors). The leading CEOF mode (i.e., CEOF1; responsi-
ble for 31.6% and 23.3% of the total variance for start month
July (-1) and July (0), respectively) combined with the corre-
sponding time series (i.e., PC1) suggested there were mainly
two types of WPB-related initial errors for each start month:
one type similar to the CEOF1 mode and the other type oppo-
site to it. When the individual value of PC1 was larger than
0.5 standard deviations or smaller than —0.5 standard devia-
tions of PC1, the corresponding initial errors were separated
into two categories. The composites of these two types of ini-
tial errors were defined as type-1 and type-2 WPB-related op-
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timal initial errors, respectively, because they corresponded
to almost all WPB-related fast error growth in winter in each
20-year time series. Figure 3 show the spatial patterns of the
WPB-related optimal initial errors for start months July (-1)
and July (0).

For start month July (-1), the type-1 WPB-related optimal
initial errors present negative SST errors in the western In-
dian Ocean and positive SST errors in the central-southeast-
ern Indian Ocean (Figure 3a). Correspondingly, a significant
west-east dipole pattern exists in the subsurface ocean (Fig-
ure 3b). For type-2 WPB-related optimal initial errors, the
surface component presents positive errors in the northwest-
ern Indian Ocean and negative errors in the southeastern In-
dian Ocean; and the subsurface temperature errors are almost
opposite to the type-1 initial errors (Figure 3c and 3d). It is
interesting to note that, for the two types of WPB-related opti-
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mal initial errors, the initial errors in the subsurface ocean are
more significant than in the surface ocean, and the maximum
errors are located at a depth of 80—120 m, which matches the
thermocline depth exactly. In addition, the absolute values
of the maximum errors in the eastern Indian Ocean are larger
than in the western Indian Ocean. Furthermore, the range of
positive (negative) initial errors in the eastern Indian Ocean is
also larger than that of negative (positive) initial errors in the
western Indian Ocean for type-1 (type-2) WPB-related opti-
mal initial errors.

For start month July (0), the basic characteristics of the
two types of WPB-related optimal initial errors are similar to
those for start month July (—1), i.e., there is a significant west-
east dipole pattern in the subsurface ocean and the maximum
errors are located at the thermocline depth (Figure 3e-h).
However, different from the results for start month July (-1),
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Figure 3  Spatial patterns of SST component ((a), (¢), (€), (g)) and equatorial (5°S—5°N) subsurface temperature component ((b), (d), (), (h)) of type-1 ((a),
(b)) and type-2 ((c), (d)) WPB-related optimal initial errors for start month July (—1) (units: °C); ((e), (f)) and ((g), (h)) are spatial patterns of type-1 and type-2
WPB-related optimal initial errors for start month July (0), respectively. Dotted areas indicate that composites of SST and subsurface temperature errors exceed

the 90% significance level, as determined by a ¢-test.
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the range of errors in the eastern Indian Ocean is smaller than
that of the opposite errors in the western Indian Ocean. Ad-
ditionally, the absolute values of the maximum errors in the
eastern Indian Ocean are smaller than in the western Indian
Ocean for type-2 optimal initial errors.

The above results indicate that the initial errors with a
west-east dipole pattern, especially at the thermocline depth,
have great effect on [OD predictions and might constrain the
forecast skill across the winter in the growing and decaying
phases of positive IOD events. These findings are consistent
with the results in Feng et al. (2016).

3.2 Dynamical mechanisms of error growth related to
the WPB for 10D events

Having demonstrated the spatial patterns of WPB-related op-
timal initial errors, this section explores the effects of these
initial errors on IOD predictions and analyzes the dynamical
mechanisms of error growth. Figure 4 shows the evolutions
of the WPB-related optimal initial errors for start month July
(=1), which were calculated based on the composite differ-
ence in sea temperatures between the selected “predictions”
and the corresponding “observation.” When type-1 WPB-re-
lated optimal initial errors were superimposed on the initial
state of positive IOD events for start month July (-1) (Fig-
ure 4a and 4b), large negative initial errors occurred in the
western Indian Ocean and positive initial errors occurred in
the eastern Indian Ocean, with the maximum errors located
at the thermocline depth. On the one hand, the gradient of
the SST errors leads to the anomalous westerly wind at the
equator and therefore, the Bjerknes positive feedback works
and favors the warming in eastern Indian Ocean. On the
other hand, the negative subsurface temperature errors in the
western equatorial Indian Ocean lift the thermocline depth.
This induces an upwelling Kelvin wave that travels eastward
to the eastern Indian Ocean, weakening the positive subsur-
face temperature errors there. Similarly, the positive subsur-
face temperature errors in the eastern equatorial Indian Ocean
lower the thermocline depth, inducing a downwelling equato-
rial Rossby wave that travels westward to the western Indian
Ocean, which weakens the negative subsurface temperature
errors there. The subsurface temperature errors further affect
the SST errors by vertical temperature advection. Based on
the above, the amplification of the sea temperature errors de-
pends on the relative importance of the two competing mech-
anisms. Specifically, in the first month of the predictions,
the gradient of SST errors is small, which results in weak
zonal anomalous winds at the equator and correspondingly,
the Bjerknes positive feedback is weak. However, the sub-
surface temperature errors are large, indicating a considerable
negative effect by ocean waves. Therefore, the role of ocean
waves on sea temperature errors is greater than that of Bjerk-
nes feedback, resulting in the weakening of the sea tempera-
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ture errors in the second month. In conjunction with the de-
creasing of the sea temperature errors, the negative effects of
the ocean waves are weakened, which is almost offset by the
Bjerknes positive feedback, resulting in the sea temperature
errors remaining unchanged in the following four months. In
the second half of the prediction year, as the zonal wind anom-
alies at the equator are extremely weak, Bjerknes feedback is
inactive; therefore, the ocean waves play the dominant role.
The downwelling equatorial Rossby wave causes the positive
subsurface temperature errors to propagate westward; and the
upwelling Kelvin wave causes the negative subsurface tem-
perature errors to propagate quickly eastward and reflect at
the east coast of the Indian Ocean as the upwelling equatorial
Rossby wave.

For type-2 WPB-related optimal initial errors, the primary
physical mechanisms of error growth are similar to those for
type-1 initial errors. In the first half of the prediction year, un-
der the competing mechanisms, the subsurface temperature
errors weaken, especially in the eastern Indian Ocean (Figure
4c and 4d). Then, in the second half of the prediction year,
ocean waves play the dominant role. The upwelling equato-
rial Rossby wave results in the westward propagation of the
negative temperature errors to the western Indian Ocean and
cooling of the water there. The dowelling Kelvin wave prop-
agates quickly eastward and reflects at the east coast of the
Indian Ocean as the dowelling equatorial Rossby wave.

When the start month is July (0), the primary physical
mechanisms of the error growth for the two types of WPB-re-
lated optimal initial errors are almost the same as for start
month July (-1) (Figure 5). The Bjerknes positive feedback
and ocean waves compete with each other in the first half
of the prediction year, and the ocean waves dominate in the
second half of the year. One difference, however, is that
the negative temperature errors in the eastern Indian Ocean
disappear quickly in the first month, and instead, positive
temperature errors appear in the second month for type-2 op-
timal initial errors. This might have a close relation with the
reversal of the equatorial wind from easterly wind anomalies
to westerly wind anomalies in the first two months. Under
these conditions, Bjerknes feedback, in conjunction with the
role of ocean waves, favors the disappearance of the negative
temperature errors and the appearance of positive errors in
the eastern Indian Ocean.

The above results suggest that both Bjerknes positive feed-
back and ocean waves play important roles during the devel-
opment of prediction errors. Generally, Bjerknes feedback is
active in the first half of the prediction year (i.e., July—De-
cember) and inactive in the later period (i.e., January—June),
which might have a close relation with wind strength. Thus,
the two physical mechanisms compete with each other in the
first half of the prediction year, resulting in the temperature
errors remaining unchanged or weakening, whereas ocean
waves dominate in the second half of the prediction year.



Jul Jan Jan
10°N 10°N
w7 /\ \()ﬁ// o |.01 / fo o SN 1 o) v as 20 20
5N S A////'f o=t S md LS // r/ $1e e S 40 40
L P A N N . ot v~ v~ - 60 60
B O S T N 2 IS R 2 2
] NN s 2 2% 1 2 2 #1000 — < <
3668 \\\\\\\\\' R - I 120 120
60°E 80°E 100°E 60°E 80°E
10°N . 10°N £
P VNN - 8 2 N ot Lo e 0 m - A0 20 20
5N 4 - ~ v N ~——e— —e =S —| 5°N SIS , 6 oo o - S | 40 40
oL@~ Nty VAR oy e st - 60 60
. L N N N e N N o) . e e 20 4 . & et @l o 80 80
5°S 4 o _ o e o o (o o  * 5°S 4 e o o o o o o o [y 100 100
N N s B PR N Y ST NN et e~
10°S \\.\\“" S -2 )\\\'\\ AN 10°S S S a2\ } po Nelege . = 120 120
60°E 80°E 100°E 60°E 80°E 100°E
10°N 10°N et
l.: Vot 4 4 &N s v 20
5N S 2 TN, R Rl * - i Y 40
0 048 ™™ > v tever com e oo D B o o e 60
o o c~ SN NN TRt NS . X U 80
5°S 5°S 1. — \\\\‘ R PR R\ o o . ® 100
10°8 S DR O R RO NG R EY - - 7= 120
60°E 80°E 100°E 60°E 80°E 100°E 60°E 80°E 100°E
Oct Oct
o 0|
10°N ] 2 s N =~ —\/~(>// 2 ‘Q «9.01 10°N 20 . o, o 20
CHVE SR —| 5N 40 —c S L
0d: - N P P PN + 0 1 60 ‘A.’ . Oy 60
sos Lo\ Lol ¢ « v L [ 2~ o 28 128 ‘o o o o 1(8)8
ALK § v VS :
10°s 4 \.\.\.. T 10° 120 4.7 : sle T, 120
60°E 80°E 100°E 60°E 80°E 100°E
Nov Nov
LR ey, | wen semen s e KRG wloTT o W
BN $0a®r 4 o o @ N8 ot o0 5°N 40 o o o o 403+ - o o o .
PN P 0 60 N VK :
..:- :.' ‘.\ } \.‘—O—N\“ 17. 80 . . . . 80 . . . ‘C L2
s 2NN e -NL\.\.\\\\ 5°S 100 §.° 100 J.“.‘
10°S > ittt ¢ e AR NN 10°s 3 120 hd W | 120 S A
v ' M ) ) 1 ) 1 1
60°E 80°E 100°E 60°E 80°E 100°E 60°E 80°E 100°E
10°N 10°N Dec Jun
20 . e | 20 3¢ . o . .
5N 5°N 40 4 A e 40 6% %
) 5 60 4 # SO T 60 Lo
80 o o Dnias 80
G [ R S A S I 100 4 RN ,100 “_.
10°S datariasian o 0 o S 10°s 120 ; — - 120 —— -
60°E 80°E 100°E 60°E 80°E 100°E 60°E 80°E 100°E
[ I I [ T
-3.2 2.4 -1.6 -0.8 0.8 1.6 24 3.2

(a) SSTA+Wind anomaly

(b) Subsurface temperature anomaly

29l

‘p 12 < Suag

198 Y05 DU 1S

1°ON 09 '[OA (410%) Arenuep



(c) SSTA+Wind anomaly (d) Subsurface temperature anomaly
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Figure 4 Evolutions of SSTA (units: °C) and sea surface wind anomaly (units: m s™') over the tropical Indian Ocean (left column) and equatorial (5°S—5°N) subsurface temperature anomaly (units: °C; right
column) for type-1 ((a), (b)) and type-2 ((c), (d)) WPB-related optimal initial errors for start month July (-1). Dotted areas indicate that the composites of SST and subsurface temperature errors exceed the 90%
significance level, as determined by a -test.
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c) SSTA+Wind anomaly

(d) Subsurface temperature anomaly
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Figure 5 Evolutions of SSTA (units: °C) and sea surface wind anomaly (units: m s™) over the tropical Indian Ocean (left column) and equatorial (5°S—5°N) subsurface temperature anomaly (units: °C; right
column) for type-1 ((a), (b)) and type-2 ((c), (d)) WPB-related optimal initial errors for start month July (0). Dotted areas indicate that the composites of SST and subsurface temperature errors exceed the 90%

significance level, as determined by a #-test.
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3.3 Spatial patterns of optimal precursors that develop
into positive IOD events

In the previous sections, we discussed the WPB-related opti-
mal initial errors and defined 10 positive IOD events as ref-
erence states. In this section, we replace the reference states
with 10 normal years and explore the initial anomalies that
develop into positive IOD events, which is also an important
issue in the predictability of IOD events.

To explore the precursors of positive IOD events, initial
anomalies that developed into positive IOD events were cho-
sen according to the method in section 2. Then, we applied
the CEOF analysis to these initial anomalies in the tropical
Indian Ocean and analyzed the leading CEOF mode (i.e.,
CEOFT; responsible for 33.6% of the total variance), which
describes the dominant mode of these selected initial anom-
alies. Similar to the WPB-related initial errors, these initial
anomalies could also be divided into two categories accord-
ing to the sign of the PC1 with one type similar to the CEOF1
mode and the other type opposite to it. In particular, when
the individual value of the PC1 was larger than 0.5 or smaller
than —0.5 standard deviations of PC1, the corresponding ini-
tial anomalies were selected. Because they corresponded to
almost all positive IOD events in the 20-year SST time se-
ries, the composites of these two types of initial anomalies
could be considered as the optimal precursors for positive
IOD events, which were defined as type-1 and type-2 opti-
mal precursors (Figure 6).

For a type-1 optimal precursor, SSTAs are negative in most
parts of the tropical Indian Ocean, with a small area of posi-
tive SSTAs in the southeastern Indian Ocean. In the subsur-
face ocean, there is a significant dipole pattern with negative
anomalies in the western Indian Ocean and positive anom-
alies in the central-eastern Indian Ocean, and the maximum

10°N
5°N

5°S
10°S

10°N

January (2017) Vol. 60 No. 1

anomalies are located at the thermocline depth. The type-2
optimal precursor is almost the opposite of the type-1 optimal
precursor. The negative initial anomalies at the thermocline
depth in the eastern Indian Ocean for type-2 optimal precur-
sor are consistent with the results in Horii et al. (2008). In-
terestingly, the spatial pattern of type-1 (type-2) optimal pre-
cursor in the subsurface ocean is similar to that of the type-1
(type-2) WPB-related optimal initial errors for start months
July (1) and July (0), with a significant west-east dipole pat-
tern. However, the SSTAs for the two types of optimal precur-
sors mainly present a basin-wide warming or cooling, which
is different from the WPB-related optimal initial errors.

The above discussion indicates that the optimal precursors
of positive IOD events present a west-east dipole pattern in
the subsurface ocean, with maximum anomalies located at
the thermocline depth, which is similar to the WPB-related
optimal initial errors. Therefore, the question addressed in
the following section is whether the physical mechanisms of
the development for optimal precursors are similar to those
for the WPB-related optimal initial errors.

3.4 Dynamical mechanisms for the developments of op-
timal precursors

Similar to the discussion in section 3.2, we analyzed the de-
velopments of sea temperature anomalies for two types of op-
timal precursors, as well as the closely related wind stress,
to explore the associated dynamical mechanisms. Figure 7
shows the evolutions of the optimal precursors, which are
calculated based on the composite difference in sea tempera-
tures between the selected “predictions” and the correspond-
ing “normal year.”

For the type-1 optimal precursor, the initial anomalies are
superimposed on the initial state of the normal year (i.e., the

(b)

5°N

5°8

10°S

0.8 1.6 24

Figure 6 Spatial patterns of SST component ((a), (c)) and equatorial (5°S—5°N) subsurface temperature component ((b), (d)) of type-1 ((a), (b)) and type-2
((c), (d)) optimal precursors (units: °C). Dotted areas indicate that composites of SSTA and subsurface temperature anomalies exceed the 90% significance

level, as determined by a #-test.
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Figure 7 Evolutions of SSTA (units: °C) and sea surface wind anomaly (units: m s™) over the tropical Indian Ocean (left column), and equatorial (5°S—5°N) subsurface temperature anomaly (units: °C; right
column) for type-1 ((a), (b)) and type-2 ((c), (d)) optimal precursors. Dotted areas indicate that the composites of SSTA and subsurface temperature anomalies exceed the 90% significance level, as determined by
a t-test.
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reference year), with negative anomalies in the western
Indian Ocean and positive anomalies in the eastern Indian
Ocean (Figure 7a and 7b) in the subsurface ocean. Ac-
cording to section 3.2, the amplification or reduction of
sea temperature anomalies mainly depends on the relative
importance between ocean waves and Bjerknes positive
feedback. In the first four months, the SSTAS are basin-wide
cooling, resulting in extremely weak zonal wind anomalies
at the equator. Hence, Bjerknes feedback is inactive and
ocean waves dominate the propagation of sea temperature
anomalies. The downwelling equatorial Rossby wave causes
the positive subsurface temperature anomalies to propagate
westward to the western Indian Ocean, weakening the neg-
ative anomalies there. The upwelling Kelvin wave causes
negative subsurface temperature anomalies to propagate
quickly eastward to the east coast of the Indian Ocean. In
May, the zonal wind anomalies at the equator are amplified,
activating Bjerknes positive feedback. Meanwhile, the sub-
surface temperature anomalies are small, leading to weak
effects by the ocean waves. The combination of the strong
Bjerknes positive feedback and weak effects of ocean waves
amplifies the temperature anomalies in the eastern Indian
Ocean. From May onward, together with the intensification
of the zonal wind anomalies at the equator, the Bjerknes
feedback is strengthened and it dominates the growth of the
sea temperature anomalies, resulting in a significant positive
10D event.

Similarly, for the type-2 optimal precursor, the Bjerknes
positive feedback and ocean waves compete with each other
and play important roles in the development of the initial
anomalies (Figure 7c and 7d). However, ocean waves dom-
inate for a longer time than for the type-1 optimal precursor,
with negative anomalies propagating westward, which are
followed by positive anomalies in the first half of the predic-
tion year. Thus, the upwelling equatorial Rossby wave causes
the negative subsurface temperature anomalies to propagate
westward to the western Indian Ocean, whereas the down-
welling Kelvin wave causes the positive subsurface tempera-
ture anomalies to propagate quickly eastward to the east coast
of the Indian Ocean and reflect as the downwelling equato-
rial Rossby wave. Then, the positive subsurface tempera-
ture anomalies propagate westward under the effects of the
downwelling equatorial Rossby wave. The Bjerknes feed-
back dominates in the second half of the prediction year, fi-
nally leading to a positive IOD event. Interestingly, although
the two types of optimal precursors have opposite patterns,
they both develop into positive IOD events, which might have
a close relation with the different lengths of time that the two
competing mechanisms dominate.

To explore the different effects of type-1 and type-2 optimal
precursors on positive IOD events further, the DMIs of each
were analyzed (Figure 8). For a type-1 optimal precursor, the
DMI usually reverses its sign in the period February—May,
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peaks in October and November, and finally decays in De-
cember. However, the DMI shows a later sign reversal and
earlier peak for type-2 optimal precursors. Furthermore, the
amplitudes of the positive IOD events induced by type-1 opti-
mal precursors are significantly larger than induced by type-2
optimal precursors. Therefore, except for the precursor dis-
cussed in Horii et al. (2008), another type of optimal precur-
sor also exists for positive IOD events, which is predisposed
to cause stronger positive IOD events.

The discussion in this section suggests that both ocean
waves and Bjerknes feedback play important roles in the
development of positive IOD events, and that Bjerknes feed-
back is generally inactive during the period January—June
and active in the rest of the year. These results are consistent
with those for WPB-related optimal initial errors. It is inter-
esting to find that significant similarities exist between the
WPB-related optimal initial errors and optimal precursors
both in their spatial patterns and in the associated physical
mechanisms, which are analyzed further in section 4.

4. Similarities between the WPB-related opti-
mal initial errors and optimal precursors for
positive IOD events

The similarities between the WPB-related optimal initial er-
rors and optimal precursors for positive IOD events are dis-
cussed in terms of the following three aspects. First, both
the WPB-related optimal initial errors and optimal precursors
present a west-east dipole pattern in the subsurface ocean,
with the maximum perturbations (i.e., maximum initial er-
rors or maximum initial anomalies) located at the thermo-
cline depth. This is consistent with the conclusion in Mu et al.
(2016)". The similarity coefficients between them are shown

>
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Figure 8 Time-dependent DMIs for each individual. The red lines repre-
sent the DMI for type-1 optimal precursors and the blue lines represent the
DMI for type-2 optimal precursors.
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in Table 1. Apparently, the optimal precursors have consid-
erable spatial similarity with the WPB-related optimal initial
errors for positive IOD events, especially with optimal ini-
tial errors for start month July (-1). Second, ocean waves
and Bjerknes positive feedback play important roles in the
developments of WPB-related optimal initial errors and opti-
mal precursors. In particular, these two physical mechanisms
compete with each other in the period July—-December when
Bjerknes feedback is active, although ocean waves dominate
in the remainder of the year when Bjerknes feedback is inac-
tive.

In addition, the WPB-related optimal initial errors and op-
timal precursors show similar seasonally dependent growth.
The WPB-related optimal initial errors grow fastest in win-
ter and cause a significant WPB. Feng et al. (2014b) sug-
gested that positive IOD events show fast growth in winter in
close association with the winter persistence barrier. It would
be easy to deduce that the optimal precursors that develop
into positive IOD events usually present fast growth in win-
ter. The fast growth of the perturbations (i.e., WPB-related
optimal initial errors and optimal precursors) has a close re-
lationship with the weakest coupled system in winter (Feng
et al., 2014b), which is favorable for the rapid variation of
perturbations, resulting in the WPB and winter persistence
barrier.

The discussion in section 3 suggests that the large values of
the WPB-related optimal initial errors are mainly located at
the thermocline depth, especially in the eastern Indian Ocean.
Thus, these large values are concentrated within a few loca-
tions, and the errors over these areas have considerable ef-
fect on IOD predictions. Therefore, these areas probably rep-
resent the potential sensitive areas of targeted observations
for positive IOD events. If intensive observations were con-
ducted over these areas, the initial errors would be largely re-
duced, which would reduce the prediction errors and improve
the forecast skill of positive IOD events considerably. Fur-
thermore, because of the similarity of the optimal precursors
to the WPB-related optimal initial errors, performing inten-
sive observations would also detect the signals of the optimal
precursors that trigger IOD events.

5. Discussion and conclusions

In this study, we explored the spatial patterns of WPB-related
optimal initial errors and optimal precursors of positive IOD
events and analyzed the associated physical mechanisms for
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their developments using the SODA dataset. As there were
no model errors, the different “predictions” were caused only
by different initial conditions. It was found that a significant
WPB exists in both the growing and decaying phases of posi-
tive IOD events. Furthermore, a significant SPB exists during
10D predictions, which is closely related with ENSO. These
results are consistent with those of Feng et al. (2014a) and
Luo et al. (2007).

Initial errors that presented seasonally dependent evolu-
tions with the fastest error growth in winter were chosen and
analyzed. For start month July (-1), the type-1 WPB-related
optimal initial errors presented a west-east dipole pattern in
the tropical Indian Ocean, with the maximum errors located
at the thermocline depth. The type-2 WPB-related optimal
initial errors showed an opposite pattern to type-1. For start
month July (0), the basic characteristics of the two types of
WPB-related optimal initial errors were similar to those for
start month July (-1). These results indicate that the initial
errors with a west-east dipole pattern, especially at the ther-
mocline depth, have considerable effect on IOD predictions
and might constrain the forecast skill across the winter in the
growing and decaying phases of positive IOD events; find-
ings are consistent with the results of Feng et al. (2016).

By analyzing the developments of WPB-related optimal
initial errors, it was found that Bjerknes positive feedback
and ocean waves play important roles in the development of
prediction errors for start months July (1) and July (0). The
two physical mechanisms compete with each other in the first
half of the prediction year (i.e., July-December), resulting in
the temperature errors remaining unchanged or weakening,
whereas ocean waves dominate in the second half of the pre-
diction year (i.e., January—June). Mu et al. (2016)" explored
the evolution of optimal initial errors using the Geophysi-
cal Fluid Dynamics Laboratory Climate Model version 2pl
(GFDL CM2pl), and the results of the current study using
reanalysis data further verify their conclusions. Furthermore,
the weakest coupled system in winter (Feng et al., 2014b) fa-
vors the rapid variation of perturbations under the two com-
peting physical mechanisms, resulting in the occurrence of a
significant WPB.

The optimal precursors of positive IOD events were also
explored. The type-1 optimal precursor presented a signif-
icant west-east dipole pattern in the subsurface ocean. The
type-2 optimal precursor was almost the opposite of type-1,
and the negative initial anomalies in the eastern Indian Ocean
at the thermocline depth were found consistent with the re-

Table 1 Spatial similarity coefficients between the WPB-related optimal initial errors (OE) for start months July (1) and July (0) and optimal precursors (OP)

o ) OE July (-1) OE July (0)
Similarity coefficients
Type-1 Type-2 Type-1 Type-2
OP Type-1 0.5773 —0.6599 0.2741 —0.3001
OP Type-2 —0.8031 0.7298 —0.5909 0.5032
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sults in Horii et al. (2008). Interestingly, the spatial pat-
terns of the two types of optimal precursors were similar to
those of the two types of WPB-related optimal initial errors.
The physical mechanisms for the developments of the op-
timal precursors were analyzed further. It was found that
ocean waves dominate in the first half of the prediction year,
whereas Bjerknes feedback competes with ocean waves and
dominates in the second half of the prediction year, finally
leading to a positive IOD event. These results are consistent
with the conclusions in Mu et al. (2016)" based on a cou-
pled model. In addition, although the two types of optimal
precursors displayed opposite patterns, they both developed
into positive IOD events, with the type-1 optimal precursor
causing the stronger event.

Based on the above discussion, the WPB-related optimal
initial errors and optimal precursors were found to have con-
siderable similarities in the following three aspects. First,
they both presented a west-east dipole pattern in the subsur-
face ocean, with the maximum perturbations located at the
thermocline depth. Second, ocean waves and Bjerknes pos-
itive feedback play important roles in their developments.
Furthermore, they both presented a fast growth in winter, cor-
responding to the WPB and winter persistence barrier, respec-
tively. This fast growth in winter has a close relationship with
the weakest coupled system in winter (Feng et al., 2014b),
which is favorable for the rapid variation of perturbations.
It is worth noting that the WPB-related optimal initial errors
and optimal precursors showed great similarity in their spatial
patterns and the largest values of these patterns were concen-
trated within a few locations, which probably represent the
potential sensitive areas of targeted observations for positive
10D events. Therefore, should intensive observations be per-
formed over these areas, it would not only decrease the initial
errors and reduce the prediction errors further, but it would
also detect the signals of the optimal precursors that trigger
10D events, greatly improving the forecast skill of positive
IOD events. Similar results have been obtained in studies of
ENSO and the Kuroshio large meander (Wang et al., 2013;
Mu et al., 2014; Hu and Duan, 2016), and the large values of
the optimal initial errors and optimal precursors, which are
located within small areas, have been demonstrated to be the
sensitive areas of targeted observations for these events.

To examine the spatial patterns of WPB-related optimal ini-
tial errors and optimal precursors for positive IOD events,
only the initial errors and initial anomalies in sea temperature
in the tropical Indian Ocean were analyzed. In fact, initial
errors and initial anomalies also exist in other atmospheric
and oceanic variables in the global oceans. In consideration
of the interactions among different basins of the Pacific, At-
lantic, and Indian oceans, it would be worthwhile to investi-
gate the effects of these oceans on IOD predictions. Further-
more, it would be informative to explore the effects of other
oceanic and atmospheric variables on IOD predictions. This
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study identified potential sensitive areas; however, additional
sensitivity experiments should be conducted using coupled
numerical models to examine the validity of these areas with
regard to improving the forecast skill of positive IOD events.
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