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Abstract
This paper investigates the optimal observational array for improving the initialization of El Niño-Southern Oscillation 
predictions by exploring the sensitive areas for target observations of two types of El Niño predictions. The sensitive areas 
are identified by calculating the optimally growing errors (OGEs) of the Zebiak–Cane model, as corrected by the optimal 
forcing vector that is determined by assimilating the observed sea surface temperature anomalies (SSTAs). It is found that 
although the OGEs have similar structures for different start months of predictions, the regions covered by much large errors 
for the SSTA component tend to locate at different zonal positions and depends on the start months. Furthermore, these 
regions are also in difference between two types of El Niño events. The regions covered by large errors of OGEs represent 
the sensitive areas for target observations. Considering the dependence of the sensitive areas on related El Niño types and 
the start months of predictions, the present study propose a quantitative frequency method to determine the sensitive areas 
for target observations associated with two types of El Niño predictions, which is expected to be applicable for both types 
of El Niño predictions with different start months. As a result, the sensitive areas that describe the array of target observa-
tions are presented with a reversal triangle-like shape locating in the eastern Pacific, specifically the area of 120°W–85°W, 
0°S–11°S, and an extension to the west along the equator and then gathering at the 180° longitude and the western boundary. 
“Hindcast” experiments demonstrated that such observational array is very useful in distinguishing two types of El Niño 
and superior to the TAO/TRITON array. It is therefore suggested that the observational array provided in the present study 
is towards the optimal one and the original TAO/TRITON array should be further optimized when applied to predictions of 
the diversities of El Niño events.

1  Introduction

El Niño-Southern Oscillation (ENSO) is the most dominant 
climate mode in the tropical Pacific. It was manifested that 
a new type of El Niño events (denoted as CP-El Niño) had 
become more and more common since 1990s. The CP-El 
Niño is characterized by the most warming SSTA in the cen-
tral equatorial Pacific Ocean during peak time, in contrasting 

to the canonical El Niño (denoted as EP-El Niño) charac-
terized by the most warming SSTA in the eastern equato-
rial Pacific Ocean (Ashok et al. 2007; Kao and Yu 2009; 
Kug et al. 2009; Weng et al. 2007). It was suggested that 
the evolution of CP-El Niño events and its influence on the 
global weather and climate are considerably different from 
those of EP-El Niño events (Ashok et al. 2007; Weng et al. 
2007; Yeh et al. 2009; Chen and Tam 2010; Marathe et al. 
2015). Considering the differences between the two types 
of El Niño events, it is of great values to distinguish the 
types of El Niño events when making ENSO predictions. 
Many studies claimed that the prediction skill of ENSO 
varies from several seasons to 2 years in hindcast experi-
ments. However, the real forecasts for ENSO are skillful 
only within several months. Especially, most of them cannot 
distinguish the types of El Niño events in forecasts (Barn-
ston et al. 2012; Chen et al. 2004; Jin et al. 2008). Hen-
don et al. (2009) reported that they had limited success in 
predicting differences between the two El Niño types using 
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the Australian Bureau of Meteorology’s Predictive Ocean 
Atmosphere Model for Australia (POAMA) coupled sea-
sonal forecast model and the effective prediction skill could 
hold only 1 month ahead. Jeong et al. (2012) demonstrated 
that the useful prediction skill for predicting two types of El 
Niño events, even though an ensemble forecast technique 
was used, was only possible within a 4-month lead time.

In order to get the skillful predictions of two types of El 
Niño events, it is necessary to understand their predictability 
dynamics. The studies of predictability dynamics problems 
can be separated into two categories: the first kind problem 
of predictability associated with initial errors and the sec-
ond kind problem of predictability related to model errors 
(Lorenz 1975). Quite a few studies have explored the impor-
tant role of the initial errors in ENSO prediction uncertain-
ties (Chen et al. 1995, 2004; Moore and Kleeman 1996; 
Mu et al. 2007; Thompson 1998; Xue et al. 1997a, b) or 
emphasized the importance of the accuracy of initial analy-
sis fields in improving ENSO forecast skill (Keenlyside et al. 
2005; Zheng et al. 2006, 2007; Zhu et al. 2017). Moreover, 
recent studies showed that the initial errors with particular 
spatial structures cause much larger prediction uncertainty 
for ENSO (Mu et al. 2007; Yu et al. 2009; Duan et al. 2009; 
Duan and Hu 2016). Specifically, Duan et al. (2009) pointed 
out that the initial errors with a dipole structure of sea sur-
face temperature anomalies (SSTAs) along the tropical 
Pacific are most likely to cause a significant spring predict-
ability barrier (SPB) phenomenon for El Niño events. Duan 
and Wei (2012) further showed the existence of these ini-
tial errors in realistic predictions for El Niño. These studies 
therefore provided a possible way to improve ENSO forecast 
skill by filtering out the initial errors of particular structures. 
Correspondingly, Mu et al. (2014) proposed an idea that the 
ENSO forecast skill can be greatly improved by assimilat-
ing observations in some key areas that locate in the above-
mentioned initial errors of special structure and are covered 
by large errors. Such idea is related to target observations 
(Mu et al. 2014; Duan and Hu 2016; Hu and Duan 2016).

The so-called target observation is an economic and prac-
tical observation strategy to improving the initial state for 
weather and climate prediction, in which a limited number 
of observations are placed in some key areas and expected to 
have a considerable impact on prediction skills [see Sect. 2; 
also see the review of Mu (2013) and Mu et al. (2015)]. 
The key of the target observations is to determine the key 
areas (i.e. the optimal observation location for targeting or 
sensitive areas). In fact, Morss and Battisti (2004a, b), based 
on observation system simulation experiment (OSSE), sug-
gested that for ENSO forecasting longer than a few months, 
the most important area for observations is the eastern equa-
torial Pacific, south of the equator; a secondary region of 
importance is the western equatorial Pacific. Yu et al. (2012) 
used the Zebiak–Cane model (Zebiak and Cane 1987) and 

explored the target observations for El Niño events. They 
argued that the eastern equatorial Pacific is the sensitive 
areas for targeting observations associated with EP-El Niño 
forecasting. Considering that the Zebiak–Cane model is 
an intermediate ENSO model and does not have enough 
description of the subsurface layers, Duan and Hu (2016) 
and Hu and Duan (2016) further adopted a complex GCM 
and showed that the subsurface layer of western equatorial 
Pacific represent another sensitive area for El Niño forecast-
ing. However, most of these above studies only focus on 
EP-El Niño events because most models do not have the abil-
ity to simulate two types of El Niño events well (Ham and 
Kug 2012; Kim and Yu 2012; Kug et al. 2012). Although 
the models participating in phases 5 of the Coupled Model 
Intercomparison Project (CMIP5) were improved compared 
with the models in CMIP3, most of them still exist signifi-
cant uncertainties in simulating both types of El Niño events 
(Kim and Yu 2012; Kug et al. 2012). It was shown that the 
model bias occurring in the annual-mean SST, convective 
precipitation, nonlinear temperature advection, etc. may 
induce the systematic errors for the simulation of the two 
types of El Niño (Duan et al. 2014; Hendon et al. 2009; 
Jeong et al. 2012; Kim et al. 2012; Kug et al. 2012). In other 
words, it is the model errors that weaken the models’ abili-
ties in differentiating two types of El Niño events.

Considering that the model errors are from differ-
ent sources and the interaction mechanism among them 
is relatively complicate, it is necessarily to consider the 
combined effect of all types of model errors on ENSO 
forecasting. Tsyrulnikov (2005) utilized this idea to 
characterize the combined effect of the sub-grid param-
eterization, the unrecognized physical processes, and the 
atmospheric noise by adopting the Markov chain models; 
Jin et al. (2007) used state-dependent stochastic noise to 
represent combined model errors and study the predict-
ability and dynamics of the ENSO recharge oscillator. 
Zheng and Zhu (2016) added random terms to the ten-
dency of an ENSO model and explicitly defined them as 
model errors. In fact, Duan et al. (2014) also proposed an 
approach of optimal forcing vector (OFV) to depict the 
combined effect of kinds of model errors and used it to 
correct the Zebiak–Cane model, finally reproducing suc-
cessfully the observed two types of El Niño events. Based 
on the reproduced two types of El Niño events, Tian and 
Duan (2016) demonstrated that the initial SSTA errors that 
mainly concentrate in the central-eastern equatorial Pacific 
are mostly likely to induce SPB for both types of El Niño 
events. This implied that the predictions for two types of 
El Niño events are most sensitive to the initial SSTA errors 
in the central-eastern equatorial Pacific and, if increasing 
the observations over this region and assimilating them to 
the initial fields, the ENSO forecast skill can be greatly 
improved, as compared with doing it in other regions. That 
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is to say, Tian and Duan (2016) showed that the sensitive 
areas for targeting observations (or the optimal observa-
tional locations) for two types of El Niño events locate 
the central-eastern equatorial Pacific. However, it should 
be pointed out that in this previous study, they did not 
care the effect of start months of ENSO predictions on the 
sensitive areas for targeting observations.

In the present study, we would explore the difference of 
the sensitive areas for target observation associated with two 
types of El Niño with different start months. The remainder 
of this paper is organized as follows. In Sect. 2, we introduce 
the data, model and methods used in this paper. In Sect. 3, 
we reproduce 8 El Niño events occurring during 1981–2010 
and investigate the characteristics of optimally growing ini-
tial errors (OGEs; see Sect. 3) calculated at different start 
months. Section 4 is the core of the paper, we investigate the 
possible change of the sensitive area when the start month 
varies and then propose a quantitative method to determine 
the location of the sensitive area for target observation. In 
Sect. 5, we design a series of “hindcast” experiments to 
explore the role of target observation in the forecasting of 
two types of El Niño and suggest a more applicable obser-
vational array for two types of El Niño predictions. Finally, 
Sect. 6 is the summary and discussion.

2 � Data, model, methods and target 
observation

2.1 � Data

There are 9 El Niño events during 1981–2010. Previous 
studies used three different approaches to identify CP- and 
EP-El Niño events (Ashok et al. 2007; Ren and Jin 2011; 
Yu and Kim 2013; Zheng and Yu 2017), which made the 
identified EP- and CP- El Niño cases somewhat different in 
these studies. Therefore, a consensus of the El Niño cases 
identified by the previous studies is often adopted (Yu and 
Kim 2013; Zheng and Yu 2017). Referring to this, three 
of the nine El Niño events (i.e. 1982/1983, 1986/1987, 
1997/1998) can be categorized as EP-El Niño events 
and five of them (i.e. 1991/1992, 1993/1994, 2002/2003, 
2004/2005, 2009/2010) can be as CP-El Niño events. The 
exceptional 2006/2007 event has a strong hybrid character 
and is excluded in the present study. For these observed eight 
El Niño events, the SST data from the Hadley Center Global 
Sea Ice and Sea Surface Temperature (HadISST) analyses 
data sets (Rayner et al. 2003) are adopted. And the monthly 
wind stress anomalies derived from Florida State Univer-
sity analyses (Bourassa et al. 2001) are used to initialize the 
Zebiak–Cane model and then to make hindcast experiments 
for these El Niño events.

2.2 � The Zebiak–Cane model

The Zebiak–Cane model was the first coupled ocean–atmos-
phere model to simulate the observed ENSO inter-annual 
variability. The model is composed of a Gill-type steady-
state linear atmospheric model and a reduced-gravity oceanic 
model, which depict the thermo-dynamics and atmospheric 
dynamics of the tropical Pacific with oceanic and atmos-
pheric anomalies near the mean climatological state speci-
fied from observations (see Zebiak and Cane 1987). It wins 
its fame for predicting the 1986–1987 El Niño events and 
thus has been widely used to study ENSO dynamics and pre-
dictability (Zebiak and Cane 1987; Blumenthal 1991; Xue 
et al. 1994; Chen et al. 2004; Tang et al. 2008). However, 
the Zebiak–Cane model can only depict EP-El Niño events 
(Chen and Cane 2008; Chen et al. 2004) but not simulate CP 
El Niño events well, which have been shown to be caused by 
the effect of model errors (Duan et al. 2014). As mentioned 
above, Duan et al. (2014), considering that the model errors 
are from different sources and cannot be exactly separated, 
proposed the OFV approach to reduce the model errors and 
finally reproduced successfully the observed two types of El 
Niño events. In the present study, we also use the El Niño 
events reproduced by the OFV to explore the target observa-
tions for two types of El Niño events. For convenience, we 
give the details of the OFV in Sect. 2.3.

2.3 � The optimal forcing vector approach

Suppose the following nonlinear partial differential equa-
tion is a state equations associated with atmospheric or 
oceanic motions:

where  u(x, t) = [ u1(x, t), u2(x, t),… , un(x, t)] i s  t he 
state vector, F is a nonlinear operator, u0 is the initial 
state, (x, t) ∈ � × [0, T] , � is a domain in Rn , T < +∞ , 
x = (x1, x2,… , xn) , and t  is the time. For the given initial 
field u0 , the solution to Eq. (1) for the state vector u at time 
� is given by

where Mt0,�
 denotes the propagator of Eq. (1) from time t0 

to �.
Suppose the model described by Eq. (1) is imperfect and 

the model errors can yield prediction uncertainties when 
the model is used to predict the motion of the atmosphere 
or oceans. In order to offset the model error effects, one 
could superimpose a time-variant external forcing f (x, t) 
for Eq. (3) to force the model to agree with the observation:

(1)
{

�u

�t
= F(u, t),

u|t=0 = u0,

(2)u(x, �) = Mt0,�
(u0),
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Thus, this problem can be transferred into a type of non-
linear optimization problem. The optimization problem can 
consider that certain f(x, t) are chosen such that the differ-
ences between the model simulation and the observations are 
minimized. That is, an external forcing should be chosen to 
satisfy the following optimization problem:

where ti, ti+1 ∈ [t0, tk] , Mti,ti+1
(f ti

) is the propagator of Eq. (3) 
from time ti to ti+1 , and u = Mti,ti+1

(f min,ti−1
)(uti−1) . Note that 

the time intervals [ti, ti+1] . can be several days, a month, a 
season or others, not necessary to be a time step of numeri-
cal integration, and depends on which is responsible for the 
smallest value of the Eq. (4). An external forcing vector 
�min, tk−t0

= (f min,t0
, f min,t1

,… , f min,tk−1
) can be obtained by 

solving Eq. (4.) This forcing vector �min, tk−t0
 is the OFV, 

which makes the model simulation closest to the observation 
during the time window [t0, tk].

It is easy to understand that for a given norm, the Eq. (4) 
defines an unconstrained optimization problem, with the 
OFV ( �min, tk−t0

 ) being the minimum point of the objective 
function in the phase space. It’s worth noting that the OFV 
is still time-independent during the time interval [ti, ti+1] . 
This means that we can compute the OFV as the constant 
FSV, proposed by Barkmeijer et al. (2003), using the limited 
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS; 
Liu and Nocedal 1989) algorithm. This algorithm is based 
on the gradient-steepest descent method and finds the mini-
mum value of an objective function, in which the gradient 
of the objective function with respect to the external forcing 
is needed. In this paper, we adopt the approach proposed 
by Feng and Duan (2013) to calculate the gradient of the 
objective function with respect to the external forcing [see 
Feng and Duan (2013) for more details]. Using this gradient 
information, the OFV of the Zebiak–Cane model is computed 
by using the L-BFGS solver in this paper.

2.4 � The conditional nonlinear optimal perturbation

Similar to Tian and Duan (2016), we use the conditional 
nonlinear optimal perturbation (CNOP) to identify the sen-
sitive area for target observations. The CNOP is the initial 
perturbation which satisfies a given constraint and has the 
largest nonlinear evolution at prediction time (Mu et al. 
2003). For the corrected model Eq. (3), an initial perturba-
tion u0� is the CNOP if and only if it satisfies the equation:

(3)
{

�u

�t
= F(u, t) + f (x, t),

u|t=0 = u0 .

(4)J(fmin,ti
) = min‖Mti,ti+1

(f ti)(uti ) − uobs,ti+1‖,

(5)
J(u0𝛿) = max

u0 < 𝛿

‖Mt0,t
(fmin;t−t0

)(U0 + u0 ) −Mt0,t
(fmin;t−t0

)(U0)‖,

where ‖u0‖ < 𝛿 is the initial constraint defined by the chosen 
norm. The constraint condition could reflect physical laws 
that the initial perturbation should satisfy.

The CNOP can be computed by solving the maximization 
problem in Eq. (5). To do this, we firstly transform Eq. (5) 
into a minimization problem by considering the reciprocal 
of the cost function. Then we can solve this minimization 
problem by some minimization solvers such as the spectral 
projected gradient 2 (SPG2; Birgin et al. 2000), sequential 
quadratic programming (SQP; Powell 1983), or the lim-
ited memory Broyden–Fletcher–Goldfarb–Shanno method 
(L-BFGS; Liu and Nocedal 1989).

In this paper, we apply the CNOP approach to the 
Zebiak–Cane model which is corrected by OFV. The CNOP, 
when applied to the corrected Zebiak–Cane model, can be 
obtained by solving the following nonlinear optimization 
problem:

where u0 = (w1T0, w2H0) , and T0 . and H0 are the SSTA 
and thermocline depth component of the initial error respec-
tively; w1 = (2 ◦C)−1 and w2 = (50 m)−1 are the character-
istic scales of SST and thermocline depth; U0 is the initial 
value of the reference state; ‖⋅‖ represents the L-2 norm; 
‖u0‖ < 𝛿 is the constraint condition and δ is set at 1 experi-
mentally; T′

t
 is the prediction error of SSTA.

2.5 � The target observation

The target observation, as the introduction mentioned, is 
an economic and practical observation strategy to improv-
ing the initial state for weather and climate prediction. This 
observation strategy is a new one developed since 1990s. 
Its general idea is as follows. To better predict a climate 
or weather event at a future timet1 (verification time) in a 
focused area (verification area), additional observations are 
deployed at a future timet2 (target time, t2 < t1 ) in some spe-
cial areas (sensitive areas) where the additional observations 
are expected to improve the forecast skills in the verification 
area (Synder 1996). Generally speaking, these additional 
observations would be assimilated by a data assimilation 
system to provide the numerical model a more reliable initial 
state. The idea of the target observation has been applied to 
some weather and climate events forecasting, such as Fronts 
and Atlantic Storm-Track Experiment (FASTEX; Synder 
1996), North Pacific Experiment (NORPEX; Langland et al. 
1999), tropical cyclone (TC; Qin et al. 2013; Qin and Mu 
2012; Zhou and Mu 2011), Kuroshio large meander (KLM; 
Wang et al. 2013), India Ocean Dipole (IOD; Feng et al. 
2014), ENSO (Yu et al. 2012; Hu and Duan 2016), etc.

(6)

J(u0𝛿) = max
u0 < 𝛿

‖Mt0,t
(fmin;t−t0

)(U0 + u0) −Mt0,t
(fmin;t−t0

)(U0)‖

= max
u0 < 𝛿

‖T�
t
‖,
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The key of target observations is to determine the sensi-
tive areas. Traditionally, there are two types of mathematical 
techniques: the one is based on sensitivity analysis, such 
as adjoint sensitivity (Bergot 1999), singular vectors (SVs; 
Palmer et al. 1998), and the adjoint-derived sensitivity steer-
ing vector (ADSSV; Wu et al. 2007), etc.; and the other is 
related with data assimilation methods, such as the ensemble 
transform technique (Bishop and Toth 1999); the ensem-
ble transform Kalman filter (ETKF; Bishop et al. 2001), the 
ensemble Kalman filter (EnKF; Liu and Kalnay 2008); the 
piece-by-piece data assimilation targeting method (PBPDA; 
Huang and Meng 2014), etc. However, most of these meth-
ods are limited by the use of linear approximation. For some 
high-impact ocean-atmospheric environmental events, such 
as TC, ENSO, the impact of nonlinearity plays an important 
role (Fiorino and Elsberry 1989; Mu et al. 2009; An and Jin 
2004; Duan et al. 2008, 2017). Thus, it may induce extra 
errors to apply these linear methods to such events.

Recently, the nonlinear approach of CNOP has been suc-
cessfully used to determine the sensitive areas for targeting 
in TC, IOD, KLM forecasting (Qin et al. 2013; Qin and Mu 
2012; Zhou and Mu 2011; Feng et al. 2014; Wang et al. 
2013). For the TC forecasting, the CNOP is computed case 
by case and the sensitive areas for targeting observation are 
case dependent (Qin et al. 2013; Qin and Mu 2012; Zhou 
and Mu 2011). However, the observations for ENSO is such 
a complex project with large investment and time consuming 
that we expect it can provide information for more than just 
one specific El Niño prediction. That is to say, the sensi-
tive areas should be applicable for most of El Niño events 
predictions. Although Yu et al. (2012) identified the sensi-
tive area according to the composite of CNOPs calculated 
based on all the El Niño events involved in the study, they, as 
mentioned in the introduction, did not consider the effect of 
start months of predictions on target observations and only 
gave the approximate range of the sensitive area for target-
ing. In this paper, in order to identify the optimal layout of 
observation locations for targeting, we proposed a quanti-
tative method which considers the differences among the 
CNOP-type initial errors calculated at different start months 
of predictions (see Sect. 4).

3 � The optimally growing initial error 
of the reproduced EP‑ and CP‑El Niño 
events

As mentioned in Sect. 2.2, the Zebiak–Cane model cannot 
depict CP–El Niño events well, mostly due to the effect of 
model errors (Duan et al. 2014). Duan et al. (2014) pro-
posed an OFV approach to consider and reduce the com-
bined effects of different model errors for the Zebiak–Cane 
model, finally reproducing the two types of observed El 

Niño events. Tian and Duan (2016) has further applied this 
method to the Zebiak–Cane model to study the SPB phe-
nomenon of two types of El Niño events. Recently, Duan 
et al. (2017) has also adopted such method and revealed 
the modulation effect of nonlinearity on two types of El 
Niño events by using the Zebiak–Cane model. In the pre-
sent study, we follow Duan et al. (2014, 2017) and use 
the corrected Zebiak–Cane model to reproduce the 8 El 
Niño events (including 3 EP- and 5 CP–El Niño events) 
mentioned in Sect. 2.1. Specifically, the OFV forcings are 
added to the SSTA governing equation of the Zebiak–Cane 
model and correct the model errors by assimilating a series 
of HadISST analytical data, finally making the simulated 
SSTA closest to the observations. For each of the 8 El 
Niño events, we reproduce its SSTA for 3-year period 
from the year before the El Niño event to the year the 
event demises [denoted as year (− 1), year (0) and year 
(1), respectively]. To avoid getting unreasonably large 
OFVs which may make the relevant state variables fail to 
satisfy dynamics and/or physics, we adopt the initializa-
tion scheme developed by Chen et al. (1995) to obtain 
the initial conditions of the corrected Zebiak–Cane model 
starting on January (− 1) of every El Niño events and 
obtain high consistence between the observed and simu-
lated SSTA of two types of El Niño events (Fig. 1). For 
convenience, we still refer to the corrected Zebiak–Cane 
model as the “Zebiak–Cane model” hereafter.

The CNOP approach is applied to the Zebiak–Cane model 
to compute the optimally growing initial errors (OGEs) of 
two types of El Niño events. Because the CNOP, by defi-
nition, represents the initial error whose nonlinear evolu-
tion attains the maximum at the prediction time under some 
certain constraint conditions, the CNOP-type initial error 
represents the OGE of ENSO events. For the seven repro-
duced El Niño events excluding 1986/1987, we calculate the 
CNOP-type initial errors superimposed on the tropical SSTA 
and thermocline depth anomaly fields with the lead time 
1 year of predictions and start months January (0), April 
(0), July (0), and October (0), respectively. As most of the El 
Niño events usually have a strong phase-locking character in 
which the El Niño attains its peak at the end of the calendar 
year, the 4 start months here actually mean that the initial 
times of predictions correspond to 1–4 seasons ahead the 
mature phase of the El Niño events, respectively. For the 
1986/1987 EP-El Niño, since it attained the mature phase 
in boreal autumn instead of winter, the OGEs are calculated 
with start months October (− 1), January (0), April (0) and 
July (0), also corresponding to 1–4 seasons ahead the mature 
phase of the event. For convenience, when mentioned to 
the start months in the Figures, the labels of the x-axis only 
show January (0), April (0), July (0), and October (0), which 
also in order correspond to October (− 1), January (0), April 
(0) and July (0) for the 1986/1987 El Niño event.
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For each of the three EP-El Niño events (1982/1983, 
1986/1987, 1997/1998), we predict it with the four start 
months and get 4 OGEs. And a total of 12 OGEs can be 
obtained for three El Niño events. Similarly, for the five 
CP-El Niño events (1991/1992, 1994/1995, 2002/2003, 
2004/2005, 2009/2010), we get 20 OGEs totally. All the 
OGEs have similar large-scale structure with the SSTA 
component exhibiting a zonal dipolar pattern and the ther-
mocline depth component exhibiting a consistently deepened 
or shoaling pattern across the equatorial Pacific. However, 
as the start month changes from January (0), April (0), July 
(0) to October (0), the OGEs present the regions with large 
values of SSTA components to be gradually much westward. 
Figure 2 shows two examples with the SSTA components 
of OGEs for the 1982/83 EP-El Niño event and 2009/2010 
CP-El Niño event. It can be seen that the region with large 
errors, especially the western polar of the dipolar structure, 
moves towards west, as the start month changes from Janu-
ary (0) through April (0) and July (0) to October (0). In order 
to quantify this character, we calculated the zonal center 
of the OGEs’ SSTA components for each of EP-and CP-El 
Niño events (Fig. 3). The formula of zonal center is derived 
from Ham and Kug (2015) and can be represented as: 

(9)c =
∫ e2(x)xdx

∫ e2(x)dx
,

where x represents the longitude; e2(x) represents the meridi-
onal average (19°N–19°S) square error of the OGEs’ SSTA 
components at x ; the integral range is from 129.375°E to 
84.375°W. It is shown from Fig. 3 that the zonal centers of 
OGEs for each of the EP- and CP-El Niño events with the 
start month October (0) are farther to the west than that of 
OGEs with the start months from July (0) to April (0) and 
then January (0), which indicates that the westward trend of 
the OGEs is a general feature of all the El Niño events and 
is possibly associated with the westward propagation of the 
climatological Rossby wave.

4 � The determination of sensitive area 
for target observation

Section 3 reveals that the OGEs for two types of El Niño 
events concentrate few regions but possess westward trend 
with the start months changing from January (0) to October 
(0). Previous studies showed that the region with large values 
of the OGEs represent the sensitive area for target observa-
tion associated with El Niño predictions (Duan and Hu 2016; 
Hu and Duan 2016; Tian and Duan 2016; Mu et al. 2014; Yu 
et al. 2012); and the initial errors in these sensitive areas make 
greatest contribution to the prediction error and the prediction 

Fig. 1   The mean of the SSTAs 
during the mature phase 
for three EP-El Niño events 
(1982/1983, 1986/1987 and 
1997/1998) and five CP-El Niño 
events (1991/1992, 1994/1995, 
2002/2003, 2004/2005 and 
2009/2010): a observed EP-El 
Niño; b EP-El Niño reproduced 
by the Zebiak–Cane model 
with an OFV; c observed CP-El 
Niño; d CP-El Niño reproduced 
by the Zebiak–Cane model with 
an OFV. The mature phases 
here are the period of July–
August–September (denoted 
by JAS) for the 1986/1987 
EP-El Niño and the period of 
October–November–December 
(denoted by OND) for other EP- 
and CP-El Niño events
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skills can be improved when these initial errors are reduced. 
Especially, Yu et al. (2012) divided the tropical Pacific into six 
equal-sized rectangular domains denoted as domain i (i = 1, …, 
6) (Fig. 4) and concludes that the eastern-central equatorial 
Pacific (domain 5, 157.5°W–90°W, 5°S–5°N) is the sensitive 
area for target observation of EP-El Niño events. Tian and 
Duan (2016) investigated the initial errors which can cause 
SPB phenomenon of two types of El Niño and argued that the 
eastern-central equatorial Pacific may be the sensitive area for 
target observation of both types of El Niño. However, these 
works did not care the westward trend of OGEs for El Niño 
events with the changing start months, as shown in the present 
study. Actually, if the regions with large values of the OGE 
represent the sensitive areas for target observations, the OGEs 

Fig. 2   The SSTA compo-
nents of OGEs for 1982/1983 
EP-El Niño (left column) and 
2009/2010 CP-El Niño (right 
column) with different start 
months. a–d SSTA components 
of OGEs for 1982/83 EP-El 
Niño event predictions with the 
start months January (0), April 
(0), July (0) and October (0), 
respectively; e–h are as in a–d, 
but for the 2009/2010 CP-El 
Niño event; the rectangles 
shown in the figures represent 
the areas that are covered by 
much large errors

Fig. 3   The Box–Whisker plot of the zonal centers for the SSTA com-
ponents of the OGEs associated with the predetermined eight El Niño 
events predictions with the start months October (− 1), January (0), 
April (0) and July (0) for the 1986/1987 EP-El Niño event and Janu-
ary (0); April (0), July (0) and October (0) for other EP- and CP-El 
Niño events; the bold black lines represent the medians and the red 
dots represent the means

Fig. 4   The equal-sized regional division of the tropical Pacific sug-
gested by Yu et  al. (2012); the number 1–6 represent the six equal-
sized rectangular areas (i.e. domains 1–6)
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showed by the present study may suggest that the sensitive 
areas for two types of El Niño events move westward gradually 
as the start month changes from January (0), April (0), July (0) 
to October (0). Correspondingly, if the target observations in 
the sensitive areas presented by Tian and Duan (2016) are used 
to decrease the initial errors, the forecast skill of the two types 
of El Niño would decrease with the start months changing 
from January (0) to October (0). Next, we show the correctness 
of this inference by using the regional division suggested by 
Yu et al. (2012) (Fig. 4).

The control forecasts are made to the reproduced 1986/1987 
El Niño event for 1-year lead time with the start months Octo-
ber (− 1), January (0), April (0) and July (0) but to the rest of 
the reproduced El Niño events with the start months January 
(0), April (0), July (0), and October (0), where the initial SSTA 
and thermocline depth anomaly fields of the reproduced El 
Niño events are superimposed with their respective OGEs. 
Based on the control forecasts, we deduct the initial errors in 
Domain 1–6 in Fig. 4 respectively and keep the initial con-
ditions in other domains unchanged, forming updated initial 
conditions of El Niño forecast. With these updated initial 
conditions, we make 1-year integrations of the Zebiak–Cane 
model and obtain updated forecasts for the corresponding El 
Niño events, finally comparing them with the control forecast 
and investigating the benefit of the forecast skill.

To measure the prediction skills, we define the prediction 
error (denoted by E) as follows:

(10)E = ‖T�‖2 =
��

i,j

T�2
i,j
,

where T′ represents the difference between the predicted 
SSTA and the true state, and (i, j) represents the grid point 
in the tropical Pacific referred by the Zebiak–Cane model 
(129.375°E to 84.375°W by 5.625° and from 19°S to 19°N 
by 2°). To measure the improvement of prediction skills of 
the updated forecasts, we define the rate R as in Eq. (11.)

where Ec represents the prediction error of the control fore-
casts and Eu represents the prediction error of the updated 
forecasts.

Figure 5 shows the R indices of the predictions for the 
eight reproduced El Niño events. It is shown that the R 
indices, when deducting the initial errors in the eastern-
central equatorial Pacific [i.e. the domain 5, the sensitive 
area suggested by Tian and Duan (2016)], decrease as the 
start month changes from January (0) through April (0) and 
July (0) to October (0) (Fig. 5b); meanwhile the R indices 
increase when deducting the initial errors in the western-
central equatorial Pacific (domain 2) (Fig. 5b). This result 
verifies the inference in the last paragraph. Furthermore, it 
also shows the role of domain 2 and further indicates that the 
sensitive areas for targeting observation of two types of El 
Niño events could be varying with the start months, i.e. the 
westward trend of the sensitive areas with the start months 
changing from January (0) to October (0), as suggested by 
the CNOP-type errors in Fig. 3.

(11)R =
Ec − Eu

Ec

× 100%,

Fig. 5   a The Box–Whisker plot of the R indices of the updated fore-
casts when deducting the initial errors in domian i (Di; i = 1,…,6) 
respectively and keeping the initial conditions in other domains to be 
the same as the control forecasts, where each box is calculated based 
on the updated forecasts for EP- and CP-El Niño events with Jan (0), 
April (0), July (0) and October (0) but October (−  1), January (0), 
April (0) and July (0) for the 1986/1987 El Niño event. The bold 
black lines and the red dots represent the medians and means, respec-

tively. b The R indices (averaged for the reproduced eight El Niño 
events) of the updated forecasts when deducting the initial errors in 
domain 2 (red color) and domain 5 (orange color) and keeping the 
initial conditions in other domains be the same as the control fore-
casts, where the start months of the predictions are respectively Janu-
ary (0), April (0), July (0) and October (0) but October (− 1), January 
(0), April (0) and July (0) for the 1986/1987 El Niño event
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The sensitive areas for target observation associated with 
two types of El Niño predictions are dependent on the start 
months of predictions. Then in this specific situation how do 
the observations display in operational forecast for ENSO? 
One of the ideas to solve this problem is to determine the 
sensitive area case by case, just like the general operations 
adopted in the target observation for Tropical cyclone (Qin 
et al. 2013; Qin and Mu 2012; Zhou and Mu 2011). How-
ever, the observations for ENSO are such a complex project 
with large investment and time consuming that we expect 
it can provide information for as many El Niño events as 
possible and is applicable for different start months of pre-
dictions. According to this requirement, we propose a quan-
titative frequency method to identify the sensitive area for 
target observation. By this method, the identified sensitive 
areas for target observations comprise the space grids that 
correspond to much larger error in most of the OGEs for the 
predetermined eight El Niño events predictions. The method 
can be described as follow.

For each of the OGEs, we sort its spatial grid points 
with a descending order according to their corresponding 
error amplitudes and chose the top 50 ones. Then we can 
get 32 series and each contains the 50 grid points. For each 
grid point of the model domain (129.375°E to 84.375°W 
by 5.625° and from 19°S to 19°N by 2°), we compute its 
frequency of arising in the 32 series and denoted by F index 
as in Eq. (12).

where ci,j is the count of the grid point (i, j) arising in the 32 
series; N is the “32” series. Then we select the lead 50 grid 
points with the large F indices and use the region covered by 

(12)Fi,j =
ci,j

N
× 100%,

these lead 50 grid points as the sensitive area for two types 
of El Niño events predictions.

We note that the F index is estimated based on the SSTA 
and thermocline depth anomaly components of the OGEs, 
respectively (Fig. 6a, b). Accordingly, the sensitive areas are 
identified for the SSTA and thermocline depth anomaly and 
denoted as SASST and SATHD (Fig. 6c, d), respectively. The 
shape of the SASST looks like a reversal triangle locating in 
the eastern Pacific, specifically the area of 120°W–85°W, 
0°–11°S; and it extends to the west along the equator and 
gathers at the western boundary and the 180° longitude 
(Fig. 6c). The SATHD shows a quite scattered distribution 
along the equator, with its bulk locating in the eastern-cen-
tral equatorial Pacific (Fig. 6d).

We compare SASST with SATHD and explore which one 
is more important for target observation of two types of El 
Niño. Based on the predetermined control forecasts, we 
designed another two groups of updated forecasts where we 
deduct the initial errors in SATHD and SATHD respectively 
and keep the initial conditions in other domains unchanged. 
Figure 7a shows the R indices of these two groups of updated 
forecasts and the updated forecasts shown in Fig. 5 where the 
initial errors in domains 2 and 5 are deducted. It is shown 
that the R indices for deducting the initial errors in SASST 
are almost the largest. Figure 7b shows the R indices when 
predicting at different stating months. It can be seen that the 
R indices of deducting the initial errors in SASST tend to be 
the largest and have the least fluctuation with the changing 
start months, while others are significantly dependent on 
start months and especially show to be much small. This 
result indicates that if target observations are preferentially 
deployed in SASST, the El Niño prediction errors will be 
much greatly reduced compared to doing it in other regions. 

Fig. 6   The F indices computed 
based on the a SSTA compo-
nent and b thermocline depth 
anomaly component of the 
OGEs; c the SASST and d SATHD 
represent the corresponding 
sensitive areas determined 
based on a, b by the quantitative 
frequency method, respectively
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In addition, we consider here the two types of El Niño events 
predictions. Then whether or not the differences between 
them can be distinguished by the sensitive area-related tar-
get observations? To address it, we examine the role of the 
associated target observations in predicting two types of El 
Niño events. Figure 8 show the SSTA patterns during El 
Niño mature phase [i.e. the period of July–August–Septem-
ber (denoted by JAS) for the 1986/1987 EP-El Niño and the 
period of October–November–December (denoted by OND) 
for other predetermined EP- and CP-El Niño events] of the 
control and updated forecasts with the start month April (0) 
[January (0) for the 1986/1987 EP-El Niño]. It is shown that 
the SSTA patterns of the updated forecasts are improved 
obviously when deducting the initial errors in SASST for both 
types of El Niño. Especially for the CP-El Niño events, the 
warmest SSTA locates in the eastern equatorial Pacific for 
the control forecast but the central equatorial Pacific for the 
updated forecasts and much closer to the true state CP-El 
Niño events. It is therefore suggested that the SASST can 
be the sensitive area for target observations of two types of 
El Niño and applicable for predictions with different start 
months.

5 � The role of target observations 
in the “hindcast” experiments of two types 
of El Niño events

The sensitive area SASST is suggested based on the OGEs 
and their related control and updated forecasts (see Sect. 4), 
where the initial errors of the control forecasts are the OGEs 

but those of the updated forecasts eliminate the initial errors 
in the SASST. Since it is the OGEs that possess regions that 
are covered by the initial errors of large values and provide 
the location of sensitive area, it is certainly reasonable that 
the sensitivity of the SASST can be confirmed by the OGEs-
related control and updated forecasts. More generally, the 
updated forecasts should be made on the control forecasts 
whose initial conditions are much like in realistic predictions 
and yielded by an initialization procedure. In this situation, 
the confirmation of the sensitivity of the sensitive area is 
much convinced. To do it, we adopt the initialization scheme 
developed by Chen et al. (1995), where the model was ini-
tialized in a coupling manner with the coupled model wind 
stress anomalies being nudged toward observations. More 
details can be found in Chen et al. (1995). We note that 
this initialization scheme can lead to a high prediction skill 
which can partly eliminate the SPB phenomenon (Chen et al. 
1995); and as a result, it is a good benchmark to measure 
the effectiveness of target observation. In the present study, 
we would use this initialization scheme to make “hindcast” 
experiments for the predetermined El Niño events with the 
lead time one year starting from January (0), April (0), July 
(0) and October (0) [but October (− 1), January (0), April 
(0) and July (0) for 1986/1987 El Niño event] respectively. 
But we note that the “hindcast” experiments here are based 
on the corrected Zebiak–Cane model, which used the SSTA 
observations during the El Niño events and determined the 
OFV to correct the model (see Sect. 3). So the “hindcast” 
here is not a real one. However, the corrected Zebiak–Cane 
model can be assumed as perfect model and the prediction 
uncertainties can be considered as only caused by initial 

Fig. 7   a The Box–Whisker plot of the R indices of the updated fore-
casts when deducting respectively the initial errors in SASST, SATHD, 
domain 2 (D2) and domain 5 (D5) and keeping the initial conditions 
outside the area to be the same as the control forecasts, where each 
box is computed based on the updated forecasts for the reproduced 
EP- and CP-El Niño events predictions with the start months Janu-
ary (0), April (0), July (0) and October (0) [but October (− 1), Janu-
ary (0), April (0) and July (0) for the 1986/1987 El Niño event]. The 

bold black lines and the red dots represent the medians and means, 
respectively. b The R indices (averaged for the eight El Niño events) 
of the updated forecasts when deducting the initial errors in SASST 
(red color), SATHD (orange color), domain 2 (blue color) and Domain 
5 (green color) and keeping the initial conditions outside the area to 
be the same as the control forecasts, with the start months January 
(0), April (0), July (0) and October (0) [but October (− 1), January 
(0), April (0) and July (0) for the 1986/1987 El Niño event]
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errors. Therefore, the “hindcast” generated by the Corrected 
Zebiak–Cane model is feasible for examining the role of 
initial errors in causing predictions uncertainties.

We use these “hindcasts” as control forecasts and base on 
them to make updated forecasts. To confirm the sensitivity 
of sensitive area SASST (see Fig. 9a), we choose another two 
sets of representative regions: the eastern equatorial Pacific 
area (AE, similar to the domain 5; Fig. 9b) and random areas. 
Here the random area is composed of the randomly-choosing 
grid points in the model domain. Then for the initial fields 
of the control forecasts we assimilate the initial SSTAs and 
thermocline depth anomalies of the predetermined 8 El Niño 
events in the SASST and these two areas and obtain initial 
conditions of updated forecasts, finally making 1-year lead 
time forecasts. To be fair, each of the above areas include 
50 grid points, which means that the numbers of the assimi-
lated observations in the three areas are the same as 50. 
Especially, to make the results more convincing, we real-
ize the random areas for ten times and get ten realizations 
of random areas (for simplicity, we denote these random 

areas “AR”), which are finally compared with the SASST. As 
an example, we plot in Fig. 9c one realization of random 
areas. Since the “hindcast” experiments are ideal ones, the 
so-called “observation” information to be assimilated here 
are actually from the initial conditions of the 8 reproduced 
El Niño events, instead of the real observations. The gen-
eral idea of the assimilation is to find a proper initial state 
of forecasts. In the present study, the assimilation just is to 
solve the Eq. (13). 

where Ut0−�
 is a vector including SST and thermocline depth 

anomalies components at time t0 − � , where t0 is the start 
time of the updated forecasts and � is a positive number and 
represents the time period of the assimilation window; � is 
experimentally set to be 6 months in the present study; S is 
the assimilation area, which corresponds to the above areas 

(13)

J(U∗

t0−�
)

= min
Ut0−�

√∑

S

{(w1(T
m
i, j
(t0) − Tt

i, j
(t0)))

2
+ (w2(H

m
i, j
(t0) − Ht

i, j
(t0)))

2
},

Fig. 8   The mean of the SSTA patterns during the mature phase for 
El Niño (i.e. JAS for the 1986/1987 EP-El Niño event but OND for 
other predetermined EP- and CP-El Niño events). a–c Reproduced 
EP-El Niño events (simulated by the Zebiak–Cane model with OFV 
correction), and their control forecasts (with the OGEs superimposed 
on the initial fields of the reproduced events) and updated forecasts 

(with the initial errors of the OGEs in the SASST being deducted and 
the initial conditions outside the SASST being kept to be the same 
as the control forecasts), respectively; d–f are as in a–c, but for the 
CP-El Niño events. The start month is April (0) [but January (0) for 
the 1986/1987 EP-El Niño event]
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SASST, AE, and the ten random areas; Tm
i, j
(t0) and Hm

i, j
(t0) 

represent the SSTA and thermocline depth anomaly obtained 
by integrating the model from t0 − � to t0 with Ut0−�

 being 
initial values; Tt

i, j
(t0) and Ht

i, j
(t0) represent the “observed” 

SSTA and thermocline depth anomaly of the predetermined 
El Niño events. By the Eq. (13), one can get the state U∗

t0−�
 

at t0 − � . With U∗

t0−�
 as initial values, we integrate the 

Zebiak–Cane model from t0 − � to t0 and obtain a state at t0 , 
whose SST and thermocline depth anomalies are closest to 
the “observations” of the predetermined El Niño events at 
t0 . With the state at t0 as initial value, we integrate the 
Zebiak–Cane model for one year and obtain the updated 
forecast for the predetermined El Niño events.

In order to compare the forecast skills of updated forecasts 
and control forecasts, we adopt the prediction error to measure 
the prediction uncertainties and the similarity coefficient (S 
index; Buizza 1994; Dai et al. 2016) to evaluate the similarity 
between the spatial patterns of relevant state variables for two 
types of El Niño events.

(14)S =
⟨Xt,Xf ⟩
‖Xt‖‖Xf‖

,

where Xt is the physical variable field of the “observations”; 
Xf  is that of the forecast; ‖⋅‖ is the L-2 norm.

The results of prediction errors and similarity coefficients 
are shown in Fig. 9d, e. It is shown that the updated fore-
cast with the assimilation in the SASST presents the small-
est prediction error and the highest similarity coefficient. 
Furthermore, we find that the spread of prediction errors 
and similarity coefficients with respect to El Niño events 
cases is the smallest in the updated forecasts with assimila-
tion in the SASST, which indicates that the improvement of 
prediction skills of the updated forecasts with assimilation 
in the SASST is more robust for different El Niño events. Fur-
thermore, when the comparison comes to the specific SSTA 
patterns during El Niño mature phase (OND, but JAS for the 
1986/1987 El Niño), it is shown that the updated forecast 
with assimilation in the SASST can make the predicted SSTA 
patterns for El Niño events closer to the “observations”, 
especially for the CP-El Niño events (e.g. the predictions 
for the 1991/1992 and 2009/2010 events) (Fig. 10). Obvi-
ously, for more general initializations, the SASST can also be 
verified as the sensitive area for target observation associated 
with two types of El Niño predictions.

In addition, when mentioned to the ENSO obser-
vation system, the 10-year (1985–1994) international 
Tropical Ocean Global Atmosphere (TOGA; World Cli-
mate Research Program 1985) program may be the most 

Fig. 9   The locations of the sen-
sitive area SASST (a), the tropi-
cal eastern Pacific area AE (b) 
and one of the random areas AR 
(c). The Box–Whisker plot of 
the prediction errors (d) and the 
similarity coefficients (e) of the 
control forecasts [based on the 
initialization scheme developed 
by Chen et al. (1995)] for the 
eight El Niño events (denoted 
as Con), the related updated 
forecasts with data assimilations 
made in the SASST (denoted as 
SASST) and AE (denoted as AE) 
respectively, and the multi-
ensemble results of assimila-
tions made in the ten random 
areas (denoted as AR). The start 
months are as in Fig. 3. The 
bold black lines and the red dots 
in d, e represent the medians 
and means, respectively
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fundamental. This observation system mainly includes 
the Tropical Atmosphere Ocean (TAO) array of moored 
buoys, an array of drifting buoys, volunteer observing ship 
(VOS) measurements, a network of island and coastal sea 
level measurement stations, and a constellation of com-
plementary satellites (McPhaden et al. 1998, 2001). The 
TAO array was renamed to TAO/TRITON array on 1 Janu-
ary 2000, with the Triangle Trans-Ocean Buoy Network 
(TRITON) joining in, which focuses on the observation 
over the western tropical Pacific. This observation system 
has made great contributions to the understanding and 

Fig. 10   The mean of the SSTA during the mature phase for El Niño 
(i.e. JAS for the 1986/1987 EP-El Niño event but OND for other pre-
determined EP- and CP-El Niño events). a–c, e Reproduced EP- and 
CP-El Niño events (simulated by the Zebiak–Cane model with OFV 
correction), and their control forecasts [with the initialization scheme 

developed by Chen et  al. (1995)] and updated forecasts (with data 
assimilations made in the SASST, AE and AR, respectively). The start 
month is April (0) [but January (1) for the 1986/1987 EP-El Niño 
event]

Fig. 11   The locations of SASST (the blue rectangles) and the TAO/
TRITON array (the red dots) (the TAO/TRITON array is from http://
www.pmel.noaa.gov/tao/drupal/disdel/)

http://www.pmel.noaa.gov/tao/drupal/disdel/
http://www.pmel.noaa.gov/tao/drupal/disdel/
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forecasting of ENSO. Figure 11 shows the locations of the 
TAO/TRITON array and SASST. It can be seen that there 
are many overlaps between the two observation layouts. 
But the TAO/TRITON array has 68 observation points, 
which are of 18 ones more than that of SASST. Then we 
naturally ask: is the SASST of stronger sensitivity than the 
TAO/TRITON array for target observation?

To address this question, we compared the prediction 
skills between the updated forecast with assimilation in the 
SASST and the area covered by the TAO/TRITON array. 
Because the TAO/TRITON array does not match the grid 
points in the Zebiak–Cane model, the bilinear interpolation 
[Press et al. 1992, Eq. (3.6.5)] is used in the assimilation of 
the initial SSTAs and thermocline depth anomalies of the 
predetermined eight El Niño events. The interpolation would 
bring about additional initial analysis errors. However, for 
the updated forecasts with the assimilation in the SASST, 
because the SASST is directly derived from the Zebiak–Cane 
model and the related grid points certainly match the 
Zebiak–Cane model, no additional initial errors are caused 
by interpolation. As such, the comparison is not fair. To 
avoid this unfairness, we choose the observed SSTA from the 
Hadley Center Global Sea Ice and Sea Surface Temperature 
(HadISST) analyses data sets (Rayner et al. 2003) and the 
re-analysis thermocline depth from the NOAA NCEP EMC 
CMB Pacific (Behringer et al. 1998), whose grid points pos-
sess much higher resolutions and do not match those in the 
Zebiak–Cane model. We assimilate them in the SASST and 
TAO/TRITON arrays and compare the updated forecasts 
with the observed El Niño events described by the HadISST 
and re-analysis thermocline depth. Here, because of the dis-
union grid points between assimilated observations and the 
TAO/TRITON and the output of the Zebiak–Cane model, 
the bilinear interpolation has to be adopted and certainly 
brings about additional initial errors when assimilations 
occurring in both SASST and TAO/TRITON arrays. Thus the 
comparison between the updated forecasts with assimilation 
in SASST and TAO/TRITON arrays becomes much fair. The 
comparison demonstrates that the mean of the prediction 
errors is smaller and the mean of the similarity coefficients 
is slightly higher for the updated forecast with assimilation 
in the SASST than for those with assimilation in the area 
covered by TAO/TRITON array (Fig. 12a, b). Meanwhile, 
considering that the observations of the SASST are 18 ones 
less than those of TAO/TRITON array, we conclude that 
the target observations in the SASST is more important than 
those in the TAO/TRITON array for improving two types of 
El Niño prediction skills. And the SASST could represent the 
optimal observational array for tropical SST associated with 
the improvement of two types of El Niño events predictions 
skill. This indicates that the TAO/TRITON array should be 
optimized, practically for the requirement of two types of El 
Niño events predictions.

6 � Summary and discussion

In this study, we correct the model errors of the Zebiak–Cane 
model by applying the OFV approach, and successfully 
reproduce three EP- and five CP-El Niño events. Based on 
these eight reproduced El Niño events, we investigate the 
OGEs of EP- and CP-El Niño events by using the CNOP 
approach and explore the sensitive areas for target observa-
tions for two types of El Niño events. It is found that the 
OGEs present similar dipolar structures for different start 
months of predictions while the regions with large errors 
for their SSTA components exhibit different zonal posi-
tions. Specifically, with the start months changing from 
January through April and July to October, the regions of 
large errors tend to move westward. The regions of large 
errors for OGEs are shown to be the sensitive area for target 
observations, i.e., the area that the additional observations 
should be preferentially deployed (Duan and Hu 2016; Hu 
and Duan 2016; Tian and Duan 2016; Mu et al. 2014; Yu 
et al. 2012). Therefore, the result indicates that the sensitive 
areas for targeting observations associated with two types 
of El Niño events are dependent of the start months. Keep 
these in mind, we propose a quantitative frequency method 
to determine the sensitive areas for target observation. For 
such sensitive areas, we expect related target observations 
to be useful in improving the skills of the predictions with 
different start months and also applicable to both types of El 
Niño events predictions. It is found that the identified sensi-
tive areas look like a reversal triangle locating in the eastern 
Pacific, specifically the area of 120°W–85°W, 0°–11°S; and 
then extend to the west along the equator and gather at the 
western boundary and the 180° longitude.

Fig. 12   The Box–Whisker plot of the skills of the updated forecast 
when data assimilations made in the SASST and the area covered by 
the TAO/TRITON arrays. a The prediction errors; b the similarity 
coefficients. The bold black lines represent the medians of the predic-
tion errors for seven El Niño events predictions with different start 
months and the red dots represent the means
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Several groups of “hindcast” experiments are used to 
examine the validity of the sensitive areas-related target 
“observations” in improving the prediction skill for two types 
of El Niño events. It is shown that the sensitive areas identi-
fied by the quantitative frequency method, compared with 
other areas, can present the additional observations that help 
to improve much significantly the skill of two types of El 
Niño events predictions with different start months. Further-
more, such additional observations, when compared with the 
TAO/TRITON array, show to be more potential for selecting 
the El Niño type in predictions. It is indicated that the obser-
vational array described by the sensitive areas in the present 
study is superior to the TAO/TRITON array and represents 
the optimal observational array for improving the forecast 
skill of two types of El Niño events. This suggests that the 
TAO/TRITON array should be optimized to be applicable for 
distinguishing the types of El Niño in predictions.

The sensitive area for target observations identified in the 
present study emphasizes the importance of both the east-
ern and western equatorial Pacific SSTA. Morss and Battisti 
(2004a, b) also suggested that for ENSO forecasting the most 
important and secondary important area for observations 
are the eastern and western equatorial Pacific respectively. 
However, they only focused on the EP-El Niño predictions 
while the present study showed that both the eastern and 
western equatorial Pacific SSTA are also important for the 
CP-El Niño predictions. Especially, in the present study, we 
show that when the 1-year lead time forecasts are made to 
the EP- and CP-El Niño events and initialized in January 
and April (July and October), they mainly experience the 
growth phase (decay phase) of El Niño events and exhibit 
the stronger sensitivity of two types of El Niño predictions 
on tropical eastern (western) Pacific initial SSTA field. This 
reveals that the tropical eastern Pacific SSTA observations 
are much important for predictions bestriding the growth 
phase for two types of El Niño while the tropical western 
Pacific SSTA is much useful for predictions through the 
decay phase for El Niño.

With the assumption of perfect model, Tian and Duan 
(2016) argued that the EP-El Niño events are more likely 
to occur a spring predictability barrier than the CP-El Niño 
events. In the present study, it can be seen from Figs. 8 and 
10 that the benefit of prediction skills for the CP-El Niño 
events is more obvious than that of the EP-El Niño events 
when improving the initial state in the sensitive areas. All 
these may suggest that the EP-El Niño events are less pre-
dictable than the CP-El Niño events when only considering 
the effect of initial errors. Luo et al. (2008) also reported 
that the CP-El Niño event during 2004/2005 is more predict-
able than the strong EP-El Niño event during 1997/1998. 
Recently, Duan et al. (2017) showed that the nonlinearity 
presents more influences in EP-El Niño than in CP-El Niño, 
which may cause more irregularities in EP-El Niño and then 

limit the predictability of EP-El Niño much more. There 
also exist a few studies that performed seasonal prediction 
experiments and argued that the CP-El Niño present much 
lower forecast skill than the EP-El Niño (Jeong et al. 2012; 
Imada et al. 2015; Luo et al. 2016; Zheng and Yu 2017). In 
fact, these studies did not separate the impact of initial errors 
and model errors and are hardly regarded as evidence that 
CP-El Niño is less predictable than EP-El Niño. Of course, 
it should be further explored whether or not CP-El Niño is 
indeed more predictable than EP-El Niño. It is expected that 
the results can provide useful information on improving the 
prediction skill for two types of El Niño events.

This paper did not consider La Niña and neutral years. In 
fact, La Nina is almost mirrored with EP-El Niño and they 
are controlled by the same feedback mechanisms such as 
the delayed oscillator (Suarez and Schopf 1988) or recharge 
oscillator (Jin 1997). It is therefore inferred that the sensitive 
areas for target observations for EP-El Niño and La Niña are 
similar and the observational array SASST revealed in the 
present study is also useful for La Nina predictions. When 
mentioning to the neutral years, previous studies showed the 
similarity between the optimal precursors (OPRs) and the 
OGEs of El Niño (Mu et al. 2014; Duan and Hu 2016). Here, 
the so-called OPR is the initial perturbations that are super-
imposed to neutral states and can trigger an El Niño event. 
And the similarity between OPRs and OGEs indicates that 
the sensitive areas for target observations associated with the 
predictions of neutral years are similar to those of El Niño.

The present study suggests that the existing TAO/
TRITON array should be further optimized to satisfy the 
requirement of two types of El Niño events predictions. In 
fact, after working persistently for over 20 years, the TAO/
TRITON array has partially collapsed (Cravatte et al. 2015). 
Meanwhile, the appearance of CP-El Niño poses new chal-
lenges for the tropical Pacific Observing System (TPOS). 
Under this background, a new international program called 
TPOS-2020 has been established to redesign and optimize 
the tropical Pacific observation network, aiming to meet both 
the needs of climate change and operational forecasting sys-
tems (Cravatte et al. 2015). We expect that the present study 
is useful for the establishment of TPOS-2020.
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