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ABSTRACT

This paper summarizes recent progress at the State Key Laboratory of Numerical Modeling for Atmospheric Sci-
ences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences in
studies on targeted observations, data assimilation, and ensemble prediction, which are three effective strategies to re-
duce the prediction uncertainties and improve the forecast skill of weather and climate events. Considering the limita-
tions of  traditional  targeted observation approaches,  LASG researchers  have developed a  conditional  nonlinear  op-
timal perturbation-based targeted observation strategy to optimize the design of the observing network. This strategy
has been employed to identify sensitive areas for targeted observations of the El Niño–Southern Oscillation, Indian
Ocean  dipole,  and  tropical  cyclones,  and  has  been  demonstrated  to  be  effective  in  improving  the  forecast  skill  of
these events. To assimilate the targeted observations into the initial state of a numerical model, a dimension-reduced-
projection-based  four-dimensional  variational  data  assimilation  (DRP-4DVar)  approach  has  been  proposed  and  is
used  operationally  to  supply  accurate  initial  conditions  in  numerical  forecasts.  The  performance  of  DRP-4DVar  is
good,  and  its  computational  cost  is  much  lower  than  the  standard  4DVar  approach.  Besides,  ensemble  prediction,
which is a practical approach to generate probabilistic forecasts of the future state of a particular system, can be used
to reduce the prediction uncertainties of single forecasts by taking the ensemble mean of forecast members.  In this
field,  LASG  researchers  have  proposed  an  ensemble  forecast  method  that  uses  nonlinear  local  Lyapunov  vectors
(NLLVs) to yield ensemble initial  perturbations.  Its  application in simple models  has shown that  NLLVs are more
useful than bred vectors and singular vectors in improving the skill of the ensemble forecast. Therefore, NLLVs rep-
resent  a  candidate  for  possible  development  as  an  ensemble  method in  operational  forecasts.  Despite  the  consider-
able efforts made towards developing these methods to reduce prediction uncertainties, much challenging but highly
important work remains in terms of improving the methods to further increase the skill in forecasting such weather
and climate events.
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1.    Introduction

Weather  or  climate  events  often  have  substantial  ad-
verse impacts on societies and economies; therefore, pre-
dicting  these  events—especially  with  numerical  mod-
els—has  been  an  important  focus  of  oceanic  and  atmo-
spheric  research  in  recent  decades.  The  essence  of  nu-
merical  weather  forecasting  and  climate  prediction  is  to

solve  the  initial-boundary  problems  of  complicated  par-
tial  differential  equations.  However,  due  to  the  limita-
tions of observational methods and instruments, observa-
tional errors inevitably influence the accuracy of the ini-
tial conditions (Mu et al., 2002). Furthermore, numerical
models  cannot  accurately  describe  the  fluid  flow,  which
ultimately  causes  model  errors.  Both  initial  errors  and
model errors yield the uncertainties of weather forecasts
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and  climate  predictions,  which  of  course  severely  limits
their predictability (Lorenz, 1963; Mu et al., 2002).

To reduce initial errors and provide proper initial con-
ditions, sufficient quantities of observations are required.
However,  field  observations,  especially  those  over  the
oceans,  are  costly  and  sparse.  They  will  never  be  dense
enough  to  completely  cover  the  vast  areas  associated
with weather and climate events (McPhaden et al., 1998,
2001, 2010; International CLIVAR Project Office, 2006;
Masumoto et al., 2009). Therefore, it is necessary to op-
timize  the  design  of  observing  networks  by  developing
an  efficient  and  effective  observation  strategy  in  which
additional observations with limited coverage can be im-
plemented in such a way to have a considerable positive
impact on the forecast skill (Mu et al., 2015). In fact, an
observation strategy referred to as “targeted observation”,
or “adaptive observation”, has been in development since
the 1990s (Snyder, 1996; Palmer et al., 1998; Buizza and
Montani,  1999).  In  short,  this  method seeks to  skillfully
predict  an  event  at  a  future  time,  t1  (the  verification
time),  in  a  focused  area  (the  verification  area),  by  utili-
zing additional  observations  at  a  future  time,  t2  (the  tar-
get time, t2  < t1),  in a number of special areas (sensitive
areas), where the additional observations are expected to
contribute greatly to reducing the prediction errors in the
verification area (Snyder, 1996; Mu, 2013). By assimila-
ting  the  additional  observations  into  the  model’s  initial
fields,  a  more  skillful  prediction  will  be  achieved.  That
is,  the  sensitive  areas  represent  the  optimal  observing
locations for implementing target observations. Identify-
ing  the  sensitive  areas  (i.e.,  the  optimal  observing  loca-
tions)  is  the  key  aspect  of  targeted  observations.  Previ-
ous studies have shown that there are two main categor-
ies of methods to identify these sensitive areas. The first
category is the optimal perturbation methods, such as sin-
gular vectors (SVs) (Palmer et al., 1998); and the second
category is the ensemble methods, such as the ensemble
transform Kalman filter (ETKF) (Bishop et al., 2001), the
ensemble  Kalman  filter  (Hamill  and  Snyder,  2002),  and
the  ensemble  transform  technique  (Bishop  and  Toth,
1999).  However,  these  methods  employ  the  linear  ap-
proximation  approach  to  estimate  the  prediction  errors
(or covariances) (e.g.,  Palmer et al.,  1998; Bishop et al.,
2001),  which  is  a  limitation  considering  the  nonlinear
nature of atmospheric and oceanic motions.

A  better  data  assimilation  system  is  one  that  makes
better use of observational data and supplies more realistic
initial conditions for forecast models to improve the fore-
cast  skill.  The  four-dimensional  variational  (4DVar)
method is one of the best choices for operational use. The
4DVar  method  uses  a  non-sequential  approach  that

provides an analysis best fitted to observations in a time
window  (i.e.,  the  assimilation  window)  through  the  tra-
jectory of the model solution initiated at the analysis time
(i.e., the beginning of the assimilation window). The ana-
lysis  is  dynamically  consistent  with  the  forecast  model,
and all model variables are balanced because of physical
constraints. The covariance matrix of the background er-
ror  (referred  to  simply  as  the  “B matrix”  hereinafter)  in
4DVar has been proven to be implicitly developed within
the window, although it  is modeled and kept constant at
the analysis time. Many applications or case studies have
shown  that  the  4DVar  method  has  the  potential  to  be
used in various observational data types, including radio-
sonde  data  (e.g.,  Zhang  and  Ni,  2005),  satellite  remote
sensing  data  (e.g.,  Chevallier  et  al.,  2004;  Zhao  et  al.,
2005),  Doppler  radar  data  (e.g.,  Sun  and  Zhang,  2008),
accumulated  station  rainfall  data  (e.g.,  Zou  and  Kuo,
1996),  surface  observations  (e.g.,  Järvinen  et  al.,  1999),
and  even  tropical  cyclone  bogus  data  (e.g.,  Xiao  et  al.,
2000).  These  features  have  led  to  4DVar  becoming  in-
creasingly  attractive  in  numerical  weather  prediction
(NWP),  especially  following  the  rapid  development  of
computer  technology.  Several  NWP  centers  around  the
world  have  successfully  applied  4DVar  in  their  global
and/or regional analyses (e.g., Klinker et al., 2000; Gau-
thier and Thépaut, 2001; Honda et al., 2005; Gauthier et
al.,  2007; Rawlins et al.,  2007). The application at these
major  NWP  centers  indicates  that  4DVar  is  one  of  the
best  choices  for  operational  use.  However,  three  key
problems  in  using  4DVar  in  an  operational  setting  still
exist.  Specifically:  its  high  computational  cost,  which
limits its application in many countries; the lack of global
flow-dependence  in  its  B  matrix  from  window  to  win-
dow,  although the  B matrix  is  implicitly  evolved within
the  assimilation  window;  and  the  difficulty  in  using  an
imperfect model in strong-constraint 4DVar.

The  existence  of  initial  errors  or  model  errors  indic-
ates  that  the  weather  and  climate  have  a  predictability
limit beyond which forecasts will lose all skill. Based on
the uncertainty of atmosphere and ocean predictions, any
single forecast is simply an estimate of the future state of
the atmosphere and ocean within a stochastic framework,
but  provides  no  information  regarding  its  reliability.
Since  the  early  1970s,  ensemble  prediction  has  been re-
garded  as  a  practical  approach  to  generate  probabilistic
forecasts of the future state of a system. In particular, the
ensemble  mean of  forecast  members  is  often  thought  as
the result of a deterministic forecast, which may filter the
unpredictable  parts  and  leave  the  common  parts  of  the
forecast  members,  ultimately  decreasing  the  uncertain-
ties  of  single  forecast  results.  Therefore,  ensemble  pre-
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diction  systems  based  on  different  schemes  to  generate
the  initial  perturbations  have  been  developed  and  used
operationally  by  many  weather  prediction  centers  (Toth
and Kalnay, 1993; Molteni et al., 1996). For example, the
bred  vector  (BV)  was  developed  and  used  operationally
at  the  National  Centers  for  Environmental  Prediction,
and  the  SV  at  the  European  Center  for  Medium-Range
Weather Forecasts (Molteni and Palmer, 1993; Toth and
Kalnay, 1993, 1997; Molteni et al., 1996; Buizza, 1997).
However, these methods present ensemble initial perturb-
ations  of  either  linear  approximation  (e.g.,  Molteni  and
Palmer, 1993; Molteni et al., 1996) or non-independence
(e.g.,  Toth  and  Kalnay,  1993),  and  have  limitations  in
yielding  proper  and  reasonable  members  for  the  en-
semble  forecast,  which  certainly  limits  the  forecast  skill
of ensemble predictions.

The above introduction demonstrates that targeted ob-
servations, data assimilation, and ensemble prediction are
three  effective  strategies  in  reducing  the  prediction  un-
certainties  of  weather  and climate events  and improving
the forecast  skill.  However,  these strategies  have limita-
tions  that  restrict  their  operational  use  in  weather  fore-
casts  and  climate  prediction.  In  this  context,  the  present
paper  reviews  recent  progress  at  the  State  Key Laborat-
ory  of  Numerical  Modeling  for  Atmospheric  Sciences
and  Geophysical  Fluid  Dynamics  (LASG),  Institute  of
Atmospheric  Physics,  Chinese  Academy  of  Sciences  in
overcoming the limitations related to these strategies, and
so  making  them  more  favorable  in  reducing  prediction
uncertainties  and  improving  the  forecasting  of  weather
and climate.

2.    Targeted observations

From the discussion in the introduction, it is clear that
targeted  observations,  by  which  additional  observations
are  obtained,  are  urgently  needed  to  optimize  observing
networks.  By  assimilating  these  additional  observations
in sensitive areas into a model’s initial state, the forecast-
ing skill for weather or climate events will be improved.
The key to targeted observations is to identify these sensi-
tive areas (i.e., the optimal observing locations). Follow-
ing the general idea of targeted observations, to improve
numerical  prediction  models  in  terms  of  physics,  the
key/optimal observing regions associated with model er-
rors can also be identified, in which improvement to the
model  simulation  through  additional  observations  may
greatly  improve  the  forecast  skill.  Although  several
methods  have  been  proposed  in  previous  studies  to
identify such sensitive areas (Palmer et al., 1998; Bishop
and Toth, 1999; Bishop et al., 2001; Hamill and Snyder,

2002), many of them employ linear approximation to es-
timate the prediction errors, which is a limitation consid-
ering the nonlinear nature of the atmosphere and ocean.

Towards initial errors, Mu et al. (2003) developed the
conditional  nonlinear  optimal  perturbation  (CNOP)  ap-
proach, which overcomes the linear limitations of the lin-
ear singular vector (LSV) method and represents the ini-
tial  perturbation  that  exhibits  the  largest  prediction
growth  at  the  end  time  of  the  forecast  period.  This  ap-
proach  has  been  used  to  identify  the  sensitive  areas  for
targeted observations (Duan et al., 2009; Yu et al., 2009;
Mu  et  al.,  2014a).  Regarding  model  errors,  Duan  and
Zhou  (2013)  generalized  the  forcing  SV  (FSV)  to  the
nonlinear  regime  and  proposed  the  nonlinear  FSV  (NF-
SV).  Since  it  describes  the  combined  effect  of  different
kinds of model errors, the NFSV can reveal the most dis-
turbing tendency errors of predictions and provide guid-
ance on targeted observations to improve the forecasting
by optimizing the model performance. In this section, we
review recent progress in determining the sensitive areas
of  targeted  observations  with  these  methods  for  the  El
Niño–Southern  Oscillation  (ENSO),  Indian  Ocean  di-
pole  (IOD),  and  tropical  cyclones  (TCs),  and  explore
their  role in optimizing observing networks and thus in-
creasing prediction skill.

2.1    ENSO

To identify the sensitive areas for eastern Pacific (EP)
El  Niño  events,  Mu  et  al.  (2007)  and  Yu  et  al.  (2009)
used  the  Zebiak–Cane  model  and  revealed  two  types  of
CNOP initial  errors  (i.e.,  EP-type-1  and  EP-type-2)  that
cause the largest prediction errors of EP-El Niño (Fig. 1).
These  two  CNOP-type  initial  errors  have  almost  oppo-
site spatial patterns. It was found that the large values of
the  CNOP  initial  errors  concentrate  in  the  central–east-
ern equatorial Pacific, which indicates that the initial er-
rors  over  this  area  make  the  largest  contribution  to  the
prediction errors of EP-El Niño. Therefore, these regions
are considered to be the sensitive areas of targeted obser-
vations  for  EP-El  Niño  events.  Yu  et  al.  (2012)  further
demonstrated  that  when  the  CNOP  initial  errors  in  the
central–eastern equatorial Pacific are eliminated, without
changing the  initial  errors  in  other  regions,  the  resultant
prediction  errors  are  significantly  reduced.  Furthermore,
Mu et  al.  (2014b)  demonstrated the  similarities  between
the  optimal  precursor  for  EP-El  Niño  events  and  the
CNOP initial errors. They indicated that additional obser-
vations  in  the  sensitive  areas  determined  by  CNOP  can
not  only  reduce  initial  errors  but  also  be  used  to  detect
precursory signals, thereby improve ENSO predictions.

Morss and Battisti  (2004a,  b)  suggested that  the east-
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ern  equatorial  Pacific,  south  of  the  equator,  is  the  most
important  area  for  observations  for  ENSO  forecasting.
These  results  were  explored  based  on  observation  sys-
tem  simulation  experiments  (OSSEs)  and  were  consis-
tent with those explored by the Zebiak–Cane model and
the  CNOP  method.  Therefore,  these  results  serve  as  a
verification  of  those  determined with  the  CNOP sensiti-
vity in the Zebiak–Cane model. Besides, by applying the
sequential  importance  sampling  assimilation  method,
Kramer  and  Dijkstra  (2013)  suggested  that  the  eastern
tropical Pacific is  the optimal observing location for sea
surface  temperature  (SST)  to  reduce  prediction  uncer-
tainties,  which  also  offers  strong  support  to  the  results
with CNOP methods in the Zebiak–Cane model.

Limited  by  the  simplicity  of  the  Zebiak–Cane model,
the results  within this  model  mainly focused on the role
of the SST anomaly (SSTA) component and did not con-
sider  subsurface  anomalies  in  the  equatorial  Pacific,
which actually play an important role in the evolution of
EP-El Niño. Using the Community Earth System Model
(CESM), Duan and Hu (2016) explored the three-dimen-
sional structure of sea temperature initial errors by an en-
semble  approach based on the  CNOP idea.  They identi-
fied two types of optimally growing initial errors for EP-
El  Niño  predictions,  and  suggested  that  the  sensitive
areas  are  the  lower  layers  of  the  western  equatorial  Pa-
cific  and  the  upper  layers  of  the  eastern  equatorial  Pa-
cific  (regions  A,  B,  and  C  in  Fig.  2).  Using  Coupled

Model  Intercomparison  Project  Phase  5  model  outputs,
Zhang  et  al.  (2015)  confirmed  that  similar  initial  errors
that  cause  the  largest  prediction  errors  for  EP-El  Niño
also exist in other coupled climate models. Compared to
the results in the Zebiak–Cane model, the results of com-
plex  coupled  models  further  supplement  and  highlight
the  sensitive  areas  in  the  subsurface  layers  of  the  west-
ern equatorial Pacific.

In addition to the conventional EP-El Niño, a new type
of El Niño called the central Pacific (CP) El Niño has be-
come increasingly frequent and common from the 1990s
(Ashok et al., 2007; Kao and Yu, 2009; Kug et al., 2009).
Current  models  show  more  uncertainties  in  simulating
CP-El  Niño  events  than  EP-El  Niño  events,  in  terms  of
the  SST  anomaly  pattern  and  intensity  (Ham  and  Kug,
2012).  Duan  et  al.  (2014)  proposed  an  optimal  forcing
vector approach to correct the Zebiak–Cane model simu-
lation  closest  to  observations.  Based  on  the  reproduced
CP-El  Niño  events,  they  investigated  the  CNOP  initial
errors  associated  with  CP-El  Niño predictions  and com-
pared  them  to  those  of  EP-El  Niño  (Tian  and  Duan,
2016).  For  the  CP-El  Niño  events,  two  types  of  CNOP
initial errors also existed, denoted as CP-type-1 and CP-
type-2  CNOP  errors,  respectively.  Both  CP-type-1  and
CP-type-2  grow  in  a  manner  similar  to  an  EP-El  Niño
event  and tend to  predict  the  corresponding CP-El  Niño
events to spurious EP-El Niño, which has also been veri-
fied in the CESM model (Chen, 2015). It was noted that

 
Fig. 1.   The (a, c) SST anomaly component (units: °C) and (b, d) thermocline depth anomaly (units: m) of the composite (a, b) type-1 and (c, d)
type-2 conditional nonlinear optimal perturbation initial errors for eastern Pacific El Niño events in the Zebiak–Cane model. Adapted from Yu et
al. (2009).
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the  CP-type-1  errors  share  a  similar  pattern  to  the  EP-
type-1 errors (Fig. 1a), while the SSTA of the CP-type-2
errors is confined to the eastern equatorial Pacific, differ-
ent from the large-scale zonal dipole of the EP-type-2 er-
rors. In any case, both of the CNOP initial errors of CP-
El Niño mainly concentrate in the central–eastern equat-
orial Pacific, which probably represent the sensitive areas
for  targeted  observations  associated  with  CP-El  Niño
prediction.  Combining  EP-El  Niño  and  CP-El  Niño
events, it was found that the central and eastern equatorial
Pacific may represent the common sensitive areas of the
two types of El Niño events because both predictions are
sensitive to  the initial  errors  in  these regions.  By imple-
menting  targeted  observations  in  the  sensitive  areas  to
obtain  additional  observations  and  assimilate  them  into
the initial fields, the forecasting skill for the two types of
El Niño events can be greatly improved.

Besides initial errors, an increasing number of studies
has  shown that  model  errors  also  significantly  influence
the ability to forecast ENSO (Blanke et al., 1997; Latif et
al.,  1998; Mu et al.,  2002; Zhang et al.,  2003; Williams,
2005;  Duan  and  Zhang,  2010;  Yu  et  al.,  2012;  Duan  et
al.,  2016). The effects of different kinds of model errors
are  mixed  and  it  is  very  difficult  to  distinguish  their  re-
spective  roles  in  yielding  prediction  uncertainties.  With
the  Zebiak–Cane  model,  Duan  and  Zhao  (2015)  identi-
fied  the  model  errors  characterized  by NFSV-type  tend-
ency  error  for  EP-El  Niño  events  that  yield  the  largest
prediction  errors  in  a  perfect  initial  conditions  scenario.
The  NFSVs  often  concentrate  the  large  values  of  tend-

ency  errors  in  a  few  areas  of  the  central  and  eastern
equatorial  Pacific,  which  make  a  large  contribution  to
prediction  uncertainties.  Therefore,  these  few areas  may
represent  key  regions  of  model  errors  for  EP-El  Niño
predictions. That is, if we can improve the model’s simu-
lation  ability  in  these  regions,  the  EP-El  Niño  forecast-
ing  skill  will  probably  be  greatly  improved.  In  fact,
Zhang (2015) indicated that reducing model errors in the
central–eastern  equatorial  Pacific  via  multi-model  en-
semble forecasting can improve the EP-El Niño forecast-
ing skill more significantly than by reducing them in oth-
er regions.  Furthermore,  the key regions associated with
model  errors  are  the  same as  the  sensi-tive  areas  of  tar-
geted  observations  for  EP-El  Niño  deter-mined  by  the
CNOP initial errors. Therefore, improving the observing
network  in  these  sensitive  areas,  compared  to  in  other
areas,  not only can provide a more accurate initial  field,
but  also  is  more  conducive  to  a  better  understanding  of
ENSO physics, thus allowing the optimization of ENSO
models and so greatly improving ENSO forecasting skill.
It  is  generally  accepted  that  global  warming  and  its  re-
cent  hiatus  have  substantial  effects  on  climate.  Thus,
many new questions  arise  for  targeted observations.  For
instance,  are  existing  observing  systems  adequate  with
respect  to  ENSO  under  the  scenario  of  global  warming
and  its  hiatus?  If  not,  how  should  they  be  updated?  Do
the sensitive areas of targeted observations change under
global  warming? Uncovering the answers to  these ques-
tions  will  be  of  great  help  in  designing better  observing
networks and improving the forecast skill for ENSO.

 
Fig. 2.   Composite patterns of (a, c) type-1 and (b, d) type-2 initial errors in the Community Earth System Model: (a, b) the SST anomaly com-
ponent  (units:  °C)  and  (c,  d)  the  equatorial  (5°S–5°N)  subsurface  temperature  anomaly  (units:  °C).  Regions  A,  B,  and  C  are  (5°S–5°N,
150°–85°W; 0–5 m), (5°S–5°N, 150°–85°W; 5–85 m), and (5°S–5°N, 150°E–135°W; 120–165 m), respectively. Dotted areas indicate that the
composite errors exceed the 99% confidence level, as determined by a t-test. Adapted from Duan and Hu (2016).
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2.2    IOD

To  the  best  of  the  authors’  knowledge,  no  attempts
were  made  regarding  targeted  observations  for  the  IOD
until  very  recently.  Feng  and  Duan  (2014)  explored  the
initial errors that cause a significant winter predictability
barrier (WPB) (hereafter referred to as WPB-related op-
timal initial errors) using an ensemble approach with the
Geophysical Fluid Dynamics Laboratory Climate Model,
version  2p1.  It  was  demonstrated  that  the  WPB-related
optimal initial errors present a west–east dipole pattern in
sea temperature both at the sea surface and at a depth of
95 m. Feng et al. (2016) further compared the relative ef-
fects  of  spatially  correlated  noise  and  WPB-related  op-
timal initial errors on IOD predictions, and demonstrated
that  the  WPB-related  optimal  initial  errors  cause  larger
prediction errors in winter and are more likely to cause a
significant  WPB.  The  large  values  of  WPB-related  op-
timal initial errors are concentrated within a few areas (at
the depth of the thermocline in the eastern tropical Indian
Ocean),  indicating  that  the  initial  errors  in  these  areas
may  make  the  largest  contribution  to  the  prediction  er-
rors  of  IOD events  and  probably  represent  the  sensitive
areas for targeted observations of IOD events.  Based on
sensitivity experiments, these areas were proved to be the
optimal  observing  locations  (i.e.,  sensitive  areas)  of  tar-
geted observations for positive IOD events. Therefore, by
carrying out  intensive  observations  over  these  areas  and
assimilating the additional observations there into the ini-
tial state of IOD predictions, the forecast skill will prob-
ably be largely improved. This certainly needs to be fur-
ther  verified by using OSSEs and OSEs (observing sys-
tem experiments). As these studies were only focused on
the effects of sea temperature at the surface and at 95 m
on  the  predictability  of  positive  IOD  events,  several
questions remain unanswered. For instance, what are the
effects of sea temperature in the whole Indian Ocean on

IOD prediction and what is the role of ENSO in the pre-
dictability  of  IOD events?  It  is  expected  that  answering
these questions will offer great help in optimizing the ob-
servation  network  in  the  Indian  Ocean  and  greatly  im-
prove the IOD forecasting skill.

2.3    TCs

Targeted observations associated with TCs refer to the
augmentation  of  the  regular  observing  network  over  the
ocean  with  additional,  specially  chosen  observations  to
be  assimilated  into  operational  numerical  prediction
models,  in order to improve both the track and intensity
forecasts of TCs. Naturally, the effects of targeted obser-
vations  have  a  lot  to  do  with  the  observation  locations
(i.e.,  sensitive areas).  With the help of targeted observa-
tions,  TC  track  forecasts  have  been  statistically  im-
proved over the past decade (Aberson, 2010; Chou et al.,
2011; Weissmann et al., 2011).

As  one  method to  identify  the  sensitive  areas,  CNOP
aims  to  locate  the  initial  errors  with  special  structure,
which will nonlinearly develop to the largest forecast er-
rors.  Theoretically,  it  is  expected  that  conducting  tar-
geted  observations  according  to  CNOP  sensitivity,  ob-
taining  and  assimilating  additional  observations,  redu-
cing  initial  errors,  and  improving  initial  condition  qua-
lity,  within  these  areas,  will  benefit  the  TC  forecasting
skill.  Generally,  CNOP  sensitivity  captures  the  steering
flow  at  the  border  between  the  subtropical  high  and
storms themselves (Fig. 3; Chen et al., 2013) as the sen-
sitive areas, which infers a significant role played by the
subtropical  high  in  TC  movements  over  the  western
North Pacific. OSSEs based on CNOP (LSV) sensitivity
show a 13%–46% (14%–25%) improvement in TC track
forecasts (Fig. 4; Qin and Mu, 2012). Further results in-
dicate  that  applying  real  dropwindsonde  data  within
CNOP sensitivity results in improvements in forecasting
the TC track, which is similar to, and occasionally better

 
Fig. 3.   (a) Storm-centered (0, 0) composite conditional nonlinear optimal perturbation sensitivity (shaded; units: J kg–1), geopotential height at
500 hPa (contours; units: gpm), and deep layer mean wind (streamlines; units: m s–1) for 14 cases steered by the subtropical high. (b) As in (a),
but for LSV sensitivity. The x- and y-axis represent the model grid with 60-km spacing. Adapted from Chen et al. (2013).
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than,  those  gained  by  assimilating  all  the  available  data
(fourth  and  third  column  in  Table  1,  respectively);  and
they  both  offer  greater  benefits  than  LSV  and  random
method (fifth and sixth columns in Table 1, respectively;
Chen  et  al.,  2013).  These  results  demonstrate  the  statis-
tically  positive  effects  of  CNOP  on  TC  track  forecasts,
but  also  shed  light  on  future  operational  applications.
However,  these  targeted  observations  show little  impact
on  TC  intensity  forecasts.  This  is  probably  because  al-
most  all  the existing targeted observations related to the
TC forecast  are  focused  on  atmospheric  aspects  and  ig-
nore the effects of the ocean. As TCs generally originate
and  absorb  energy  from the  ocean,  and  the  ocean  has  a
considerable  effect  on  TC  development  and  its  predic-
tion,  it  is  therefore  necessary  to  take  ocean-TC  interac-
tion  into  account  when  exploring  the  sensitive  areas  of
targeted  observations.  This  will  certainly  lead  to  im-
provements in the forecasting skill of TCs, especially TC
intensity.

3.    Data assimilation

As mentioned in the introduction, 4DVar is one of the

best choices operationally to supply accurate initial con-
ditions and improve the forecasting skill  of  weather  and
climate.  However,  three  key  challenges  still  exist  in
terms  of  using  4DVar  in  an  operational  setting.  One  of
the strategies that can be used to improve the operational
implementation of 4DVar involves the application of en-
semble-based  4DVar  (En4DVar),  which  uses  an  en-
semble  method—similar  to  that  used  in  the  ensemble
Kalman  filter  (EnKF)—for  a  flow-dependent  B  matrix,
and performs 4DVar minimization to obtain the optimal
solution  in  a  reduced  space.  En4DVar  includes  the  ad-
vantages of both standard 4DVar and the EnKF.

There  have been a  number  of  efforts  made in  the  de-
velopment  of  the  En4DVar  family  (e.g.,  Qiu  and  Chou,
2006; Liu et al., 2008; Tian et al., 2008). One of the rep-
resentative  approaches  in  this  family  is  dimension-re-
duced-projection-based  4DVar  (DRP-4DVar),  proposed
by Wang et al. (2010). This approach minimizes the cost
function  of  4DVar  in  the  low-dimension  sample  space
and does not require implementation of the adjoint of the
tangent  linear  approximation.  It  offers  great  timesaving
compared to both standard 4DVar and the EnKF. The B
matrix  used  in  DRP-4DVar  is  not  only  locally  evolved

Table 1.   Track forecast errors and corresponding relative ratios at 24 and 36 h in different experiments for case Nida. Adapted from Chen et al.
(2013)

CTRL ALL CNOP LSV RAN
Error (24 h-MM5) 202.23 202.23 161.36 170.20 202.23
Improvement – 0 20.2% 15.8% 0
Error (36 h-MM5) 298.55 267.04 260.30 314.62 279.59
Improvement – 10.6% 12.8% –5.4% 7.0%
Error (24 h-WRF) 79.83 48.34 29.02 73.36 98.81
Improvement – 39.4% 63.6% 8.1% –23.8%
Error (36 h-WRF) 176.57 126.33 114.73 163.32 181.85
Improvement – 28.5% 35.0% 7.5% –3.0%
Notes: CTRL, the control run that simulated the 36-h typhoon prediction using the National Centers for Environmental Prediction reanalysis
data; ALL, experiments with all sonde data assimilated; CNOP (LSV), experiments with only the observational data from sensitive regions
identified by conditional nonlinear optimal perturbation (linear singular vector) approach assimilated; RAN, experiments with randomly selected
dropwindsondes assimilated.

 
Fig. 4.   (a) Scatter diagram of all track forecast errors for typhoon case Vamco. The y–axis represents the track forecast errors with dropsondes,
and the x-axis represents those without dropsondes. Filled and empty diamonds denote the results of conditional nonlinear optimal perturbations
and singular vectors, respectively. The colour of each diamond indicates the forecast time. (b) Histogram showing the relative differences corres-
ponding to each case. Adapted from Qin and Mu (2012).
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within  the  time  window,  but  also  globally  developed
from window to window.

In recent years, DRP-4DVar has been conducted with
single-observation experiments, OSSEs, case studies, and
batch experiments (e.g.,  50-day continuous assimilation-
hindcast  experiments  in  2007).  The  experiments  have
been  carried  out  by  using  different  models,  such  as  the
fifth-generation  Pennsylvania  State  University-National
Center  for  Atmospheric  Research  Mesoscale  Model
(MM5),  the  Weather  Research  and  Forecasting  model,
and the Advanced Regional Eta Model. The results from
these experiments show that DRP-4DVar is a promising
approach  and  is  suitable  for  operational  use  in  the  near
future.

Figure  5  shows  the  results  of  a  case  study.  It  is  indi-

cated that DRP-4DVar performs comparably to MM5 ad-
joint-based 4DVar (MM5-4DVar) when assimilating 6-h
accumulated  rainfall  observations.  The  incorporation  of
rainfall  observations  into  the  initial  conditions  by  histo-
rical-sample-projection  4DVar  (HSP-4DVar)  or  MM5-
4DVar  can  significantly  reduce  the  errors  of  24-h  rain-
fall forecasts (Fig. 5). However, HSP-4DVar offers much
greater  timesaving  than  MM5-4DVar.  To  facilitate  the
operational  implementation  of  DRP-4DVar,  a  dataset  to
collect  historical  forecast  samples  and  corresponding
simulated  observation  samples  in  the  past  should  be  es-
tablished  first,  from  which  DRP-4DVar  can  automati-
cally  choose  a  high-quality  sample  (i.e.,  an  analog fore-
cast sample) for its analysis. In addition, because of sig-
nificant impacts of the covariance matrix of the observa-

 
Fig. 5.   (a) Root-mean-square errors (RMSEs) of three experiments: A control (CTRL) experiment, in which precipitation is generated by a fore-
cast model without assimilation, by using the initial fields produced at 0000 UTC 4 June 2006, with 1° × 1° National Centers for Environmental
Prediction–National Center for Atmospheric Research reanalysis data; an experiment (HSP) that assimilates the 6-h accumulated rainfall obser-
vations of  1834 stations in China into the initial  field with dimension-reduced-projection-based four-dimensional  variational  data assimilation,
and an experiment (ADJ) that is the same as HSP except it uses MM5 adjoint-based four-dimensional variational data assimilation. (b) Horizon-
tal distribution of forecast errors of 24-h accumulated rainfall from 0000 UTC 4 to 0000 UTC 5 June 2006 in CTRL. Panels (c) and (d) are the
same as (b), but for the HSP and ADJ experiments, respectively. Both HSP and ADJ use a 6-h assimilation window from 0000 to 0006 UTC 4
June 2006, and a diagonal covariance matrix of observation error with a constant RMSE of 0.3 mm. The forecast model used in all experiments is
MM5. Adapted from Liu (2009).
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tion error (O matrix) on 4DVar and other assimilation ap-
proaches, studies on the inclusion of horizontal and ver-
tical  correlations  between  observation  errors  in  the  O
matrix  should  be  emphasized  and  strengthened  in  the
near future.

4.    Ensemble prediction

As a single forecast is simply an estimate of the future
state  of  the  atmosphere  and  ocean  within  a  stochastic
framework, but provides no information regarding its re-
liability, ensemble prediction is needed and regarded as a
practical  approach  to  generate  probabilistic  forecasts  of
the future state of the system. In particular, the ensemble
mean  of  forecast  members  may  filter  the  unpredictable
parts  and  leave  the  common  parts  of  forecast  members,
ultimately reducing the prediction uncertainties of single
forecasts.  Different  schemes  are  employed  to  generate
the initial perturbations for ensemble prediction systems,
such  as  BVs  and  SVs  (Molteni  and  Palmer,  1993;  Toth
and  Kalnay,  1993,  1997;  Molteni  et  al.,  1996;  Buizza,
1997).  However,  SVs  are  currently  applied  using  a  tan-
gent  linear  system  with  limited  physical  parameteriza-
tions, and so they are unable to reflect the nonlinear cha-
racteristics of weather or climate, meaning they possess a
number of  limitations.  BVs are  a  nonlinear  extension of
the  local  Lyapunov  vectors  (LLVs)  proposed  by  Toth
and Kalnay (1993). However, BVs are not completely or-
thogonal;  they  may  not  span  the  fast-growing  subspace
efficiently and not fully reflect the uncertainty of the ini-
tial conditions. Recently, a number of methods based on
ensemble assimilation have been developed to overcome
the  limitations  of  BVs  and  SVs.  These  methods  include
the  EnKF  and  ETKF  (Evensen,  1994;  Houtekamer  and
Derome, 1995; Descamps and Talagrand, 2007). However,
to date,  there remain some real limitations and technical
problems when using these methods in operational fore-
casting.  These  methods  are  still  at  their  trial  stages,  and
far from being widely applied operationally.

Based on nonlinear dynamical system theory, Feng et
al.  (2014)  developed  nonlinear  local  Lyapunov  expo-
nents  (NLLEs)  and  vectors  (NLLVs).  NLLVs  represent
the vectors along the directions from the fastest-growing
direction to the fastest-shrinking direction.  The first  few
of  these  are  utilized  as  ensemble  initial  perturbations.
The NLLV method is quick in computational terms, and
physically  and  dynamically  effective  for  generating  en-
semble  perturbations;  plus,  it  also  reduces  the  depen-
dence  among  perturbations  because  of  the  global  ortho-
gonality.  Therefore,  NLLVs may be  suited  as  the  initial
perturbations for ensemble prediction. The NLLV method

performs  better  than  the  BV  and  SV  methods  in  en-
semble  forecast  experiments  including  a  simple  Lorenz
model, barotropic model, and baroclinic model. The fore-
cast skill of the NLLV method is close to that of the En-
KF, but the computational cost is just 1/3 as much as the
latter.  Therefore,  the  NLLV  method  has  a  great  advan-
tage, and is expected to develop into an effective method
for  operational  application.  The  NLLV  approach  men-
tioned here  has  only been applied in  simple  models  and
demonstrated  to  be  effective  for  generating  ensemble
perturbations.  It  would  be  worthwhile  investigating  the
performance  of  NLLVs  in  more  complex  models.  Be-
sides,  the  physical  explanation  of  NLLVs  is  not  clear,
and further clarification is needed to explain why the ap-
plication  of  NLLVs  in  generating  ensemble  perturba-
tions can improve the forecast skill. These questions need
to  be  explored  to  strengthen  the  understanding  of  the
NLLV method.

5.    Summary and outlook

This paper reviews recent progress made at LASG re-
garding targeted observations,  data assimilation,  and en-
semble prediction, which are three effective strategies to
reduce the prediction uncertainties and improve the fore-
cast skill of weather and climate events.

Targeted observation, as a new observational strategy,
is  an  efficient  and  effective  method  to  optimize  the
design  of  observing  networks.  Identifying  the  sensitive
areas (i.e.,  the optimal observing locations) is a key part
of  the  targeted observation approach.  Among the  differ-
ent  methods  available  to  identify  the  sensitive  areas,
CNOP overcomes the linear limitations of the LSV meth-
od and represents the initial perturbation that exhibits the
largest  prediction growth at  the  end time of  the  forecast
period;  and  the  NFSV method  has  been  proposed  to  re-
veal  the  most  disturbing  tendency  errors  of  predictions.
These  approaches  have  been  used  to  identify  the  sensi-
tive  areas  of  targeted  observations  for  ENSO,  IOD,  and
TCs,  and demonstrated to be effective.  Therefore,  target
observations  will  provide  guidance  for  ongoing  and
planned observational networks.

To assimilate these targeted observations into the ini-
tial state of numerical models, DRP-4DVar has been pro-
posed  to  overcome  the  challenging  problems  of  using
4DVar  in  an  operational  setting.  This  approach  mini-
mizes  the  cost  function  of  4DVar  in  the  low-dimension
sample space and does not require implementation of the
adjoint  of  the  tangent  linear  approximation.  Indeed,  a
case study suggests that the performance of DRP-4DVar
is  good,  and  its  computational  cost  is  much  lower  than
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standard 4DVar.
Considering  that  a  single  forecast  is  simply  an  esti-

mate of the future state of the atmosphere and ocean within
a  stochastic  framework,  ensemble  prediction  is  often
used to generate probabilistic forecasts of the future state
of  the  system,  and  the  ensemble  mean  usually  reduces
the  prediction  uncertainties  of  single  forecasts.  The
NLLV method reviewed in the present paper is not only
computationally  quick  and  physically  and  dynamically
effective  for  generating  ensemble  perturbations,  but  it
also  reduces  the  dependence  among  perturbations  be-
cause  of  the  global  orthogonality.  Therefore,  NLLVs
may be  applicable  in  generating  initial  perturbations  for
ensemble prediction.

Although considerable progress has been made regard-
ing these three strategies,  much more work is  needed to
further improve the forecast skill of weather and climate
events.  Regarding  targeted  observations,  for  ENSO,  we
should further examine the effects of global warming and
its recent hiatus on identifying the sensitive areas of tar-
geted  observations;  for  the  IOD,  although  previous  stu-
dies have demonstrated encouraging results on the sensi-
tive areas, further analysis with hindcast and forecast ex-
periments is needed to verify the credibility; and for TCs,
the effect of the ocean on TCs should be paid particular
attention,  to  discuss  the  role  played  by  oceanic  targeted
observations in TC predictions, especially in terms of TC
intensity.  For  DRP-4DVar,  an  improvement  of  the  B
matrix  can  be  achieved  by  including  an  analog  predic-
tion sample of which the corresponding simulated obser-
vation increment is highly correlated with the real obser-
vation  increment.  Besides,  the  NLLV  approach  men-
tioned here, whilst demonstrated as effective for generat-
ing  ensemble  perturbations,  has  only  been  applied  in  a
low-order  model.  It  would  be  worthwhile  investigating
the  performance  of  NLLVs  in  more  complex  models.
These problems are challenging, but are of great import-
ance  for  increasing  the  prediction  skill  of  weather  and
climate events.
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