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Abstract Using the Geophysical Fluid Dynamics Laboratory Climate Model version 2p1, we explored the
precursory disturbances that are most likely to develop into a positive Indian Ocean Dipole (IOD). The domi-
nant spatial patterns of these precursors are defined as the optimal precursors (OPRs) of positive IOD as
they are more inclined to cause a positive IOD than other superimposed initial perturbations in the experi-
ments. Specifically, there are two types of OPRs with opposite patterns; the surface component of OPR-1
(OPR-2) is an indistinctive west-east dipole pattern, with a small area of negative (positive) perturbations to
the coast of Sumatra and Java. Correspondingly, there is a significant west-east dipole pattern in the subsur-
face component of the OPRs, with the largest values located in the eastern equatorial Indian Ocean. The
dominant mode of the time-dependent evolutions of the precursors features rapid development of positive
IOD. Furthermore, the OPRs are similar to the optimally growing initial errors (OGEs) associated with IOD
predictions that have been presented in previous studies. The shortwave radiation, latent heat flux, and
westward Rossby waves play an important role in the time-dependent evolution of OGEs. Moreover, the
large values of the OPRs are located in the same areas as the sensitive areas of targeted observations identi-
fied by the OGEs. This infers that intensive observations over these areas would not only reduce initial
errors, improve the accuracy of initial fields and decrease the prediction errors but would also detect the
precursory signals in advance, which substantially improves the forecast skill of IOD.

1. Introduction

Tropical oceans play an important role in regulating the global climate variability. The El Ni~no-Southern
Oscillation (ENSO), which is the dominant phenomenon of interannual time scale in the tropical Pacific
Ocean, has been studied for decades [Rasmusson and Carpenter, 1982; Philander, 1983, 1990]. However, the
Indian Ocean Dipole (IOD), a well-known ocean-atmosphere coupled phenomenon of interannual time scale
in the tropical Indian Ocean, has only received attention in recent years [Saji et al., 1999; Webster et al.,
1999]. The positive mode of the IOD presents positive sea surface temperature anomalies (SSTAs) in the
western Indian Ocean and negative SSTAs in the eastern Indian Ocean, accompanied by an anomalous east-
erly wind [Saji et al., 1999; Webster et al., 1999; Li et al., 2002, 2003]. Corresponding to this seesaw pattern in
the SSTAs, a west-east dipole pattern is present in the sea temperature anomalies of the subsurface ocean
[Rao et al., 2002; Feng and Meyers, 2003]. In contrast, the negative IOD has the opposite sea temperature
and wind anomalies. The IOD can regulate the monsoons and thus affect the climate and weather of nearby
regions, such as eastern Africa, Indonesia and Australia [Ansell et al., 2000; Black et al., 2003; Zubair et al.,
2003; Behera et al., 2005]. Moreover, IOD can also affect distant areas, such as Europe, Northeast Asia, North
America, South America, and South Africa, by the propagation of planetary waves [Guan and Yamagata,
2003; Saji and Yamagata, 2003]. Zhang et al. [2015] demonstrated that in the positive IOD, abundant rain
shifts from the tropical regions to the south of China through northern India, the Bay of Bengal and South-
east Asia in positive IOD. Conversely, the severe droughts shift to the south of China through these regions
in the negative IOD. In consideration of the considerable climatic effects of IOD events on nearby and dis-
tant areas, it is vital to accurately predict IOD events.

Many studies have shown that the lead time for skillful IOD predictions is only one season, and this can be
prolonged to two seasons for strong IOD events [Wajsowicz, 2004, 2005; Luo et al., 2005, 2007; Zhao and
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Hendon, 2009; Shi et al., 2012, Liu et al., 2016]. Furthermore, the low forecast skill may have a close relation-
ship with the winter predictability barrier (WPB). From the viewpoint of statistics, the WPB means that what-
ever the start month, the forecast skill decreases rapidly across the boreal winter [Luo et al., 2007]; from the
viewpoint of initial error growth, the WPB indicates that the prediction errors present the largest growth in
boreal winter [Feng and Duan, 2014; Feng et al., 2016]. As the composite dipole mode index (DMI) for the
positive IOD generally reverses its sign in both the winter preceding the IOD year and in the IOD year [Waj-
sowicz, 2004; Feng et al., 2014a], indicating the occurrence and decay of positive IOD, the existence of the
WPB probably constrains the forecast skill for the occurrence and decay of a positive IOD. Feng et al. [2016]
demonstrated that the dominant spatial pattern of initial sea temperature errors that are most likely to
cause a significant WPB for positive IOD (hereafter referred to as WPB-related initial errors) presents a west-
east dipole pattern in the tropical Indian Ocean, especially in the subsurface ocean. In addition, the areas in
which the large values of the dominant spatial pattern are located (i.e., at the thermocline depth in the east-
ern equatorial Indian Ocean) represent the sensitive areas of targeted observations for positive IOD. We
therefore need to determine how these WPB-related initial errors develop and cause large prediction errors.
Consequently, the physical mechanisms of development for these initial errors are further discussed in this
study.

Apart from the aforementioned WPB-related initial errors, the precursor is another important issue in the
predictability of the positive IOD. The precursor for positive IOD refers to the initial perturbations that devel-
op into a positive IOD. The study of the precursor is important for identifying the IOD in advance and there-
fore improving the forecast skill. Based on buoy data during 2006–2008, Horii et al. [2008] showed that
there were significant negative signals at the thermocline depth in the eastern equatorial Indian Ocean sev-
eral months prior to the appearance of the SSTAs, and these negative signals are the precursor of the posi-
tive IOD. This leads to the question of whether or not all positive IOD events have the same precursor.

Previous studies showed that there is a great spatial similarity between the optimally growing initial errors
(OGEs) and optimal precursors (OPRs) in the predictability of blocking onset [Mu and Jiang, 2011], ENSO [Mu
et al., 2014; Hu and Duan, 2016], Kuroshio large meander (KLM) [Wang et al., 2013], and the North Atlantic
Oscillation [Dai et al., 2016], and the large values of the OGEs and OPRs are located within small areas. These
areas have been demonstrated to be the sensitive areas for targeted observations for these events [Mu and
Jiang, 2011; Wang et al., 2013; Mu et al., 2014; Hu and Duan, 2016]. Therefore, intensive observations carried
out over these areas will not only improve the accuracy of the initial fields and further decrease the predic-
tion errors, but also detect the precursory signals in advance, which will substantially improve the forecast
skill for these events. Therefore, this inspires us to determine the probable relationship between the OGEs
and OPRs corresponding to a positive IOD. In this study, as positive IOD events have larger climate effects
and more frequent occurrence under climate change conditions than negative events [Ashok et al., 2001,
2003; Abram et al., 2003; Annamalai and Murtugudde, 2004; Behera et al., 2005; Cai et al., 2009; Weller and
Cai, 2013], only positive IOD events are discussed.

The remainder of the paper is organized as follows. The model and experimental strategy are presented in
section 2. The spatial patterns of the OPRs and OGEs, and their physical development mechanisms, are dis-
cussed in section 3. The similarities between the OPRs and OGEs are analyzed in section 4. A summary and
discussion is presented in the last section.

2. Model and Experimental Strategy

In this study, the Geophysical Fluid Dynamics Laboratory Climate Model version 2p1 (GFDL CM2p1) was
used to explore the OPRs and OGEs of the positive IOD. The model contains an ocean component, an atmo-
spheric component, a land component, and a sea ice component. We will briefly introduce the coupled
model below, and for more details, please refer to Griffies [2009] and GFDL Global Atmospheric Model Devel-
opment Team [2004].

The ocean component of the coupled model is the Modular Ocean Model version 4 (MOM4p1) [Griffies,
2009], which is a numerical representation of the ocean’s hydrostatic primitive equations. Its horizontal reso-
lution is 18 3 18 in most regions and its meridional resolution reduces to 1/38 near the equator. In total,
there are 50 levels in the vertical, with a resolution of 10 m in the upper 225 m. The atmospheric compo-
nent of the coupled model is the GFDL atmospheric model AM2p12b [GFDL Global Atmospheric Model
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Development Team, 2004],
and it has a resolution of 2.58

longitude by 28 latitude with
24 vertical levels. The differ-
ent components are coupled
using the GFDL’s Flexible
Modeling System (http://
www.gfdl.noaa.gov/fms) and
exchange the fluxes every
2 h. Feng et al. [2014b]
assessed the simulation abili-
ty of this coupled model in
terms of the climatology in
the tropical Indian Ocean
and the basic characteristics

of the IOD, and found that this model has high simulation skill. Therefore, the GFDL CM2p1 is appropriate
to study the predictability of the IOD.

In previous studies, the conditional nonlinear optimal perturbation (CNOP) [Mu et al., 2003] approach has
been applied to explore the OPRs of ENSO [Mu et al., 2014] and KLM [Wang et al., 2013]. The CNOP repre-
sents the optimal initial perturbation that has the largest nonlinear evolution at the end of the optimization
and is an extension of a linear singular vector in a nonlinear regime. Generally speaking, the adjoint model
provides an efficient tool for the calculation of the gradient, which is needed for some optimization algo-
rithms, e.g., spectral projected gradient 2. However, the adjoint model is not a necessary condition for the
gradient calculations; for example, the gradient can be calculated directly in low-dimensional nonlinear
optimization problems [Mu et al., 2003]. In high-dimensional models (e.g., the GFDL CM2p1), there are gen-
erally no adjoint models and it is also difficult to calculate the gradient directly. Therefore, other approaches
should be developed to calculate the OPRs in complex models. Duan et al. [2009] proposed an ensemble-
based algorithm to calculate CNOP approximately without using the adjoint models. By applying this
approach, they explored the OPRs of ENSO in the Zebiak-Cane model and their results were demonstrated
to be reasonable and similar to those calculated with the adjoint models. Therefore, this ensemble-based
algorithm offers a practical method to extend the basic idea of CNOP to complex coupled models. In this
study, we will explore the OPRs of positive IOD with the algorithm proposed by Duan et al. [2009]. The
remainder of this section provides details of our experimental strategy.

The GFDL CM2p1 was integrated for 150 years under the 1990 forcing values of aerosols, land cover, tracer
gases, and insolation. We only analyzed the last 100 years to exclude the effect of initial adjustment process
during the initial 50 year spin-up. To explore the precursors of positive IOD, we randomly selected eight
neutral years from the 100 year integration as a reference state (Figure 1). Here ‘‘neutral years’’ indicate that
no positive IOD or negative IOD occurs in these years; that is, the DMI (i.e., the difference in SSTA between
the western Indian Ocean (508E–708E, 108S–108N) and southeastern Indian Ocean (908E–1108E, 108S–equa-
tor)) [Saji et al., 1999] does not satisfy the following condition: the absolute value of the DMI exceeds 0.5
standard deviations for three consecutive months [Song et al., 2007].

Assuming that the initial perturbations occurred in the sea temperature, the initial perturbations that devel-
op into positive IOD (i.e., precursors) computed in the GFDL CM2p1 only have a sea temperature compo-
nent. In consideration of the 4 year period of IOD events in the GFDL CM2p1 [Feng and Duan, 2014], which
indicates that a positive IOD and a negative IOD usually occur within 4 years, sea temperature anomalies
within the 4 years preceding each neutral year (i.e., reference year) are various and sampled every month to
ensure that initial perturbations were as plentiful as possible. Therefore, there were a total of 48 initial per-
turbations for each reference year. As the mean thermocline depth is about 110–130 m in the tropical Indi-
an Ocean [Song et al., 2007], the perturbations on the sea temperature at 95 m depth could reflect the
variation of the thermocline depth to some extent. Moreover, the sea surface temperature (SST) is an impor-
tant variable that closely connects the ocean and the atmosphere. In view of the fact that initial shock prob-
ably happens when all levels of sea temperatures are perturbed in the tropical Indian Ocean, perturbations
were only superimposed on the sea temperatures at the sea surface and at 95 m depth in the tropical

Figure 1. Time-dependent DMIs for each neutral year. The colorful lines represent eight
neutral years.
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Indian Ocean (458E–1158E, 108S–108N), which are closely related to the evolution of IOD events [Rao et al.,
2002; Vinayachandran et al., 2002]. Furthermore, to impartially compare the effects of different initial pertur-
bations on the predictability of positive IOD, we adjusted them into the same magnitude. As the DMI of
positive IOD generally reverses its sign in the winter preceding the IOD year [Wajsowicz, 2004; Feng et al.,
2014a], which indicates the occurrence of the positive IOD, the start month of the integrations were defined
as December in the preceding year of reference year (i.e., December (21), where 21 denotes the year pre-
ceding the reference year). We then superimposed these initial perturbations onto the initial fields of the
reference year and integrated them from December (21) for 12 months. Therefore, we conducted 384 pre-
dictions in total (8 neutral years multiplied by 48 initial perturbations). Based on these 384 predictions, we
explored the initial perturbations that are most likely to develop into positive IOD.

The detailed steps were as follows. The original initial perturbations at the sea surface and 95 m depth were
labeled as T1 and T2, respectively. T1ij and T2ij indicate the values of T1 and T2 at gridpoint (i, j) in the tropical
Indian Ocean (i.e., 108S–108N, 458E–1158E). Then T1 and T2 were scaled to the same magnitude by T 015T1=

d1 and T 025T2=d2, where d1 and d2 represent positive values which are chosen to ensure the same magni-
tude between T 01 and T 02, and T 01 and T 02 are the final initial perturbations superimposed on the reference

states. The magnitudes of these initial perturbations are constrained by the norms kT 01k5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i;j
ðT 01ijÞ2

q

and kT 02k5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i;j
ðT 02ijÞ2

q
, which were set as 88C in our study. The set of the magnitude ensures that the

DMI of these initial perturbations were smaller than 0.5 standard deviations, and thus ensures that no posi-
tive IOD occurs at the start time of the predictions.

The experimental strategy to explore the initial errors that are most likely to cause a significant WPB (i.e.,
WPB-related initial errors) was similar to the above and is therefore only briefly described here. Please refer
to Feng et al. [2016] for further details. The main difference from above experiments is that 10 positive IOD
were randomly selected as the reference states (i.e., reference years) to explore the WPB-related initial errors
instead of the neutral years. Sea temperature anomalies within the 4 years preceding each positive IOD
were then sampled every other month to generate plentiful initial errors. In addition, another significant dif-
ference is that the start months here were defined as July (21), October (21), January (0), April (0), July (0),
and October (0) where 21 denotes the year preceding the reference year, and 0 denotes the reference
year; the reference year here refers to the IOD year. The integrations starting from the first three months
bestride the winter in the growing phase of positive IOD, and those from the next three months bestride
the winter in the decaying phase. After the 12 month integration, initial errors that grow fastest in winter
and cause a significant WPB were selected and analyzed.

3. OPRs That Trigger IOD Onset and OGEs in IOD Predictions

In this section, according to the experimental strategy described in section 2, we explore the spatial pat-
terns and physical development mechanisms of OPRs for the positive IOD. Similarly, the spatial patterns
and the physical development mechanisms for OGEs are also discussed.

3.1. Spatial Patterns of OPRs That Trigger IOD Onset
As described in section 2, 384 predictions were conducted to explore the initial perturbations that develop into
the positive IOD. After the 12 month integration, the sea temperature departure of the predictions from the refer-
ence state were considered to be the development of the initial perturbations. Here the predicted DMI was
defined as the difference of sea surface temperature anomalies between the western Indian Ocean (508E–708E,
108S–108N) and eastern Indian Ocean (908E–1108E, 108S–equator). The SSTAs were calculated by subtracting the
SST in the reference year from the corresponding predicted SST. If the predicted DMI exceeds 0.5 standard devia-
tions for three consecutive months, a positive IOD occurs. That is, the corresponding initial perturbation superim-
posed on the initial fields of the reference state develops into a positive IOD and therefore could be considered a
precursor of a positive IOD. According to this criterion, 31 initial perturbations developed into positive IOD and
were selected as the precursors of positive IOD. Figure 2 shows the time-dependent DMI for these precursors.
Most of the predicted positive IOD develop quickly in summer, peak in autumn, and then decay rapidly in winter.
These phase locking characteristics are consistent with previous observational results [Wajsowicz, 2004]. To identi-
fy the spatial characteristics of these precursors, we applied the combined empirical orthogonal function (CEOF)
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analysis to these 31 precursors,
and the leading mode (i.e.,
CEOF1) describes their domi-
nant spatial patterns. In
consideration that these pre-
cursors are more inclined to
develop into positive IOD than
other superimposed initial per-
turbations in the experiments,
and that the CEOF1 mode
describes the dominant spatial
patterns of these precursors,
we defined the CEOF1 mode
as the OPRs for the following
discussions.

Figure 3 shows the spatial
patterns of the CEOF1 mode

(i.e., OPRs) and the corresponding time series (i.e., PC1). The CEOF1 mode accounted for 30.4% of the total
variance in the tropical Indian Ocean. The surface component of the OPRs presents an indistinctive west-
east dipole pattern with positive values located in most regions of the tropical Indian Ocean and a small
area of negative values located at the coast of the Sumatra and Java. Unlike the surface component, the
subsurface component presents a significant west-east dipole pattern, with positive values in the western
Indian Ocean and negative values in the eastern Indian Ocean. The values in the subsurface component of
the OPRs are generally larger than those in the surface component, with the largest values located in the
eastern equatorial Indian Ocean. It is worth noting that the time series PC1 has both positive and negative
values. Therefore, we can infer that some precursors have similar spatial patterns to the CEOF1 mode (here-
after referred to as OPR-1 for positive IOD), while other precursors have opposite spatial patterns to the
CEOF1 mode (hereafter referred to as OPR-2). The spatial patterns of OPR-1 for positive IOD are consistent
with the results of Horii et al. [2008], which demonstrated that negative signals at the thermocline depth in
the eastern equatorial Indian Ocean are one precursor of positive IOD. Therefore, the above results indicate
that there is also another type of OPR, in addition to the precursor revealed in Horii et al. [2008], that
presents the opposite spatial patterns.

3.2. Possible Physical Mechanisms for Precursors of Positive IOD
The analysis in section 3.1 explored the dominant mode of the initial perturbations that develop into posi-
tive IOD (i.e., OPRs). In this section, we further analyze the dominant mode of the time-dependent evolu-
tions for these precursors by applying season-reliant empirical orthogonal function (S-EOF) analysis [Wang
and An, 2005]. The departure of the predicted sea temperatures from the corresponding reference states
was considered as the development of precursors, which is 12 months in length and corresponds to a lead
time of 12 months of predictions. We connected all the time-dependent series for 31 predictions and
regarded them as a time series of year-to-year variations. We divided each year into six parts and examined
the sea temperature anomalies in a sequence beginning from December (21), January (0), to the following
October (0), November (0), i.e., D(21)J(0), FM(0), AM(0), JJ(0), AS(0), ON(0), where 21 denotes the year pre-
ceding the reference year and 0 denotes the reference year. The reference years here refer to the eight neu-
tral years. This is a little different from the method of Wang and An [2005], which examines the SSTAs in a
seasonal sequence. We then constructed a covariance matrix by treating the sea temperature anomalies in
the above sequence as an integral block for 1 year. When the S-EOF analysis was performed, the derived
spatial patterns for each S-EOF mode contained six sequential patterns. The different spatial patterns for
each S-EOF mode describe the time-dependent evolutions of the sea temperature anomalies in a given
year, which share the same yearly value in the corresponding time series PC.

By applying the S-EOF analysis to the SSTAs and vertical section (averaged between 58S and 58N) of sea tem-
perature anomalies in the tropical Indian Ocean for 31 precursors, we identified the major modes of the time-
dependent evolutions for the precursors (i.e., the first mode of S-EOF) and the corresponding time series PC1,
which accounts for 22.5% and 33.9% of the total variance, respectively (Figure 4). We found that there are

Figure 2. Time-dependent DMIs of each individual. The black lines represent 31 initial pertur-
bations that develop into the positive IOD.
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positive SSTAs in the western
Indian Ocean and negative
SSTAs in the eastern Indian
Ocean in the first 2 months of
the predictions (Figure 4a).
The distribution of SSTAs in
the tropical Indian Ocean is
favorable for the appearance
of anomalous easterly wind at
the equator, which further
amplifies the negative SSTAs
in the eastern Indian Ocean
under the Bjerknes positive
feedback in the following
months [Bjerknes, 1969].
Meanwhile, the positive SSTAs
gradually disappear and then
reappear in the western Indi-
an Ocean, finally resulting a
significant west-east dipole
pattern in the tropical Indian
Ocean in October (0) and
November (0). This indicates
that the dominant evolution
mode of SSTAs features a
development of positive IOD.
Accordingly, the evolution of
the vertical sections shows
that the negative temperature
anomalies develop and ampli-
fy under the Bjerknes positive
feedback in the eastern Indian
Ocean, and finally develop
into the positive IOD, which is
consistent with the evolution
of the SSTAs. Furthermore,
the PC1s in Figures 4g and 4n
show that the values are posi-
tive for most cases, indicating

that most precursors develop in a similar behavior to Figure 4. That is, the evolution mode of most precursors
feature a development of the positive IOD. However, it has been demonstrated that there are two types of
OPRs for positive IOD. Do both types of OPRs develop in a similar behavior to Figure 4? To further answer this
question, we divided the 31 precursors into two categories according to the sign of the PC1 in Figure 3 and
explored the composite evolution mode for each category (not shown). It is found that the composite evolution
mode of OPR-1 features a development of the positive IOD. For OPR-2, the SSTAs disappear rapidly in the first
two months; then an opposite SSTA pattern appears which is similar to OPR-1. In the following months, this
composite evolution mode presents a development of the positive IOD. That is, except for the first few months,
the evolution mode of OPR-2 is similar to that of OPR-1. As the S-EOF method is applied to obtain the dominant
evolution mode for precursors, the first mode of S-EOF generally only features a development of positive IOD.

3.3. Spatial Patterns of OGEs That Associated With a Significant WPB
Previous sections identified two types of OPRs and analyzed their time-dependent evolution with S-EOF
analysis. In this section, we further discuss another important issue in the predictability for positive IOD
from the viewpoint of initial error growth: the WPB-related initial errors. As Feng et al. [2016] has previously

Figure 3. Spatial patterns of (a) surface component and (b) subsurface component for the
leading mode of the combined empirical orthogonal function analysis of initial perturbations
that are most likely to develop into the positive IOD (units: 8C); (c) the corresponding time
series PC1. The numbers located on the horizontal axis in Figure 3c represents the 31 predic-
tions with different initial perturbations. Each number corresponds to one prediction.
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described the experimental strategy on how to explore the WPB-related initial errors, we only briefly state
the results below.

As stated in section 1, Feng et al. [2016] explored the dominant spatial patterns of WPB-related initial errors with
the CEOF analysis. As the WPB-related initial errors are more likely to cause a significant WPB than other super-
imposed initial errors in the experiment and the CEOF1 mode of the WPB-related initial errors describes their
dominant spatial patterns, we refer to the CEOF1 mode as OGEs in the following discussions. Due to the similari-
ty of the results for the six start months, only the integrations starting from July (21) and July (0) are illustrated
in this section, which bestride the winter in the growing and decaying phases of positive IOD, respectively.

Figure 5 shows the spatial patterns of the OGEs and the corresponding time series PC1 for start months July
(21) and July (0). The CEOF1 mode accounted for 36.8% (38.0%) of the total variance in the tropical Indian
Ocean for the start month July (21) (July (0)). We found that the CEOF1 mode presents a west-east dipole

Figure 4. Major mode of time-dependent evolutions of (a–f) SSTAs and (h–m) equatorial (58S–58N) subsurface temperature anomalies for
31 initial perturbations (units: 8C); (g and n) corresponding time series PC1. The horizontal axis in Figures 4g and 4n are as in Figure 3.
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pattern in both the surface and the subsurface components for start months July (21) and July (0). The
extrema in the subsurface component are larger than those in the surface component, with the largest val-
ues trapped in the eastern equatorial Indian Ocean. Moreover, the time series PC1 for start months July
(21) and July (0) have both positive and negative values, and this indicates that some WPB-related initial
errors have a similar spatial pattern to the CEOF1 mode (hereafter referred to as OGE-1 for positive IOD),
and some other WPB-related initial errors have the opposite spatial pattern to the CEOF1 mode (hereafter
referred to as OGE-2 for positive IOD). Therefore, there are two main types of OGEs for both start months
July (21) and July (0), and these two types of OGEs have opposite spatial patterns. These characteristics of
OGEs are similar to those of OPRs. In addition, the spatial patterns of the OGEs are also similar to those of
the OPRs with a significant west-east dipole pattern in the subsurface component. One difference, however,
is that the west-east dipole patterns are more apparent in the surface component of OGEs than that of
OPRs. Previous studies have demonstrated that the great spatial similarity between the OPRs and OGEs pro-
vides information for identifying the sensitive areas of targeted observations for these events, which are
favorable for improving the forecast skill [Wang et al., 2013; Mu et al., 2014; Hu and Duan, 2016]. Therefore,
we further discuss the spatial similarity between the OPRs and OGEs and explore their application to the tar-
geted observations of positive IOD in section 4.

3.4. Possible Physical Mechanisms for WPB-Related Initial Errors of Positive IOD
Feng et al. [2016] only explored the dominant spatial patterns of the WPB-related initial errors and did not
discuss how these initial errors cause a WPB. In this section, we analyze the dominant evolution mode of
these initial errors with the S-EOF analysis based on the work of Feng et al. [2016].

There are 26 (24) WPB-related initial errors for start month July (21) (July (0)). Therefore, there are a total of
50 initial errors that are most likely to cause a significant WPB for these two start months. With the 12
month integration, the departure of the predictions from the reference state IOD events are considered as
the development of these WPB-related initial errors. By conducting the S-EOF analysis to the SST errors and
the vertical section (58S–58N) of the sea temperature errors in the tropical Indian Ocean for these 50 WPB-

Figure 5. Spatial patterns of the (a) surface component and (b) subsurface component for the leading mode of the combined empirical
orthogonal function analysis of initial errors that are most likely to cause a significant WPB for start month July (21); (d and e) for the start
month July (0) (units: 8C). (c and f) the corresponding time series PC1. The numbers located on the horizontal axis in Figures 5c and 5f rep-
resents the 26 and 24 predictions with initial errors superimposed for start month July (21) and July (0), respectively. Each number corre-
sponds to one prediction.
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related initial errors, their dominant evolution mode and the corresponding time series (i.e., PC1) are shown
in Figure 6. We found that the SST errors are weak in the first 2 months of the predictions, with negative
SSTAs in the eastern Indian Ocean. Then, significant positive SST errors appear in the central-northeast Indi-
an Ocean in November and December, and propagate westward to the western Indian Ocean in the follow-
ing months. By conducting the heat flux analysis, it is found that the shortwave radiation and latent heat
flux play an important role in the westward propagation of SST errors (not shown). The significant west-east
dipole pattern in winter indicates that the prediction errors are large in winter, corresponding to the signifi-
cant WPB. In the dominant evolution mode for vertical sections of sea temperature errors, positive (nega-
tive) temperature errors in the subsurface ocean lower (lift) the thermocline depth in the eastern (western)
Indian Ocean and induce equatorial Rossby waves (Kelvin waves) which propagate westward (eastward) to
the western (eastern) Indian Ocean. Specifically, positive subsurface temperature errors in the eastern Indian

 

Figure 6. Major mode of time-dependent evolutions of (a–f) SST errors and (h–m) equatorial (58S–58N) subsurface temperature errors for
50 initial errors for start month July (21) and July (0) (units: 8C); (g and n) corresponding time series PC1.The numbers located on the hori-
zontal axis in Figures 6g and 6n represent the 50 predictions with different initial errors. Each number corresponds to one prediction.
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Ocean propagate westward under the effects of equatorial Rossby waves in the first four patterns, which
are followed by the negative subsurface temperature errors, finally resulting in a significant west-east dipole
pattern in the subsurface ocean in winter with negative temperature errors in the western Indian Ocean
and positive temperature errors in the eastern Indian Ocean.

As the time series PC1 shown in Figures 6g and 6n, the first 26 values of PC1 correspond to the WPB-related
initial errors for start month July (21), and the rest of the values correspond to the WPB-related initial errors
for start month July (0). We found that most of the first 26 values in PC1 are negative, which indicates that the
dominant evolution patterns of these WPB-related initial errors for start month July (21) are opposite to these
presented in Figure 6. Specifically, there are negative SST errors in the western Indian Ocean and positive SST
errors in the eastern Indian Ocean in winter, which hinders the occurrence of the positive IOD in winter. In
contrast, most of the rest of the values in PC1 are positive, which indicates that the dominant evolution modes
of these initial errors are similar to the patterns shown in Figure 6. Therefore, there are positive SST errors in
the western Indian Ocean and negative SST errors in the eastern Indian Ocean in winter, and this hinders the
decay of the positive IOD in winter. Based on the above discussions, the WPB-related initial errors superim-
posed on the initial fields of the positive IOD for start month July (21) (July (0)) usually hinder the occurrence
(decay) of the positive IOD, resulting in large prediction errors in winter, and finally causing a significant WPB.

4. Implications of Similarities Between OPRs and OGEs in Targeted Observations

In section 3.1, using the CEOF analysis, we analyzed the dominant spatial patterns of precursors (i.e., the OPRs)
and demonstrated that there are two main types of OPRs. The surface component of OPR-1 (OPR-2) is an
indistinctive west-east dipole pattern, with a small area of negative (positive) signals to the coast of Sumatra
and Java. Correspondingly, there is a significant west-east dipole pattern in the subsurface component, with
positive (negative) signals in the western Indian Ocean and negative (positive) signals in the eastern Indian
Ocean. In section 3.3, we revealed that there are also two types of OGEs, with a significant west-east dipole
pattern in both the surface and subsurface components. It should be noted that the maximum values in the
subsurface component are larger than those in the surface component for both the OPRs and OGEs, with the
largest values located in the eastern equatorial Indian Ocean in the subsurface component. The above discus-
sions naturally lead us to examine the spatial correlations between the OPRs and OGEs. To achieve this analy-
sis, we calculated the similarities between the OPRs and OGEs using the following similarity coefficient:
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where the fields of OPRs and OGEs are assumed to be vectors Ta5ðTa
ij Þm3n and Tb5ðTb

ij Þm3n. Ta
ij and Tb

ij

denote the values of sea temperature at grid point (i, j) in the tropical Indian Ocean (i.e., 108S–108N, 458E–
1158E). We computed the similarity coefficients between the OPRs and OGEs based on three aspects: the sur-
face component, the subsurface component, and the two components together (Table 1). For simplicity, only
the similarity coefficients between the OPR-1 and OGE-1 are shown. We found that the similarity coefficient
for the surface component between the OPR-1 and OGE-1 for start month July (21) is 0.56; and the similarity
coefficient for the subsurface components is 0.89, which are larger than those for the surface component. Fur-
thermore, the similarity coefficient for the surface and subsurface components together between the OPR-1
and OGE-1 for start month July (21) is 0.74. This indicates that the similarity between the OPRs and OGEs is
mainly reflected in the subsurface component, which represents a significant west-east dipole pattern, with
the largest values located in the eastern equatorial Indian Ocean. These conclusions are also true for the other
five start months. This may be closely related to the fact that the SST variability in the tropical Indian Ocean is
dominated by the ENSO and subsurface variability is governed by the IOD [Rao et al., 2002].

Based on the above discussions, the OPRs and OGEs have great spatial similarity and their large values are
both concentrated within the small area of the eastern equatorial Indian Ocean in the subsurface component
(i.e., 95 m depth) close to the thermocline depth. Feng et al. [2016] identified that these areas represent the
sensitive areas of targeted observations for the positive IOD. By eliminating initial errors over these areas, the
prediction errors in winter are largely reduced and the forecast skill is considerably improved. Therefore, in
consideration of the spatial similarity between the OPRs and OGEs, if intensive observations are carried out
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over these areas and assimilated
into the initial fields, we can not
only improve the accuracy of ini-
tial fields and decrease the predic-
tion errors but also detect the
precursory signals of the positive
IOD in advance, which will sub-
stantially improve the forecast skill
for the positive IOD.

5. Summary and
Discussion

In this study, with the GFDL
CM2p1, we explored the initial
perturbations that are most likely
to develop into positive IOD (i.e.,
precursors) and identified their
dominant spatial patterns (i.e.,
OPRs). Furthermore, the dominant
evolution patterns of these initial
perturbations were analyzed

using S-EOF analysis. Similarly, the initial errors that are most likely to cause a significant WPB (i.e., WPB-
related initial errors) were also analyzed, as well as their dominant evolution patterns. The detailed results
are as follows.

There are two main types of OPRs. The surface component of the OPR-1 (OPR-2) is an indistinctive west-east
dipole pattern, with a small area of negative (positive) perturbations to the coast of the Sumatra and Java. Cor-
respondingly, there is a significant west-east dipole pattern in the subsurface component of OPR-1 (OPR-2),
with positive (negative) values in the western Indian Ocean and negative (positive) values in the eastern Indi-
an Ocean. The largest values are located in the eastern equatorial Indian Ocean in the subsurface component
(i.e., at 95 m depth). Based on S-EOF analysis, we explored the dominant mode of the time-dependent evolu-
tion for precursors. Both the evolution of the SSTAs and the vertical profile of sea temperatures in the tropical
Indian Ocean bear close similarity to the development of the positive IOD. It needs to be highlighted that the
spatial patterns of OPR-1 are similar to the precursor revealed in Horii et al. [2008], which suggests that anoth-
er type of precursor exists in addition to the precursor identified by Horii et al. [2008].

Similarly, there are two types of OGEs (OGE-1 and OGE-2) that have opposite patterns. A significant west-
east dipole pattern is present in both the surface component and subsurface components, with the largest
values located in the eastern equatorial Indian Ocean in the subsurface component. The dominant evolu-
tion patterns for the SST errors present a westward propagation, during which the shortwave radiation and
latent heat flux play an important role. They finally develop into a significant west-east dipole pattern in
winter, which indicates a large prediction error in winter and corresponds to the WPB. The dominant evolu-
tion patterns for the vertical section of sea temperature errors propagate westward under the effects of
equatorial Rossby waves. The WPB-related initial errors superimposed on the initial fields of positive IOD for
start month July (21) (July (0)) usually hinder the occurrence (decay) of the positive IOD, result in large pre-
diction errors in winter, and finally cause a significant WPB.

Based on the above discussions, the OPRs and OGEs have great spatial similarity and their large values are
both concentrated within a small area: the eastern equatorial Indian Ocean at 95 m depth. Feng et al. [2016]
identified that such areas represent the sensitive areas of targeted observations for the positive IOD. There-
fore, in consideration of the spatial similarity between the OPRs and OGEs, if intensive observations are car-
ried out over these areas and assimilated into the initial fields, we cannot only improve the accuracy of
initial fields and decrease the prediction errors but also detect the precursory signals of positive IOD in
advance, which will considerably improve the forecast skill for the positive IOD. Of course, this hypothesis
should be further verified using observing system simulation experiments (OSSEs) and observing system

Table 1. The Correlation Coefficients Between the OPRs and OGEs From the Follow-
ing Three Aspects: the Surface Component, the Subsurface Component, and the Two
Components Together

OPRs

Correlation
Coefficients Surface Subsurface

Surface and
Subsurface

OGEs

July (21) Surface 0.56
Subsurface 0.89
Surface and subsurface 0.74

October (21) Surface 0.10
Subsurface 0.91
Surface and subsurface 0.63

January (0) Surface 0.45
Subsurface 0.95
Surface and subsurface 0.90

April (0) Surface 0.70
Subsurface 0.98
Surface and subsurface 0.91

July (0) Surface 0.80
Subsurface 0.95
Surface and subsurface 0.90

October (0) Surface 0.46
Subsurface 0.91
Surface and subsurface 0.70
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experiments. Luo et al. [2007] stated that the Scale Interaction Experiment-Frontier Research Center for
Global Change (SINTEX-F) failed to skillfully predict the cold signals in the eastern Indian Ocean in the 1997
IOD, which was mainly caused by the initial errors in the subsurface ocean in the tropical Indian Ocean. Waj-
sowicz [2005] also demonstrated that the poor initialization in the subsurface ocean will constrain the fore-
cast skill for predicting the IOD. These results further emphasize that intensive observations should be
carried out in the subsurface ocean in the tropical Indian Ocean, which is consistent with the results in this
study.

The similarities between OPRs and OGEs of atmospheric and oceanic events are one of interesting issues in
the predictability studies. Based on the CNOP approach [Mu et al., 2003], the OPRs and OGEs of ENSO [Mu
et al., 2014] and KLM [Wang et al., 2013] have been explored and the results demonstrated that the OPRs
and OGEs have great spatial similarities. This provides valuable information regarding the sensitive areas of
targeted observations for ENSO and KLM. Because of the lack of adjoint models in the GFDL CM2p1, we
obtained the OPRs and OGEs of IOD by using the ensemble-based method in Duan et al. [2009]. These dis-
turbances were identified from the sea temperature anomalies within the 4 years preceding the reference
year (i.e., neutral year or IOD year). However, this strategy may not guarantee that the constructed initial
perturbations encompass all kinds of initial patterns. Therefore, the OPRs and OGEs obtained in the present
study may only approximate the theoretical disturbances. More effective algorithms are expected to be
developed to compute CNOP of high-dimensional models, and calculate the OPRs and OGEs in complex
models.
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