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ABSTRACT

With the Zebiak–Cane model, the present study investigates the role of model errors represented by the
nonlinear forcing singular vector (NFSV) in the “spring predictability barrier” (SPB) phenomenon in ENSO
prediction. The NFSV-related model errors are found to have the largest negative effect on the uncertainties
of El Niño prediction and they can be classified into two types: the first is featured with a zonal dipolar
pattern of SST anomalies (SSTA), with the western poles centered in the equatorial central–western Pacific
exhibiting positive anomalies and the eastern poles in the equatorial eastern Pacific exhibiting negative
anomalies; and the second is characterized by a pattern almost opposite to the first type. The first type of
error tends to have the worst effects on El Niño growth-phase predictions, whereas the latter often yields the
largest negative effects on decaying-phase predictions. The evolution of prediction errors caused by NFSV-
related errors exhibits prominent seasonality, with the fastest error growth in spring and/or summer; hence,
these errors result in a significant SPB related to El Niño events. The linear counterpart of NFSVs, the
(linear) forcing singular vector (FSV), induces a less significant SPB because it contains smaller prediction
errors. Random errors cannot generate an SPB for El Niño events. These results show that the occurrence
of an SPB is related to the spatial patterns of tendency errors. The NFSV tendency errors cause the most
significant SPB for El Niño events. In addition, NFSVs often concentrate these large value errors in a few
areas within the equatorial eastern and central–western Pacific, which likely represent those areas sensitive
to El Niño predictions associated with model errors. Meanwhile, these areas are also exactly consistent
with the sensitive areas related to initial errors determined by previous studies. This implies that additional
observations in the sensitive areas would not only improve the accuracy of the initial field but also promote
the reduction of model errors to greatly improve ENSO forecasts.
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1. Introduction

The El Niño–Southern Oscillation (ENSO), a

large-scale interannual fluctuation caused by interac-

tions between the atmosphere and the ocean over the

tropical Pacific, has great climatic and socioeconomic

impacts worldwide (McPhaden et al., 2006). Un-

derstanding of ENSO and its predictions are there-

fore important and have received tremendous atten-

tion over the years. Despite continuous improvements

in ENSO models and predictions in recent decades,

realistic ENSO predictions still contain considerable

uncertainties (Kleeman, 1991; Latif et al., 1994, 1998;

Luo et al., 2008; Jin et al., 2008). Even in predicting

the years 2014/2015, most models encounter signifi-

cant challenges and provide false alerts for El Niño

occurrences. Moreover, most models successfully fore-

cast the occurrence of 2015/2016 El Niño events, but
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the predicted intensities contain large uncertainties.

The challenge in forecasting ENSO events may be

related to the “spring predictability barrier” (SPB),

which means that ENSO predictions tend to be much

less reliable when the forecasts are made before or dur-

ing the spring.

The SPB is a critical component of ENSO fore-

casts (Webster and Yang, 1992; Lau and Yang,

1996; McPhaden, 2003), but its origin is still de-

batable. Quite a few studies have attempted to ex-

plain this phenomenon (Penland and Magorian, 1993;

Webster, 1995; Moore and Kleeman, 1996; Torrence

and Webster, 1998; Samelson and Tziperman, 2001;

McPhaden, 2003; Levine and McPhaden, 2015). Par-

ticularly, most highlight the role of initial errors in

yielding a “significant SPB.”

In terms of prediction error growth, a “significant

SPB” means that ENSO predictions do not only con-

tain a significantly large prediction error but also ex-

hibit prominent error growth during the boreal spring

when these predictions are made before or throughout

the season. Moore and Kleeman (1996) investigated

the SPB by using the singular vector approach, which

represents the fastest growing initial errors in a linear

model. Chen et al. (2004) suggested that the im-

provement of the model initialization procedure could

reduce and even eliminate this predictability barrier

phenomenon. Zheng and Zhu (2010) also showed the

importance of reducing initial errors in improving a

model’s ENSO forecast ability. Particularly, Mu et

al. (2007a, b) applied the conditional nonlinear opti-

mal perturbation (CNOP) approach (Mu et al., 2003)

to ENSO predictability and showed that the SPB oc-

curs as a result of the combined effect of climato-

logical seasonal cycles, El Niño, and the initial er-

ror structure. For a given model, the first two fac-

tors are inherent (Stein et al., 2010; Dommenget and

Yu, 2016), and the seasonality of error growth usually

originates from them. Along these lines, the results

of Mu et al. (2007a, b) indicated that particular ini-

tial error patterns could determine whether an SPB is

present (Duan et al., 2009). Yu et al. (2009) revealed

the initial error most likely to generate a significant

SPB for El Niño events; particularly, they showed how

SPB-related initial errors exist in realistic predictions

(Duan et al., 2009; Duan and Wei, 2012). Further-

more, when the SPB-related initial errors are filtered

out, ENSO model forecast ability is greatly improved

(Duan and Hu, 2016).

Gebbie and Tziperman (2009) found that inte-

grating westerly wind bursts (WWBs) improved their

prediction of the onset and development of the ex-

ceptionally large 1997 El Niño event, suggesting a

potential for ENSO prediction improvements within

the SPB. Lopez and Kirtman (2014) also showed that

including state-dependent WWBs in a fully coupled

prediction model significantly increased their model’s

ENSO prediction ability. These two studies indicate

that when a model fails to address the effect of WWBs

and yields model errors, the ability of that model to

forecast ENSO events is also largely influenced. For

example, Yu et al. (2003) suggested that the charac-

teristics of WWBs depend on the large-scale SST field

and are therefore not purely stochastic, which implies

that the model errors induced by the lack of WWBs

may be of a certain structure and have a large effect

on ENSO prediction errors. In realistic predictions,

model errors may include not only atmospheric vari-

ability forcing uncertainties but also model parameter-

izations and boundary condition uncertainties (Blanke

et al., 1997; Flügel and Chang, 1998; Latif et al., 1998;

Liu, 2002; Mu et al., 2002; Zhang et al., 2003; Zavala-

Garay et al., 2004; Williams, 2005; Duan and Zhang,

2010; Yu et al., 2012a). Furthermore, it is very diffi-

cult to separate these uncertainties’ respective roles in

overall prediction uncertainty. The combined effect of

these kinds of model errors must be investigated. As a

consequence, we ask: how can we study the combined

effect of groups of model errors? Do such model errors

have a particular pattern, and does that pattern cause

significant prediction uncertainty? Can these errors

induce the SPB associated with ENSO predictions?

And, how can researchers reduce the effect of model

errors on ENSO forecasts? In this paper, we address

these questions. In Section 2, we introduce the ap-

proach. In Section 3, we introduce the Zebiak–Cane

model adopted in this study and highlight the model

errors that have the largest effect on ENSO predic-

tions. In Section 4, the role of these model errors on

the SPB phenomenon is explored. Section 5 explores
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the dependence of SPB to El Niño event predictions

on the spatial structure of tendency errors. Section 6

discusses the implication of the featured model errors

associated with the SPB. Finally, a summary of the

main results and discussion are presented in Section

7.

2. Approach: nonlinear forcing singular vector

Model errors generally stem from a combination

of uncertainties in discrete and subgrid-scale numeri-

cal parameterization schemes (Syu and Neelin, 2000),

the representation of intraseasonal atmospheric vari-

ability (Marshall et al., 2009), model boundary condi-

tions, etc (Wu et al., 1993). Therefore, the effects of

these types of model errors are mixed; and it is very

difficult to distinguish their respective roles in yielding

prediction uncertainties. Roads (1987) used tendency

errors to approximate the combined effect of different

types of model errors and expressed the model in the

form

∂U

∂t
= F (U(x; t)) + f , (1)

where the function F (U(x; t)) is the model equation

tendency, and f is a forcing term, which can be com-

puted by assimilating the observations. Within the

Roads’ procedure, the forcing f can be roughly iden-

tified as responsible for processes that are omitted or

mistreated by the model equation (Roads, 1987; Mc-

Creary and Anderson, 1991; Barkmeijer et al., 2003).

Following this study, Barkmeijer et al. (2003) assumed

perfect initial conditions and introduced the (linear)

forcing singular vector (FSV) approach to describe the

constant tendency perturbation resulting in consider-

able perturbation growth within a linear model during

a predetermined forecast period.

The motions of the atmosphere, ocean, and their

coupled system (e.g., ENSO) are often dominated by

complex nonlinear systems. The FSV is therefore lim-

ited in its ability to show its effect on tendency errors

within nonlinear physical processes. To overcome this

limitation, Duan and Zhou (2013) introduced the non-

linear forcing singular vector (NFSV) approach. An

NFSV is the tendency perturbation that generates the

largest prediction error in the reference state to be

predicted in a nonlinear model at the prediction time

based on physical constraint conditions. To assist the

readers, we review the NFSV approach briefly below.

For a measurement ‖ · ‖, a tendency perturbation

f δ is called an NFSV if and only if

J(f δ) = max
‖f‖a6δ

‖M t0,tk
(f)(U0)−M t0,tk

(0)(U0)‖b, (2)

where ‖ · ‖a and ‖ · ‖b measure the amplitude of the

tendency error f and its resultant prediction error,

respectively. These values can be the same or differ-

ent, depending on the physical problem of interest.

The variable f is subject to the constraint radius δ;

M t0,tk
(f) is the propagator of a nonlinear model with

tendency error f from initial time t0 to prediction time

tk; and U0 is the initial value of the reference state

and we do not consider its errors in predictions in this

study.

The linear FSV is as follows:

λ(f∗) = max
f

‖M τ (f)(0)‖

‖f‖
, (3)

where M τ (f) is the tangent linear operator of M τ (f);

the inner product is chosen to describe the norm ‖ · ‖

here. By solving the optimization problem in Eq. (3),

the FSV can be obtained. The FSV represents the

tendency perturbation that causes the largest pertur-

bation growth during the forecast period in a linear

sense.

Obviously, if we regard the tendency perturba-

tion as the tendency error in predictability studies, the

NFSVs, compared to the FSVs, are much applicable in

describing the tendency error that causes the largest

error growth in the perfect initial condition scenario.

In this paper, we will use the NFSV approach to ex-

plore the role of model error in causing SPBs related

to El Niño events and compare these errors with the

FSV, finally revealing the effect of nonlinearity and

providing implications for reducing model errors.

3. The model error characterized by the NFSV

in the Zebiak–Cane model

3.1 The Zebiak–Cane model

The Zebiak–Cane model is the first coupled

atmosphere–ocean model to successfully simulate

ENSO variability. It is an intermediate nonlinear
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anomaly model that describes the evolution of anoma-

lies with respect to a prescribed seasonally varying

background flow. Since 1986, the Zebiak–Cane model

has been used to conduct realistic ENSO forecasting

and was well known for successfully predicting the on-

set of the 1991/1992 El Niño event. Owing to its good

performance, it has been widely applied in ENSO pre-

diction and predictability studies (Zebiak and Cane,

1987; Blumenthal, 1991; Xue et al., 1994; Chen et

al., 1995, 2004; Mu et al., 2007a; Tang et al., 2008;

Duan et al., 2009). The model consists of a Gill-type

steady-state linear atmospheric model with a horizon-

tal resolution of 5.625◦ × 2.0◦ and a reduced-gravity

oceanic model with a horizontal resolution of 2.0◦

× 0.5◦. These depict the anomalous thermodynamics

and dynamics of ocean–atmospheric interactions over

the tropical Pacific (Zebiak and Cane, 1987).

3.2 The NFSVs of the Zebiak–Cane model as-

sociated with El Niño events

To obtain NFSVs in the Zebiak–Cane model, we

predetermine the reference-state El Niño events to be

predicted from the 1000-yr integration model. In the

Zebiak–Cane model, if Niño-3 indices (the SSTA av-

eraged over Niño-3 region) greater than 0.5℃ persist

for more than six months, an El Niño event is identi-

fied. There are numerous El Niño events with different

intensities that occur over the 1000-yr timeframe and

have a dominant period of 4 yr. Similar to Duan et

al. (2009), the 1000 model years in the present study

are divided into 10 continuous time intervals begin-

ning with 0–99, 100–199 yr, and so on. In each of

these 10 time intervals, two groups of model El Niño

events are selected: One group consists of 4 strong

events with Niño-3 indices (SSTA averaged at 5◦N–

5◦S, 150◦–90◦W) greater than 2.5℃, denoted by S1,

S2, S3, and S4; the other group contains 4 weak events

with Niño-3 indices smaller than 2.5℃, which are de-

noted as W1, W2, W3, and W4. The S1–S4 events

initially begin warming in January, April, July, and

October, as do the W1–W4 events, respectively. Be-

cause similar results are obtained for different time

intervals, we randomly selected the two groups of El

Niño events during the 100–199-yr period as examples

to investigate the effect of model errors on the SPB.

The time series of Niño-3 SSTA for these two groups

of El Niño events is plotted in Fig. 1. In this paper,

the year the reference-state El Niño event peaks is de-

noted as year (0), and years (–1) and (1) are used to

represent the years before and after year (0), respec-

tively. All of the events tend to persist for more than

20 months and peak at the end of the calendar year,

similar to observed El Niño events (Fig. 1). Next,

we calculate the NFSVs of these El Niño events, that

is, the errors that have the largest influence on the El

Niño events.

Fig. 1. Time series of Niño-3 SSTA for the (a) strong El Niño events, denoted as S1–S4, and (b) weak El Niño events,

denoted as W1–W4.
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According to the definition of the NFSV expressed

in Eq. (2), we construct the corresponding cost func-

tion associated with the NFSV as follows:

J(f δ) = max
‖f‖a6δ

‖T ′(tk)‖b, (4)

where the norm ‖f‖a =
√

∑

i,j(f i,j)
2 and ‖T ′(tk)‖b =

√

∑

i,j(T
′
i,j(tk))

2 is used to constrain the amplitude

(values of δ) of the tendency error f and measure

the prediction error caused by f ; T ′(tk) represents the

SSTA prediction errors caused by tendency errors f at

prediction time tk, which is defined as the difference

between the predicted SSTA generated by the Zebiak–

Cane model superimposed by f at tk and the SSTA

of the reference-state El Niño events; and T ′
i,j repre-

sents the SSTA prediction error at grid point (i, j),

which covers the tropical Pacific Ocean of 19◦S–19◦N,

129.375◦E–84.375◦W.

Empirically, the constraint bound in Eq. (4) is

set at 0.4. A prediction for the preceding 12 months

is made for each reference-state El Niño event, start-

ing in Jul (–1) (i.e., Jul in year (–1)), Oct (–1), Jan

(0), Apr (0), Jul (0), Oct (0), Jan (1), and Apr (1).

For each start month, the El Niño will be predicted

by using the Zebiak–Cane model with the SSTA equa-

tion perturbed by the error. As a result, each El Niño

event will have 8 predictions for a total of 64 predic-

tions across 8 El Niño events. For each prediction, we

subtract the SSTA component of the reference-state

El Niño event from the resultant El Niño prediction

and then obtain the prediction errors caused by the

tendency error. Along these lines, we use Eq. (4)

to compute the NFSV that causes the largest predic-

tion error. The predictions with Jul (–1), Oct (–1),

Jan (0), and Apr (0) start dates cover the spring sea-

son of the growth phase of the reference state El Niño

events. For convenience, we hereafter call them as

growth-phase predictions and the obtained NFSVs as

these of the growth-phase predictions. Similarly, the

predictions with the start month of Jul (0), Oct (0),

Jan (1), and Apr (1) pass through the decay phase

of El Niño events and are referred as decaying-phase

predictions; then the NFSVs obtained are represented

as the ones of the decaying-phase predictions.

The results show that for each prediction, there

exists only one NFSV to perturb the SSTA tendency,

which often exhibits a large-scale zonal dipolar pat-

tern. Specifically, the NFSVs for the growth-phase

predictions with start months Jul (–1), Oct (–1), Jan

(0), and Apr (0) are similar and present a zonal SSTA

dipole mode with its western poles exhibiting positive

anomalies and the eastern poles exhibiting negative

anomalies and are denoted as NFSV1 tendency errors

(Fig. 2). Meanwhile, the NFSVs of the decaying-phase

predictions with the start months Jul (0), Oct (0), Jan

(1), and Apr (1) are inclined to have a different zonal

dipolar structure, which is nearly opposite that of the

growth-phase NFSV and is referred to as NFSV2 ten-

dency error (Fig. 2).

NFSV is a nonlinear generalization of the linear

FSV. To compare NFSVs with FSVs and show the

nonlinear effect, we calculate the FSVs of the 64 pre-

dictions and scale them to ensure that they have the

same magnitude as the NFSVs. The results indicate

that the FSVs possess a similar, large-scale zonal dipo-

lar structure, except that the FSVs tend to extend

their western pole center much farther eastward than

the NFSVs. We note that, due to the linearity of

FSVs, the negative pattern of an FSV is also an FSV

of the events (Duan and Zhao, 2015). Accordingly,

we denote FSVs with the same sign as NFSV1 using

FSV1, and those with an opposite sign as FSV2. We

find that both the FSV1 and NFSV1 are inclined to

yield negative prediction errors for Niño-3 SSTA re-

lated to El Niño events; while the FSV2 and NFSV2

tend to result in positive prediction errors for the Niño-

3 SSTA. Nevertheless, compared with the correspond-

ing NFSVs, the FSVs often lead to a smaller predic-

tion error. All of these results support those obtained

in Duan and Zhao (2015), despite the fact that the

present study selected a different magnitude of ten-

dency perturbations (the details are therefore omitted

here). Considering that the NFSVs cause much larger

prediction errors than the FSVs, we suggest that the

NFSVs are more likely than the FSVs to cause a sig-

nificant SPB for El Niño events according to the defi-

nition of a significant SPB (see the introduction). To

confirm this, we investigate the role of tendency errors
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Fig. 2. (a) NFSV1 and (c) FSV1 tendency errors associated with a start month of Jan (0); (b) NFSV2 and (d) FSV2

tendency errors associated with a start month of Jan (1). These NFSVs and FSVs correspond to the reference-state El

Niño event denoted as S1.

in causing SPBs in the next section.

4. The role of NFSV-related tendency errors

in inducing a significant SPB for El Niño

events

As the introduction states, a “significant SPB”

refers to the phenomenon that the El Niño prediction

has a conspicuous prediction error, and prominent er-

ror growth occurs during the boreal spring when the

prediction is made before that season. Therefore, we

examine the role of tendency errors in SPBs from two

perspectives: prediction errors induced by tendency

errors and the seasonality of the evolution of those

prediction errors. From the definition of NFSV de-

scribed in Eq. (2), the NFSV tendency errors result

in the largest prediction error at the prediction time.

Hence, the NFSV errors have the potential to induce a

significant SPB phenomenon associated with El Niño

events.

To study the seasonality of the evolution of pre-

diction errors caused by NFSV errors, a calendar year

was divided into four seasons: spring (April–June:

AMJ), summer (July–September: JAS), autumn

(October–December: OND), and winter (January–

March: JFM). The seasonal growth rate of the pre-

diction errors caused by the NFSV errors is denoted

by , which is defined as:

κ ≈ (‖T ′(t2)‖2 − ‖T
′(t1)‖2)/(t2 − t1), (5)

where ‖T ′(t1)‖2 and ‖T ′(t2)‖2 represent the predic-

tion errors of the SSTA fields at the beginning and

end of each season, respectively; and ‖T ′(tk)‖2 =
√

∑

i,j(T
′
i,j(tk))

2(k = 1, 2) has the same meaning as

in Eq. (4). κ is used to measure the magnitude

of the error growth in unit intervals. Supposing ev-

ery season has the same time span, we represent κ

as ‖T ′(t2)‖2 − ‖T
′(t1)‖2 for convenience. A positive

(negative) κ value implies that the prediction errors in-

crease (decrease) during the relevant season; the larger

the absolute κ, the faster the increase (decrease) in the

prediction errors associated with that season. Here,

since we consider perfect initial conditions, the pre-

diction errors are only caused by tendency errors and

their related seasonal growth rates κ are then merely

for the tendency error growth.
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Samelson and Tziperman (2001) emphasized the

effect of different phases of ENSO on SPB from the

perspective of initial error growth (also see Yu et al.,

2009). Thus, if the errors also induce an SPB, there

may be a possibility that the occurrence of an SPB

depends on the phase of the El Niño event. There-

fore, in the next sections we will investigate the sea-

sonal dependence of resultant prediction errors based

on growth-phase predictions and decaying-phase pre-

dictions, respectively. We find that the following re-

sults hold for either strong or weak events. As a result,

we present the results using the combined mean of the

prediction errors and their seasonal growth rates for

eight El Niño events, but we do not distinguish be-

tween the events’ intensities.

4.1 Growth-phase predictions of El Niño even-

ts

As mentioned in Section 3, the predictions with

a start month of Jul (–1), Oct (–1), Jan (0), and Apr

(0) are growth-phase predictions for El Niño events.

These predictions cover the boreal spring and the be-

ginning of summer (i.e., AMJ and JAS; see Mu et al.,

2007a), which correspond to those seasons in which

the SPB often occurs in most climate models. Us-

ing these four start months, we integrate the Zebiak–

Cane model with the corresponding NFSV tendency

errors, i.e., NFSV1 tendency errors, and obtain the

seasonal growth rate κ (measured by Eq. (5)) of the

prediction errors for the eight El Niño events shown in

Fig. 1.

Figure 3 shows the ensemble mean of the seasonal

growth rates κ of the prediction errors caused by the

NFSV1 tendency errors for the growth-phase predic-

tions of each El Niño event, respectively. It is obvious

that the prediction errors caused by the NFSV1 ten-

dency errors tend to grow rapidly in spring for start

months Jul (–1) and Oct (–1) and in summer for start

months Jan (0) and Apr (0). As argued in Mu et

al. (2007a), although the maximum error growth of

the latter two start months appears in JAS, the error

growth during AMJ becomes aggressively large, which

could have caused the dramatic decrease in the El Niño

forecast ability during AMJ and resulted in an SPB.

From the perspective of Mu et al. (2007a), this error

growth behavior indicates that the NFSV1 tendency

errors tend to yield significant SPBs for El Niño events

during growth-phase predictions.

As a comparison, we also calculate the seasonal

growth rate of prediction errors caused by correspond-

ing FSV tendency errors (i.e., the FSV1 tendency er-

rors) in growth-phase predictions. The results show

that, except for start month Jul (–1), the FSV1 errors

tend to grow fastest in spring or summer (in the latter,

Fig. 3. Combined mean of seasonal growth rate for prediction errors caused by NFSV1 and FSV1 tendency errors in

eight reference-state El Niño events. The predictions begin in (a) Jul (–1), (b) Oct (–1), (c) Jan (0), and (d) Apr (0).
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the AMJ error growth becomes aggressively large) and

induce an SPB. Furthermore, FSV1 tendency error

growth dominates the seasonal errors over shorter lead

times, while NFSV1 tendency error growth dominates

those with longer lead times. Although the FSV1 ten-

dency errors have larger seasonal error growth over

shorter lead times, the NFSV1 tendency error dom-

inates subsequent seasonal error growth, especially

AMJ and/or JAS error growth, with its larger am-

plitude, which suggests that the NFSV1 causes larger

prediction errors (Fig. 4). Along those lines, if the

FSV tendency errors cause smaller prediction errors

than the NFSV tendency errors, the FSV errors may

induce a less significant SPB to El Niño growth-phase

predictions.

4.2 Decaying-phase predictions of El Niño

events

Predictions with a start month of Jul (0), Oct (0),

Jan (1), and Apr (1) are referred to as decaying-phase

predictions; they are made during the boreal spring

and beginning of summer during the El Niño decay-

ing phase. To explore whether the corresponding er-

rors cause an SPB to decaying-phase predictions, we

calculated the seasonal growth rates of the prediction

errors caused by NFSV2 and FSV2 tendency errors

(see Section 3). The NFSV2 tendency errors often ex-

hibited a season-dependent evolution, with significant

error growth occurring in AMJ and/or JAS and, con-

sequently, resulting in an SPB (Fig. 5). In particular,

the error growth associated with the NFSVs is almost

always larger than that associated with the FSVs in

the AMJ and/or JAS seasons, resulting in a more sig-

nificant SPB.

Comparing the decaying-phase predictions and

the growth-phase predictions (see Figs. 4 and 6), we

find that the NFSV tendency errors within growth-

phase predictions usually cause larger prediction errors

than those within decaying-phase predictions. It fol-

lows that the growth-phase predictions are more likely

Fig. 4. Averaged prediction errors caused by NFSV1 and

FSV1 tendency errors for the eight reference-state El Niño

events with start months of Jul (–1), Oct (–1), Jan (0),

and Apr (0), and a lead time of 12 months in all cases.

Here, the prediction errors are equivalent to the sum of

the seasonal growth rates.

Fig. 5. As in Fig. 3, but for predictions with start months of (a) Jul (0), (b) Oct (0), (c) Jan (1), and (d) Apr (1).
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Fig. 6. As in Fig. 4, but for predictions with start months

of Jul (0), Oct (0), Jan (1), and Apr (1).

to be contaminated by tendency errors than the

decaying-phase predictions. Dommenget et al. (2013)

showed that La Niña is more predictable than El Niño.

Because the growth phase of La Niña is closely linked

to the decaying phase of El Niño, Dommenget et al.

(2013) can be argued to support the perspective that

decaying-phase predictions of El Niño are more pre-

dictable than growth-phase predictions. In addition,

Kirtman et al. (2002) stated that ENSO predictions

initialized in the spring tend to have more forecast

ability than predictions begun in other seasons. Our

results also show that predictions begun in April ei-

ther in the growth or decaying phase of El Niño events

always have much small prediction errors compared

with those started during other seasons, which indi-

cates that ENSO predictions starting from the boreal

spring are more accurate.

5. The dependence of SPB to El Niño event

predictions on the spatial structure of ten-

dency errors

NFSV tendency errors result in much larger pre-

diction errors than FSV errors and tend to yield more

significant SPBs, which implies that the SPB of El

Niño events is sensitive to the spatial structure of ten-

dency errors. That is, those errors with a particular

structure tend to cause much larger prediction errors.

To further address this issue, we selected random ten-

dency errors without a specific structure. Eight ran-

dom tendency errors were generated for each reference

state El Niño event; the tendency errors at each grid

point of the SSTA fields in the Zebiak–Cane model

satisfy a normal distribution. To guarantee that the

random tendency errors had the same magnitude as

the NFSVs, we scaled these random tendency errors

by using the function f r = σ
fR

‖fR‖2
, where σ is a pos-

itive real number equal to the constraint radius (ex-

actly, value of δ is 0.4) of the NFSVs; fR represents

the random tendency error and f r is the scaled ran-

dom tendency error, which has the same magnitude as

the NFSVs.

By superimposing the random tendency errors on

the Zebiak–Cane model, we were able to investigate

the resultant prediction errors and related seasonal

growth rate. For both the growth-phase and decaying-

phase predictions of El Niño events, the random ten-

dency errors cause fairly small prediction errors; fur-

thermore, the error growth at each season is trivial. In

Fig. 7, we show the seasonal growth rate of the pre-

diction errors caused by random tendency errors for

the growth-phase predictions alone. The random ten-

dency errors have a negligible growth rate during each

season and do not exhibit a season-dependent evolu-

tion, which results in very small prediction errors and

no SPB phenomenon.

The analysis above indicates that random ten-

dency errors do not cause SPBs to El Niño predic-

tions, while FSV tendency errors cause less signifi-

cant SPBs; and NFSV tendency errors yield signifi-

cant SPBs. Thus, the NFSV errors cause the most

uncertainty in El Niño predictions. These results in-

dicate that the SPB phenomenon caused by tendency

errors is highly dependent on the spatial structure of

the tendency errors.

6. Implications

NFSVs cause the most disturbing tendency errors

in ENSO predictions within the Zebiak–Cane model.

That is, the tendency errors with an NFSV structure

can more easily yield large uncertainty in El Niño pre-

dictions. Particularly, tendency errors characterized

by NFSVs are often concentrated in the equatorial

central–western and eastern Pacific, which may imply

that the errors resulting from these areas contribute to

the majority of prediction errors compared with those

in other areas. In this sense, if we can improve the
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Fig. 7. The combined mean of the seasonal growth rate κ of the prediction errors caused by the random tendency

errors for the growth phase predictions, with start months of (a) Jul (–1), (b) Oct (–1), (c) Jan (0), and (d) Apr (0).

model’s ability to simulate climatic conditions in these

areas, ENSO forecasting may be greatly improved.

These areas may represent regions where El Niño pre-

dictions are sensitive to model errors. By contrast,

FSVs identify sensitive areas within the equatorial

central–eastern and eastern Pacific mainly because the

western poles of these vectors move farther eastward

than those of NFSVs. The difference in the sensitive

areas between these two methods is due to the impact

of nonlinearity. FSVs are obtained by using a linear

scenario and are an approximation of NFSVs (Duan

and Zhou, 2013), while NFSVs are generated by using

a nonlinear model without any approximation. There-

fore, NFSVs are likely more applicable in determining

areas where the model is sensitive to errors. That is to

say, the areas of sensitivity determined by the NFSVs

may be more helpful in proposing significant improve-

ments to the model and, therefore, its ENSO forecast

ability.

Duan et al. (2009) and Mu et al. (2014) demon-

strated that the equatorial central–eastern Pacific and

eastern Pacific represent areas sensitive to initial errors

in predicting ENSO events (Yu et al., 2012b), which

suggests that taking additional observations in these

areas and assimilating them into the initial data will

improve model ENSO forecasting more significantly

than increasing observations in other areas. Moreover,

the present study further shows that prediction errors

are also most sensitive to model errors in these sensi-

tive areas. Therefore, improved observation networks

in these sensitive areas relative to other areas will not

only provide a more accurate initial field of data but

also improve our understanding of ENSO physics to

optimize ENSO models, thus greatly improving our

ENSO forecasting ability.

7. Summary and discussion

This study investigated the role of model errors,

as represented by NFSV tendency errors, in inducing

SPBs to ENSO predictions within the Zebiak–Cane

model. The results show that two types of NFSV

tendency errors exist and are associated with growth-

phase and decaying-phase predictions of ENSO, re-

spectively. The NFSV1 tendency errors in growth-

phase predictions exhibit a zonal SSTA dipolar pat-

tern, with the western poles (centered in the equatorial

central–western Pacific) revealing positive anomalies

and the eastern poles (the equatorial eastern Pacific)

exhibiting negative anomalies. On the other hand, the

NFSV2 errors associated with decaying-phase predic-

tions tend to follow a pattern almost opposite to the

NFSV1 errors. Usually, the NFSV1 causes negative

prediction errors relative to Niño-3 SSTA in El Niño

events, and the NFSV2 is inclined to yield positive pre-

diction errors. Furthermore, the growth-phase predic-
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tion uncertainties caused by NFSVs are usually larger

than the corresponding uncertainties in the decaying-

phase predictions. The resultant prediction errors

show a conspicuous season-dependent evolution, with

the fastest error growth occurring in the AMJ and/or

JAS seasons. That is, the NFSV tendency errors,

which cause the largest prediction errors at the time of

the prediction, induce a prominent season-dependent

evolution in those errors and therefore lead to a sig-

nificant SPB to El Niño events.

Although the FSV tendency errors possess pat-

terns similar to the corresponding NFSV errors, their

western poles are centered much farther eastward and

cause smaller prediction errors. Meanwhile, the pre-

diction errors caused by FSVs demonstrate smaller

growth rates during the AMJ/JAS season, and hence

yield a less significant SPB. Moreover, we also show

that random tendency errors without a particular

structure yield negligible prediction errors; and their

evolution is not significantly seasonal. Therefore,

random tendency errors do not cause the SPB phe-

nomenon. These results imply that the SPB to El

Niño predictions is closely linked to the spatial struc-

ture of tendency errors, and a particular tendency

error similar to an NFSV could induce a significant

SPB.

NFSVs often concentrate the tendency errors of

large values in a few areas within the eastern equato-

rial Pacific and the central–western equatorial Pacific;

thus, these areas may have a much larger effect on

prediction uncertainties than other areas. Therefore,

these regions may be sensitive to model errors rela-

tive to El Niño predictions. That is, if we improve the

model simulations in these sensitive areas compared to

those in other areas, its ENSO forecast ability more

likely to be greatly improved. As for the sensitive

areas determined by the FSVs, they are somewhat

different from those obtained by using the NFSVs.

However, FSVs are obtained from an approximate

tangent linear model of a nonlinear model, and the

process itself induces model error; on the other hand,

NFSVs are developed directly from a nonlinear model

without any approximation. Therefore, the results

obtained from NFSVs are more convincing. Certainly,

additional sensitivity experiments and even hindsight

experiments are needed to verify the sensitive areas

identified by the NFSVs, and our results should be

confirmed by using a more realistic ENSO model.

Yu et al. (2012b) used the Zebiak–Cane model

to demonstrate that the equatorial central–eastern

Pacific and eastern Pacific represent the areas where

ENSO predictions are sensitive to initial errors, which

are exactly those areas identified in this study as being

associated with model errors characterized by NFSVs.

Accordingly, additional data using target observations

in the sensitive areas will not only provide a more ac-

curate initial field of information but also improve our

understanding of ENSO physics to optimize ENSO

models and thus improve ENSO forecasting accuracy

greatly.

In the end, the present study shows that the

model errors represented by NFSV tendency errors

can cause a significant SPB phenomenon associated

with El Niño event prediction. These NFSV tendency

errors could also be excited by atmospheric noise forc-

ing (Yu et al., 2003; Gebbie and Tziperman, 2009;

Lopez and Kirtman, 2014). As such, relevant experi-

ments should be conducted to test these mechanisms

in the future. In addition, previous studies such as

Mu et al. (2007a, b), Duan et al. (2009), and Yu et

al. (2009) have demonstrated that CNOP-related ini-

tial errors induce a significant SPB. In realistic ENSO

predictions, initial errors coexist with model errors.

Thus, it is necessary to explore the relative role of

initial errors and model errors and their interactions

in generating a significant SPB to ENSO prediction,

which we have begun to address here. Finally, we note

that the El Niño events generated by the Zebiak–Cane

model are characterized by a decaying period that is

too long, which indicates that the termination of an El

Niño event does not occur in spring (Stuecker et al.,

2013, 2015), which may limit the results in this study.

Some studies have argued that the occurrence of an

SPB in ENSO event prediction relates to the fact that

the weakest ENSO signal occurs during spring (Xue et

al., 1994; Samelson and Tziperman, 2001). Although

the termination of El Niño in the Zebiak–Cane model

is not in spring, the predictions generated by the
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Zebiak–Cane model still yield an SPB for ENSO. This

indicates that the occurrence of an SPB in this model

may not be due to a weak ENSO signal in spring. Of

course, this inference should be confirmed by numer-

ous quantitative experiments in future works. In any

cases, the results obtained from the present work are

expected to be enlightening for further investigation.
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