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ABSTRACT

Initial errors in the tropical Indian Ocean (IO-related initial errors) that are most likely to yield the Spring Prediction
Barrier (SPB) for La Niña forecasts are explored by using the CESM model. These initial errors can be classified into two
types.  Type-1  initial  error  consists  of  positive  sea  temperature  errors  in  the  western  Indian  Ocean  and  negative  sea
temperature errors in the eastern Indian Ocean, while the spatial  structure of Type-2 initial  error is nearly opposite.  Both
kinds of IO-related initial errors induce positive prediction errors of sea temperature in the Pacific Ocean, leading to under-
prediction of La Niña events. Type-1 initial error in the tropical Indian Ocean mainly influences the SSTA in the tropical
Pacific Ocean via atmospheric bridge, leading to the development of localized sea temperature errors in the eastern Pacific
Ocean.  However,  for  Type-2  initial  error,  its  positive  sea  temperature  errors  in  the  eastern  Indian  Ocean  can  induce
downwelling error and influence La Niña predictions through an oceanic channel called Indonesian Throughflow. Based on
the location of largest SPB-related initial errors, the sensitive area in the tropical Indian Ocean for La Niña predictions is
identified.  Furthermore,  sensitivity  experiments  show  that  applying  targeted  observations  in  this  sensitive  area  is  very
useful in decreasing prediction errors of La Niña. Therefore, adopting a targeted observation strategy in the tropical Indian
Ocean is a promising approach toward increasing ENSO prediction skill.
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Article Highlights:

•  Two types of IO-related initial errors that have the largest influence on La Niña predictions are explored.
•  Type-1  and  Type-2  IO-related  initial  errors  can  influence  the  SSTA  associated  with  La  Niña  mainly  via  atmospheric

bridge and ITF, respectively.
•  The sensitive area in the Indian Ocean for La Niña predictions is mainly located in the tropical Eastern Indian Ocean.
•  Adopting a targeted observation strategy in the sensitive area in the tropical Indian Ocean can significantly improve La

Niña prediction skill.
 

 
 

 

1.    Introduction

El Niño–Southern Oscillation (ENSO) is the most import-
ant  air-sea  coupling  system  in  the  tropical  Pacific  Ocean
and can exhibit the largest influence on interannual variabil-

ity  in  the  world.  The  occurrences  of  ENSO events  usually
bring severe weather and climate disasters to many regions
across  the  world  (Barber  and  Chavez,  1983; Wang  et  al.,
2000; Henderson et al., 2018; Yang et al., 2018). Therefore,
it  is  very  necessary  to  study  ENSO  theory  and  improve
ENSO  prediction  skill  (Kirtman  et  al.,  2001; Zhu  et  al.,
2013; Zhang et al., 2020a).

ENSO predictability  is  largely  impacted by the  air-sea
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interaction process in the tropical Pacific Ocean (McPhaden,
2003). Great efforts are made to explore the predictors and
optimal  forcing  of  El  Niño  events  in  the  tropical  Pacific
Ocean (Moore et al., 2006; Bunge and Clarke, 2014; Lopez
and  Kirtman,  2014; Duan  and  Hu,  2016).  Recently,  more
and more studies have suggested that information from out-
side  the  tropical  Pacific  Ocean,  like  from  the  subtropical
Pacific  Ocean (Matei  et  al.,  2008; Lu et  al.,  2017)  and  the
Atlantic Ocean (Rodríguez-Fonseca et al., 2009; Ham et al.,
2014),  also  plays  a  vital  role  in  influencing  ENSO predic-
tions. Besides the sea temperatures in the Pacific Ocean, the
oceanic  state  in  the  tropical  Indian  Ocean  also  influences
the  ENSO  forecast  in  the  Pacific  Ocean  (Behera  and
Yamagata, 2003; Luo et al., 2010). Lim and Hendon (2017)
pointed out that strong negative Indian Ocean Dipole (IOD)
events  acted  as  a  promoter  of  the  weak  La  Niña  during
2016. The ENSO simulation from Coupled General Circula-
tion  Model  (CGCM)  including  both  the  tropical  Pacific
Ocean and the Indian Ocean tends to be more realistic than
considering  the  tropical  Pacific  Ocean  only  (Yu  et  al.,
2002). In statistical forecasting models, using Indian Ocean
Dipole Mode Index (DMI) as a predictor can also signific-
antly  improve  the  ENSO  forecasting  skill  (Izumo  et  al.,
2010, 2014).  The  Indian  Ocean  Dipole  can  affect  the
strength of the Walker Circulation in autumn and lead to the
development  of  ENSO events.  Gear-like  coupling  between
the  Indian  and  Pacific  oceans  (GIP)  is  one  of  the  atmo-
spheric  bridge  theories  developed  to  interpret  the  interac-
tions between the air-sea interaction phenomena over the trop-
ical Pacific and the Indian Ocean (Wu and Meng, 1998). A
positive  rotating  GIP  normally  has  an  anticlockwise  mon-
soon anomaly (westerly wind anomaly at the low-level and
easterly wind anomaly at  the upper-level)  over  the tropical
Indian Ocean and a clockwise Walker Circulation anomaly
(easterly wind anomaly at  the low-level  and westerly wind
anomaly at the upper-level) over the tropical Pacific Ocean,
while a negative GIP consists of a clockwise wind anomaly
over the Indian Ocean and an anticlockwise Walker Circula-
tion  anomaly  in  the  tropical  Pacific  Ocean. Meng  and  Wu
(2000) have also verified that the ENSO events in the trop-
ical Pacific Ocean can be triggered via GIP since the zonal
wind anomaly in the tropical Indian Ocean can influence the
air-sea  coupling  system  in  the  Pacific  Ocean.  Along  with
the atmospheric bridge over the tropical oceans, the Indone-
sian Throughflow (ITF), the only oceanic channel connect-
ing the tropical Indian Ocean and the tropical Pacific Ocean,
also stands out as one of the dynamical mechanisms behind
the IOD forcing influencing the ENSO-related SSTA (Yuan
et al., 2011, 2013; Zhou et al., 2015).

From the  perspective  of  error  growth,  the  influence of
sea temperature in the tropical Indian Ocean on ENSO predic-
tions cannot be ignored. Two types of initial errors of sea tem-
perature  in  the  tropical  Indian  Ocean  have  been  explored
and found to be most likely to yield the Spring Prediction Bar-
rier (SPB) of El Niño prediction (Zhou et al., 2019), suggest-
ing  the  possibility  that  applying  targeted  observation

strategies  in  the  locations  of  the  initial  errors  can  further
improve El Niño prediction skill (Zhou et al., 2020). Investig-
ations of error evolution mechanisms show that for Type-1 ini-
tial  error  with  positive  IOD-like  structure,  the  ITF  plays  a
dominant  role  in  influencing  SSTA  in  the  tropical  Pacific
Ocean,  but  for  Type-2  initial  error,  the  atmospheric  bridge
works as the main way to impact El Niño prediction. Each
study  mentioned  above  focused  on  the  influences  of  IO-
related initial errors on the predictability of El Niño events.
However,  as  the  negative  phase  of  ENSO,  La  Niña  events
can also modulate the East Asian winter and summer mon-
soons  (Huang et  al.,  2004; Xue et  al.,  2015),  modulate  the
Mei-yu  Rainfall  over  the  Yangtze  River  Valley  (Wang  et
al., 2012), and lead to severe wintertime droughts in north-
ern China (Gao and Yang, 2009). Besides, the influences of
La Niña events are worldwide. La Niña events can also influ-
ence sea temperature in the Atlantic Ocean (Wu et al., 2020)
and snow accumulation in the Andes (Cortés and Margulis,
2017), leading to climatic anomalies in Europe (Ding et al.,
2017). So, it is urgent to study the predictability of La Niña
events and improve La Niña prediction skill. Given the influ-
ences of the initial state of the tropical Indian Ocean on the
predictability of El Niño events, it is natural to ask: Will the
initial errors of sea temperature in the tropical Indian Ocean
influence  La  Niña  predictability?  Do  the  initial  errors  that
are most likely to induce the SPB for La Niña and El Niño
predictions share similar spatial structures? What is the mech-
anism behind the error evolutions? What is  the implication
of  the  targeted  observation  strategy  for  La  Niña  forecasts?
All of these questions are addressed in this study.

In this paper,  section 2 gives a brief description of the
model  and  data.  The  experimental  design  is  shown in  sec-
tion  3.  The  initial  errors  that  are  most  likely  to  induce  the
SPB during La Niña prediction are investigated in section 4.
The characteristics of the error evolutions and their dynam-
ical mechanisms are analyzed in detail in section 5. In sec-
tion 6, the implications of applying targeted observations in
the tropical Indian Ocean are studied. The summary and dis-
cussion are presented in section 7. 

2.    Model and data

The  Community  Earth  System  Model  (CESM),  a
coupled  model  designed  by  the  National  Center  for  Atmo-
spheric Research (NCAR), is used in this study. The CESM
has  many  model  components,  such  as  atmosphere,  land,
ocean, and ice, with a flux coupler to link them (Hurrell et
al.,  2013).  The  CESM’s  atmospheric  component,  CAM4,
has a horizontal resolution of 0.9° latitude and 1.25° longit-
ude, while the resolution of the oceanic component, POP, is
1° × 1° in the off-equatorial area and is enhanced to 1/3° latit-
ude  by  1°  longitude  in  the  tropics.  This  coupled  model  is
integrated for 150 years forced by values of tracer gases, aero-
sols,  insolation,  and land cover from the year 2000. In this
study,  we  only  take  the  simulations  from  year  51  to  year
150 (a total of 100 model years).
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As a coupled model, the CESM’s simulations of the sea
temperature  states  (i.e.,  the  climatology  state  and  standard
deviations)  in  the  tropical  Indian  Ocean  and  the  Pacific
Ocean are in good agreement with the observations. ENSO
dominates as the leading mode in the tropical Pacific Ocean,
explaining nearly 51% of the total variances of the SST dur-
ing  the  winter.  The  power  spectrum  of  the  Niño-3  index
from the simulation shows a period of three to six years. Six
typical  La  Niña  events  simulated  by  this  model  are  shown
in Fig. 1. These typical La Niña events which start cooling
in Jan(0), usually reach their peak in Oct(0) and decay after-
wards.  Finally,  these  La  Niña  events  change  to  the  normal
state  in  May(1).  Here,  “0”  and  “1”  represent  the  La  Niña
year and the following year, respectively. This seasonal fea-
ture  indicates  that  the  CESM  provides  reasonable  simula-
tion of La Niña events’ phase-locking feature. In the Indian
Ocean, the dipole mode (i.e., positive sea temperature anom-
alies in the tropical western Indian Ocean and negative anom-
alies in the tropical eastern Indian Ocean) works as the lead-
ing mode and can explain 64% of the total variance.

The  atmospheric  bridge  and  the  ITF  are  suggested  as
the  most  important  ways  for  initial  errors  in  the  tropical
Indian  Ocean  to  impact  the  SSTA  predictions  in  the  trop-
ical Pacific Ocean. So, the CESM’s ability to simulate both
the atmospheric bridge (GIP) and the ITF is investigated. In
the climatological simulation, the rising branch of the atmo-
spheric bridge is located over the western Pacific Ocean and
the  eastern  Indian  Ocean,  where  SSTs  are  warm;  mean-
while,  two  sinking  branches  appear  in  the  eastern  Pacific
Ocean and the tropical western Indian Ocean. Regarding the
ITF, the volume transport along the IX01 line is commonly
used  to  present  the  ITF.  The  IX01  XBT  (expendable
bathythermograph)  line,  which  is  part  of  XBT  network  of
the  Indian  Ocean  Observing  System (IndOOS)  (Hermes  et
al.,  2019),  almost  crosses  the  Fremantle-Sunda  Straits,
which  is  a  connection  between  the  tropical  Pacific  Oceans
and the Indian Ocean. On average, the ITF calculated from
the CESM simulations is 10.7 Sv, and it usually peaks in the
summer  and  decays  in  the  winter,  showing  a  seasonally

dependent  feature.  These  features  simulated  by  the  CESM
are  very  consistent  with  the  ITF  observations  (Gordon,
2005; Tillinger and Gordon, 2009).

Besides the CESM’s good performance on the simula-
tions  mentioned  above,  it  can  also  simulate  the  role  of  the
atmospheric bridge and the ITF in the IOD forcing that influ-
ences the SSTA in the tropical Pacific Ocean. Following the
example  of Yuan  et  al.  (2013),  analysis  of  the  lag  correla-
tions between the IOD index with the SSTA in the tropical
oceans is also carried out, and just like FGOALS-g2 (Xu et
al., 2013), the CESM can simulate the ITF’s role in IOD for-
cing  influencing  the  SSTA  associated  with  the  ENSO,  but
the  atmospheric  bridge’s  role  is  overestimated  when  com-
pared  with  the  observations.  The  ITF’s  contributions  are
also  further  examined  with  sensitivity  experiments  carried
out with the CESM (Zhou et al., 2015).

In short,  the CESM can be used to study the influence
of the initial errors in the tropical Indian Ocean on the predict-
ability of La Niña. 

3.    Experimental design

Since  the  CESM  can  capture  the  essential  features  of
La Niña events and the relevant interactions between the trop-
ical Pacific Ocean and the Indian Ocean, it is reasonable to
regard these model-simulated events from the CESM as “ref-
erence state” of the La Niña events. These La Niña events,
as  shown  in Fig.  1,  are  then  predicted  for  12  months  with
sea  temperature  perturbations  added  only  in  the  tropical
Indian  Ocean.  These  kinds  of  initial  errors  are  marked  as
IO-related  initial  errors  in  this  study.  The  differences
between  the  predictions  from  the  sensitivity  experiments
and  the  reference  state  (i.e.,  the  “prediction  errors ”)  are
induced only by these IO-related initial errors. This strategy
is now widely used in the study of predictability from the per-
spective  of  error  growth  (Feng  et  al.,  2014; Duan  and  Hu,
2016). Six La Niña years are chosen from the 100-year integ-
ration, as mentioned in section 2. Due to the huge computa-
tional  cost  of  the  sensitivity  experiments,  only  sensitivity
experiments starting from Jan(0) are completed. Since these
predictions  bestride  the  growing  phase  of  La  Niña,  we  are
able to focus on the onsets of the La Niña events at the end
of the prediction.

A  number  of  sensitivity  experiments  are  then  carried
out for the selected La Niña events in an attempt to explore
the IO-related initial errors that are most likely to yield the
SPB. Here, IO-related initial errors are obtained by the follow-
ing  steps:  First,  for  each  typical  La  Niña  event  simulated
from the coupled model, the differences between the sea tem-
peratures  in  the  tropical  Indian  Ocean  (40°–130°E,
10°S–10°N; 0–400 m, ranging from the 1st to 30th level in
the ocean model) of the start month and every other month
during the four years before the start month are obtained as
the initial errors. Thus, for each La Niña event, 24 initial per-
turbations  can  be  chosen.  Taking  simulation  0061-01  from
the model as an example, the 24 initial  errors are 0057-02,

 

Fig.  1.  Niño-3  index  (units:  °C)  of  six  La  Niña  events  from
CESM1.0.3.  The  thin  lines  represent  the  six  La  Niña  events
and the thick line is the mean of the six events (here, “0” and
“1” signify the La Niña year and the next year, respectively).
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0057-04, 0057-06, …, 0060-10, and 0060-12. These initial
errors  are  marked as T′ ,  and their  norms can be  calculated

according  to ,  where  is  the  val-
ues  of T′  at  the  grid  point  ( i, j, k)  in  the  tropical  Indian
Ocean, with i, j, k referring to the longitude, latitude, and ver-
tical  grid  points,  respectively.  is  then  scaled  to  condi-
tional  initial  error ,  following ,  where

, and  is the climatological variation of sea tem-
perature in the tropical Indian Ocean. These 24 conditional
IO-related  initial  errors  are  then  added  at  the  start  month,
Jan(0), of the La Niña events and integrated for 12 months.
Thus,  for  each  La  Niña  event,  we  can  get  24  predictions,
and with 6 La Niña events, 144 predictions are obtained in
total. Based on these predictions from the sensitivity experi-
ments,  prediction  errors  are  calculated  as  the  differences
between the “reference state” La Niña event (the chosen La
Niña  event  without  any  perturbation)  and  the  predictions.
Therefore, all prediction errors are only induced by the IO-
related initial errors. 

4.    Two types of  IO-related initial  errors that
can  induce  the  SPB  for  La  Niña
predictions

In order to explore the initial errors that can induce a not-
able SPB for La Niña forecasts, a large number of sensitiv-

λ (t) =∥ T p (t)−T r (t) ∥=√∑
i, j [T

p
i, j (t)−T r

i, j (t)]
2

T p T r

γ = [λ (t2)−λ (t1)]/ [t2− t1]
(t2− t1)

λ (t2) λ (t1)

ity experiments are carried out with conditional initial errors
of sea temperature superimposed only in the tropical Indian
Ocean. Based on these 144 La Niña predictions, prediction
errors can be measured according to 

, where grid points (i, j) are from the

Niño-3 region, with i and j referring to the longitude and latit-
ude  grid  points,  respectively,  and  and  represent  the
SST of the predictions from sensitivity experiments and refer-
ence La Niña events, respectively. Parameter γ is defined as

 to  evaluate  the  season-depend-
ent growth of La Niña prediction errors, where  meas-
ures  the  time  interval  of  a  season,  and  and  are
the  prediction  errors  at  the  final  and  start  time  of  one  sea-
son,  respectively.  Positive  γ means  the  prediction  errors
grow during the season, and the lager the absolute value of
the γ, the faster the error grows. In the present study, if the
prediction errors of particular La Niña events grow quickly
during  the  season  of  spring  and  the  beginning  of  summer
and remain large at the final time of the predictions, we con-
clude that an SPB occurs. Among the 144 IO-related initial
errors, 45 of them are likely to induce a SPB during the La
Niña  predictions.  For  simplicity,  we  mark  them  as  SPB-
related initial errors.

In  order  to  have  a  deeper  understanding  of  the  com-
mon features of the SPB-related initial errors, the evolution
of  the  averaged  prediction  errors  induced  by  both  SPB-

 

 

Fig. 2. (a1) The prediction errors (λ) caused by each SPB-related conditional initial error (colored curves) for the six La Niña
events  with  the  start  month  Jan  (0)  (the  average  is  in  bold  black),  where  the  average  of  the  seasonal  growth  rates  of
prediction errors (γ) are also plotted in histograms; (a2) same as (a1), but for non_SPB-related conditional initial errors; (b1)
and (b2) show the corresponding Niño-3 index errors (units:  °C, colored curves) when compared with the control run and
their averaged mean (bold black) for SPB-related and non_SPB-related conditional initial errors, respectively.
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related  and  non_SPB-related  initial  errors  are  shown  (the
thick black line in Figs. 2a1 and 2b1). For SPB-related ini-
tial  errors,  the  prediction  errors  increase  rapidly  during
May(0)  to  Sep(0),  eventually  reaching  very  large  values,
indicating  that  April−May−June  (AMJ)  and  July−August−
September  (JAS)  are  the  seasons  with  quickest  error
increases  during  the  forecasts.  For  non_SPB-related  initial
errors, the growth rates of the prediction errors during these
seasons are quite small. Additionally, most of the predicted
Niño-3  index  errors  induced  by  the  SPB-related  initial
errors are positive and keep growing during the predictions,
as seen in Fig. 2b1. These SPB-related initial errors tend to
lead  to  La  Niña  events  being  underpredicted  in  terms  of
their magnitudes, and sometimes they even result in a fore-
cast missing a La Niña event entirely.

Cluster analysis is applied to diagnose the common spa-
tial features of the SPB-related initial errors obtained above,
and  two  types  of  SPB-related  initial  errors  are  found,  as
shown in Fig 3. Among all 45 SPB-related initial errors, 18
are Type-1 initial errors (Fig. 3a1). We can see that Type-1
initial errors have a positive IOD-like spatial structure with
positive  sea  temperature  errors  in  the  tropical  western
Indian Ocean and negative values in the east; while for the
Type-2 initial  errors,  as  shown in Fig.  3a2,  the  structure  is
almost opposite to that of the Type-1 initial errors (i.e., with
negative  errors  in  the  western  basin  and  positive  errors  in
the east). These dipole-like features not only occur on the sur-
face of the Indian Ocean, but also prevail in the subsurface
regions  (as  shown in Figs.  3b1 and b2).  The sea  temperat-
ure errors in the subsurface can also modulate the influence
on the sea surface temperature by vertical mixing and entrain-
ment processes (Zhang and Zebiak, 2002; Zhu et al., 2020). 

5.    Mechanisms of the error evolution

From  the  sensitivity  experiments  concerning  only  IO-
related initial errors, two types of initial errors that are most
likely  to  yield  the  SPB are  obtained,  and the  common fea-
tures  of  their  spatial  structures  are  explored.  But  how  will
these initial  errors  develop and impact  the SST predictions
in  the  Pacific  Ocean?  In  order  to  answer  this  question,  the
error  evolutions  and  dynamical  mechanisms  behind  them
are studied in depth in this section.

The  error  evolutions  of  sea  temperature  Type-1  initial
errors  along  the  tropical  oceans  are  composited  in Fig.  4.
When Type-1 initial errors are superimposed in the tropical
Indian  Ocean,  the  sea  temperature  errors  exhibit  a  positive
IOD-like  pattern,  and  the  magnitudes  of  the  sea  temperat-
ure errors are increased. In the tropical Pacific Ocean, the pos-
itive  errors  of  sea  temperature  first  appear  in  the  eastern
Pacific Ocean at the start month and continue growing after-
wards. At the end of the predictions, the prediction errors in
the tropical Indian Ocean and the tropical Pacific Ocean are
positive IOD-like and El Niño-like, respectively.

For  SPB-related  Type-2  initial  error,  the  composited
error  evolutions  are  displayed  in Fig.  5.  Unlike  the  evolu-
tion  of  Type-1  initial  error,  when  Type-2  initial  error  is
added in the tropical Indian Ocean, negative IOD-like sea tem-
perature error patterns do not stay there through the end of
the  prediction.  In  fact,  the  positive  errors  in  the  eastern
Indian  Ocean  diminish  and  turn  to  negative  values  during
Apr(0), while negative errors in the western Indian Ocean con-
vert to positive errors. This positive IOD-like pattern domin-
ates  in  the  tropical  Indian Ocean in  the  end.  Meanwhile  in
the  tropical  Pacific  Ocean,  positive  sea  temperature  errors
first  show  in  the  western  Pacific  Ocean.  These  positive

 

 

Fig. 3. The SST and the vertical sea temperature (averaged by meridian 5°N to 5°S) components of the Type-1 (a1
and b1) and Type-2 (a2 and b2) SPB-related initial errors for Jan (0).
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errors  keep  growing  and  propagate  to  the  east  Pacific
Ocean, resulting in an El Niño-like error state in the end.

To  sum  up,  in  the  tropical  Indian  Ocean,  when  SPB-
related  Type-1  initial  error  is  added  in  the  tropical  Indian
Ocean, the errors tend to keep growing with this kind of spa-
tial  structure,  just  like a positive IOD event experiencing a
growing phase evolution; while for SPB-related Type-2 ini-
tial  errors  with  a  negative  IOD-like  mode,  the  prediction
errors  tend  to  decay  and  ultimately  change  to  a  positive

IOD-like state. In the tropical Pacific Ocean, the sea temperat-
ure  errors  induced  by  the  SPB-related  Type-1  initial  error
experience  localized  developments  in  the  eastern  Pacific
Ocean. Meanwhile, the prediction errors of sea temperature
induced by Type-2 initial error usually first appear in the west-
ern Pacific Ocean and then propagate to the east.

It  is  clear  that  both  kinds  of  SPB-related  initial  errors
experience  quite  different  evolutions  in  the  two  oceans.
Why are  they different  and what  are  the  dynamic mechan-

 

 

Fig. 4. The composite monthly sea temperature component (averaged meridional over 5°N to 5°S) for the evolutions
of  Type-1  initial  error  with  the  start  month  Jan(0)  (the  regions  covered  by  dots  indicates  those  of  statistical
significance (>95%). The evolution of sea temperature errors is highlighted as black arrow.
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isms behind the error evolutions? Zhou et al. (2019) sugges-
ted that during El Niño predictions, either the ITF or the atmo-
spheric  bridge  plays  a  vital  role  in  IO-related  initial  errors
influencing  the  SST  predictions  in  the  tropical  Pacific
Ocean. We cannot help wondering: Do these dynamical mech-
anisms still work in the La Niña predictions? Which role do
they play in each kind of error evolutions? In order to make
these  clear,  the  roles  of  both  the  ITF  and  the  atmospheric
bridge (GIP) are studied.

First,  we  look  into  the  role  of  the  ITF.  The  averaged
volume transport of the ITF anomalies calculated along the

IX01 line for  SPB-related Type-1 and Type-2 initial  errors
are −0.13 Sv and −0.50 Sv, respectively. Zhou et al. (2015)
performed  sensitivity  experiments  with  the  atmospheric
bridge shut down, resulting in ITF anomalies induced by pos-
itive  and  negative  IOD  forcing  of  6.18  Sv  (positive)  and
−6.21  Sv  (negative),  respectively.  It  is  clearly  shown  that
the  ITF  anomalies  induced  by  both  Type-2  initial  error  in
this study and that from negative IOD forcing are both negat-
ive, implying that the ITF may play a leading role in the evol-
ution  of  Type-2  initial  error.  Since  the  ITF  volume  is
defined as  the  amount  of  warm water  transported from the

 

 

Fig. 5. As in Fig. 4, but for Type-2 initial error.
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warm pool  area in  the western Pacific  Ocean to  the Indian
Ocean, negative ITF error indicates that less warm water is
transported  from  the  western  Pacific  Ocean  to  the  Indian
Ocean,  or  anomalously  warm  water  in  the  tropical  eastern
Indian  Ocean  penetrates  into  the  western  Pacific  Ocean
(Zhou et al., 2015), which may also be the dynamical mechan-
ism of Type-2 initial error influencing the SST prediction in
the Pacific Ocean.

In order to have a deeper understanding of the dynam-
ical mechanisms, composited error evolutions of Type-2 ini-
tial  error are plotted and shown in Fig. 6.  It  is  clearly seen
that positive sea surface height errors are induced by the posit-
ive  sea  temperature  errors  in  the  tropical  eastern  Indian
Ocean, leading to local downwelling anomalies there. These
downwelling  anomalies  further  penetrate  into  the  western
Pacific  Ocean,  resulting  in  positive  sea  temperature  errors.
And, these positive errors of sea temperature keep traveling
to  the  equatorial  eastern  Pacific  Ocean,  preserving  an  El
Niño-like error pattern at  the end of the prediction. So, the
ITF’s role in Type-2 initial errors influencing the SSTA pre-
dictions associated with La Niña is clear. But how about the
role  of  the  atmospheric  bridge?  Actually,  according  to  the
GIP theory, which is one of the popular atmospheric bridge
theories, the positive errors in the eastern Indian Ocean tend
to  induce  updraft  errors  over  the  Indian  Ocean  and
downdraft  errors  over  the  Pacific  Ocean,  leading  to  negat-
ive SSTA prediction errors in the tropic Pacific Ocean. Mean-
while, positive SSTA prediction errors are the main errors dur-
ing  the  whole  prediction.  So,  it  is  the  ITF,  rather  than  the
atmospheric bridge, that plays the leading role in Type-2 ini-
tial error influencing the La Niña predictions.

When it  comes to the SPB-related Type-1 initial error,
the  induced  ITF  errors  are  also  negative,  which  is  of  the
opposite sign to the ITF anomalies induced by the negative
IOD  forcing  when  the  atmospheric  bridge  was  shut  down
(Zhou et al.,  2015). According to Zhou et al.  (2015), when

positive  IOD-like  errors  influence  the  SST  predictions  in
the  tropical  Pacific  Ocean  through  the  ITF,  the  negative
SST  errors  usually  dominate  in  the  tropical  Pacific  Ocean
throughout  the  predictions,  rather  than  inducing  positive
errors there. Thus, it is very unlikely for the ITF to play the
chief role in IO-related initial errors influencing SSTA predic-
tion in the Pacific Ocean since we have positive prediction
errors of sea temperature in the Pacific Ocean during the La
Niña  forecasts.  So,  we  must  study  the  role  of  the  atmo-
spheric  bridge.  Evolutions  of  wind  errors  induced  by  the
Type-1 initial errors are plotted in Fig. 7. It is shown that dur-
ing  Jan(0),  when  positive  IOD-like  errors  of  sea  temperat-
ure  are  superimposed  in  the  tropical  Indian  Ocean,
downdraft  errors  appear  both  in  the  western  Pacific  Ocean
and the eastern Indian Ocean. According to the GIP theory,
these downdraft errors can lead to updraft errors in the cent-
ral  and  eastern  Pacific  Ocean  during  Jan(0)  and  Feb(0).
Those downdraft errors further induce positive errors of sea
temperature in the eastern Pacific Ocean, resulting in many
La Niña events being missed by forecasts. Therefore, SPB-
related Type-1 initial errors in the Indian Ocean usually influ-
ence  the  sea  temperature  in  the  tropical  Pacific  Ocean
mainly by virtue of the GIP.

To  sum  up,  Type-1  and  Type-2  SPB-related  initial
errors in the tropical Indian Ocean mainly influence the sea
temperature  predictions  in  the  Pacific  Ocean  via  GIP  and
the ITF, respectively. 

6.    Implications for targeted observations

During  ENSO  forecasts,  data  assimilation  in  coupled
models  is  quite  important  (Gao  et  al.,  2016; Zhang  et  al.,
2020b), and a targeted observation strategy can provide addi-
tional  valuable  observations  for  the  assimilation.  To
improve a forecast at time t1 (verification time) in an area of
concern  (verification  area),  additional  observations  are

 

 

Fig.  6.  Composited  evolution  of  Type-2  initial  error  from  Jan(0)  to  Apr(0)  with  the  components  of  (a)  the  vertical  sea
temperature  errors  in  tropical  Indian  Ocean  and  the  Pacific  Ocean  over  the  equator,  (b)  the  SSH  errors,  and  (c)  the  SST
errors.
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deployed at a future time t2 (target time; t2 < t1) in some key
areas (sensitive area) where additional observations are expec-
ted to have a considerable contribution to the forecast in the
verification area (Snyder, 1996; Mu, 2013; Mu et al., 2015).
One challenge is the determination of the sensitive area. Nor-
mally,  the locations of SPB-related initial  errors with large
values  can  be  assumed  as  the  sensitive  areas  for  targeted
observations (Mu et al., 2014; Duan and Hu, 2016). So, the
large  value  area  of  SPB-related  initial  errors  in  the  Indian
Ocean  may  also  be  the  sensitive  area  for  La  Niña  predic-
tions. In this study, the sensitive area is identified where the
SPB-related initial errors are larger than 0.2°C. As shown in
Fig. 8, the large values mainly exist in the subsurface of the
eastern Indian Ocean, suggesting the possibility of this area
being the sensitive area for La Niña predictions. Will the pre-
diction skill be improved with targeted observations applied
there? To answer this question, a number of sensitivity experi-
ments  are  carried  out.  In  sensitivity  experiments  with  tar-
geted  observations  applied  inside  the  sensitive  area,  which
are marked as Sensi-1, we simply wipe out the initial errors
in the sensitive area and set the initial errors to zero. For sens-
itivity  experiments  with  targeted  observations  applied  out-

side  the  sensitive  area,  which  are  signified  as  Sensi-2,  ini-
tial errors outside the sensitive area are erased. Here, predic-
tions with the original initial errors superimposed (i.e., with
no targeted observation strategy applied) are regarded as the
control run.

The results of the targeted observations sensitivity experi-
ments are shown in Table 1. The bulk of non-sensitive area
in the tropical Indian Ocean is about 2.22 × 107 km3, which
is  four  times  larger  than  the  sensitive  area.  Although  the
area  is  much  larger,  adopting  the  targeted  observation
strategy in the non-sensitive area provides little help toward
achieving better La Niña predictions. Surprisingly, the predic-
tion  skill  is  reduced  (−0.14%)  in  general.  From  Sensi-1,
where targeted observation strategies are applied inside the
sensitive area, La Niña prediction skill can be improved by
20.59%. The averaged benefit is defined following Zhou et
al. (2020) (i.e., β= improvement of La Niña prediction skill /
volume  of  the  area  with  targeted  observations  applied).
Here, β measures the effectiveness of adopting targeted obser-
vation  strategies  since  it  can  represent  the  prediction  skill
improvement  per  km3 for  a  certain  area.  In  this  study,  the
effectiveness β from  both  Sensi-1  and  Sensi-2  are  calcu-
lated. β of Sensi-1 is very large, reaching up to 399.90; β of
Sensi-2 is −0.06 on average. Although the sensitive area occu-
pies a very small area of the tropical Indian Ocean, it is very
effective  to  adopt  targeted  observation  strategy  there  to
reduce the prediction errors of the La Niña forecasts.

Prediction  errors  of  sea  temperature  from  the  control
run, Sensi-1, and Sensi-2 are shown in Fig. 9. In the control
run, without any targeted observations applied, positive sea
temperature  errors  dominate  as  the  main feature  at  the  end
of the forecasts, as shown in Fig. 9a. In Fig. 9b, where tar-

Table  1.   The  averaged  prediction  errors  and  the  averaged  benefits  of  the  targeted  observation  strategy  conducted  inside/outside  the
sensitive area for La Niña predictions.

Sensi-1 Sensi-2

Prediction errors for Exp-ref (Err0) 101.32 101.32
Predictions errors with targeted observations (Err) 80.46 101.46

1−Err/Err0The improvement for El Niño events ( ) 20.59% −0.14%
The bulk of sensitive area (107 km3) 0.52 2.22

Averaged benefit for the targeted observation β (10−7 km−3) 399.90 −0.06

 

Fig.  7.  Wind  error  evolutions  induced  by  the  Type-1  initial
error during Jan (0) and Feb (0) (averaged by meridian 5°N to
5°S).  The  updraft  and  downdraft  branches  are  highlighted  as
red arrows.

 

Fig.  8.  The  sensitive  area  (shaded  in  red)  of  targeted
observations  in  the  tropical  Indian  Ocean  for  the  La  Niña
predictions.

1574 INFLUENCE OF IO INITIAL ERROR ON LA NIÑA PREDICTABILITY VOLUME 38

 

  



geted observation strategies are applied inside the sensitive
area,  positive  prediction  errors  of  sea  temperature  are  still
there, but both the magnitude and the area of the errors are
reduced. As in Fig. 9c, when targeted observation strategies
are adopted outside the sensitive area, the spatial pattern and
the  magnitude  of  the  prediction  errors  are  much  like  those
from  the  control  run,  implying  little  improvements  of  La
Niña  prediction  skill.  The  differences  of  prediction  errors
between  these  different  sensitivity  experiments  support  the
former  conclusion  that  adopting  targeted  observation
strategies in the sensitive area in the Indian Ocean can signi-
ficantly  reduce  the  prediction  errors  and  improve  the  fore-
cast skill of La Niña events.

The predicted SSTA are also shown in Fig. 10. Figure
10a shows the “true state” of typical La Niña events, with neg-
ative SSTA prevailing in the tropical  Pacific Ocean.  When
SPB-related initial errors exist in the tropical Indian Ocean,
the La Niña event mode is disappeared due to the large influ-
ences from the IO-related initial errors. When targeted obser-
vation strategies are adopted outside the sensitive area in the
Indian Ocean, as in Fig. 10d, predicted SSTA shows larger
negative  SSTA  in  the  tropical  Pacific  Ocean  when  com-
pared with that from Fig. 10b, showing some improvement.
However,  when targeted observation strategies  are adopted

inside  the  sensitive  area  in  the  tropical  Indian  Ocean  (Fig.
10c,),  the  predicted  SSTA  in  the  tropical  Pacific  Ocean
shows  a  typical  La  Niña  mode  pattern  with  a  relatively
reduced magnitude, implying that the prediction skill for La
Niña events is significantly improved.

In short, La Niña prediction is sensitive to the sea temper-
ature  errors  in  the  sensitive  area  which  resides  in  the  east-
ern tropical Indian Ocean, and it is very useful to apply tar-
geted  observations  in  this  sensitive  area,  instead  of  other
places, to obtain better La Niña forecasts. 

7.    Summary and discussion

The influences of  IO-related sea temperature errors  on
La Niña predictions are explored by using coupled earth sys-

 

Fig. 9. Prediction errors in Dec(0) in the tropical oceans for La
Niña  predictions  starting  from  Jan(0),  (a)  for  predictions
superimposed  with  the  whole  initial  errors  in  the  tropical
Indian  Ocean,  (b–c)  for  predictions  with  targeted  observation
strategy  conducted  inside/outside  the  sensitive  area  in  the
tropical Indian Ocean, respectively.

 

Fig.  10.  Predicted  SSTA in  Dec(0)  in  the  tropical  oceans  for
La  Niña  predictions  starting  from  Jan(0),  (a)  for  the  “true
state” of La Niña events, (b) for predictions superimposed with
the whole initial errors in the tropical Indian Ocean, (c–d) for
the  predictions  with  targeted  observation  strategy  conducted
inside/outside  the  sensitive  area  in  the  tropical  Indian  Ocean,
respectively.
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tem model  CESM. From plenty  of  sensitivity  experiments,
the initial errors in the Indian Ocean that are most likely to
yield the SPB for La Niña forecasts (i.e., SPB-related initial
errors)  are  revealed.  These SPB-related initial  errors  in  the
tropical  Indian  Ocean  can  be  categorized  into  two  types
according  to  their  spatial  structures  by  cluster  analysis.
SPB-related Type-1 initial error has a positive IOD-like struc-
ture  with  positive  errors  of  sea  temperature  in  the  western
Indian Ocean and negative errors in the east.  The structure
of Type-2 initial  error is  nearly opposite to that  of Type-1.
For Type-1 initial error, which has a positive IOD-like error
pattern  in  the  tropical  Indian  Ocean,  errors  keep  growing
and persist  in  that  spatial  pattern  by  the  end of  the  predic-
tion; positive errors of sea temperature first show up in the
central Pacific Ocean and develop into an El Niño-like error
pattern by the end of the prediction. For Type-1 initial error,
it is the atmospheric bridge that plays the crucial role in IO-
related  initial  errors  influencing  the  SSTA  in  the  Pacific
Ocean. For Type-2 initial error, which manifests in a negat-
ive  IOD-like  pattern,  the  prediction  errors  in  the  tropical
Indian Ocean decay and then develop into  a  positive  IOD-
like pattern; meanwhile, the positive errors of sea temperat-
ure  in  the  eastern  Indian  Ocean  can  lead  to  downwelling
anomalies  which  can  penetrate  into  the  equatorial  western
Pacific Ocean through the ITF. Also for Type-2 initial error,
the  prediction  errors  of  sea  temperature  in  the  tropical
Pacific Ocean have an El Niño-like pattern at the end of the
prediction.  The  sensitive  area  in  the  tropical  Indian  Ocean
for La Niña forecasts is then identified based on those SPB-
related initial  errors.  We also have evaluated the  effective-
ness of adopting targeted observation strategies in this sensit-
ive  area.  The  results  indicate  that  the  averaged  benefit  of
applying targeted observations in the sensitive area is over-
whelmingly  large,  even  though  the  sensitive  area  is  only
one-fifth of the whole tropical Indian Ocean. So, it is much
more  effective  to  adopt  targeted  observation  strategies
inside the sensitive area rather than any other region.

Two types of optimal conditional initial errors in the trop-
ical  Indian  Ocean  that  have  the  largest  influences  on  La
Niña  predictions  are  explored  in  this  study.  Type-1  and
Type-2  SPB-related  initial  errors,  with  positive  and  negat-
ive IOD-like structures respectively, are both very similar to
the SPB-related initial errors in the tropical Indian Ocean of
the  El  Niño  predictions  discovered  by Zhou  et  al.  (2019).
Therefore, the Type-1 initial errors calculated from both the
El  Niño  events  and  La  Niña  predictability  studies  are
marked as “Type-1 initial error,” and same for Type-2 ini-
tial errors. A brief summary is presented in Table 2. For El
Niño  forecasts,  both  Type-1  and  Type-2  initial  errors  tend

to have negative prediction errors of sea temperature in the
tropical  Pacific Ocean; the ITF and the atmospheric bridge
play  leading  roles  in  IO-related  Type-1  and  Type-2  initial
errors influencing the SSTA associated with ENSO predic-
tion, respectively. When it  comes to the La Niña forecasts,
both types of IO-related initial errors tend to result in posit-
ive errors  of  sea temperature in  the tropical  Pacific  Ocean,
and  IO-related  Type-1  and  Type-2  initial  errors  incline  to
influence  the  ENSO  predictions  by  virtue  of  the  atmo-
spheric bridge and the ITF, respectively.

Even  though  these  IO-related  Type-1  and  Type-2  ini-
tial  errors  for  both  El  Niño  and  La  Niña  predictions  have
much in common, there are still  some differences that can-
not be neglected. For SPB-related Type-1 initial errors of El
Niño, the positive errors dominate between 10°S and 10°N
in the western Indian Ocean, while for Type-1 initial errors
of  La Niña,  the  positive  errors  only appear  in  the  southern
Western  Indian  Ocean. Ojha  and  Gnanaseelan  (2015) sug-
gest that a north-south dipole is the dominant mode in the sub-
surface. Unfortunately, the region for the initial errors in the
tropical  Indian  Ocean  is  not  big  enough  to  include  the
whole southern pole in the subsurface in our study. More stud-
ies should be carried out if we want to figure out the similar-
ity between the SPB-related Type-1 initial errors of La Niña
and the subsurface dipole.

For the IO-related initial errors that have the largest influ-
ence on El Niño predictions with start month Jan(0), all the
predictions  tend  to  underestimate  the  magnitude  of  the  La
Niña events. This is also the case for most of the sensitivity
experiments carried out during the study of La Niña predic-
tions,  with  one  exception  represented  by  the  purple  line  in
Fig. 2b. Why is this initial error so special? Is it just a ran-
dom case? Or may it  have any implications? Two types of
SPB-related initial errors are revealed in the tropical Indian
Ocean,  and  the  roles  of  both  the  ITF  and  the  atmospheric
bridge are analyzed. Are they independent? Can their influ-
ences  be  quantified?  These  questions  will  need  to  be
answered in the future with more carefully designed sensitiv-
ity experiments and analyses.

In this study on La Niña predictability, we only use the
traditional  Niño-3  index  to  represent  La  Niña  events.
However, ENSO events are diverse, including both EP-type
and CP-type (Kao and Yu,  2009; Kug et  al.,  2009) events,
and prediction barriers exist for them both (Ren et al., 2016;
Tian et al., 2019). So, more studies should be carried out to
explore  the  different  influences  of  IO-related  initial  errors
on the two different types of ENSO events.

It  can  be  concluded  that  both  positive  and  negative
IOD-like initial errors have the largest influences on the pre-

Table 2.   A brief  table of  the influences of  IO-related initial  errors (both Type-1 and Type-2) on the SSTA predictions in the Pacific
Ocean, and the possible main dynamical mechanisms behind them.

Prediction errors induced by the
IO-related initial errors

Dynamic mechanism for
Type-1 initial errors

Dynamic mechanism for
Type-2 initial errors

El Niño events Negative initial errors ITF Atmospheric bridge
La Niña events Positive initial errors Atmospheric bridge ITF
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dictions  of  ENSO  events,  leading  to  the  SPB  phenomena.
Mu  and  Jiang  (2011) pointed  out  that  the  optimally  grow-
ing initial errors in the onset predictions of blocking events
and the optimal precursors that trigger the onsets have a lot
in common. And the optimal precursors and the conditional
nonlinear  optimal  perturbation  always  share  similar  struc-
tures (Mu et al.,,  2014, 2017).  So, what is the optimal pre-
cursor  of  ENSO events  in  the  tropical  Indian  Ocean?  Will
the optimal precursor in the tropical Indian Ocean share sim-
ilar structures with these SPB-related initial errors? What’s
more, ensemble forecasts are one of the most useful ways to
improve ENSO prediction skill,  and a good ensemble fore-
cast  relies  on  good  ensemble  initial  errors.  So,  could  this
kind  of  IO-related  initial  error  that  grows  fastest  be  con-
sidered  as  one  of  the  ensemble  initial  errors  in  order  to
improve the ensemble forecast skill? These questions can be
explored in the future studies.

According to the large value area of these SPB-related ini-
tial errors, the sensitive area in the tropical Indian Ocean for
La Niña forecasts is revealed. And adopting targeted observa-
tion  strategies  in  this  sensitive  area  can  significantly
decrease the prediction errors of La Niña forecasts. Zhou et
al.  (2020) have  also  identified  the  sensitive  area  in  the
Indian  Ocean  for  El  Niño  forecasts.  It  can  be  noticed  that,
both kinds of sensitive areas mainly reside in the equatorial
eastern Indian Ocean. So, whether this region can be treated
as the common sensitive area for ENSO predictions is also
one of our concerns. What’s more, due to the large computa-
tional cost,  sensitivity experiments of the targeted observa-
tions are only carried out with the SPB-related cases. Since
most cases are not SPB-type, whether the sensitive area still
works  is  another  interesting  question.  So  further  studies
should  be  carried  out  to  answer  these  questions.  Also
because of the huge computational cost, only sensitivity exper-
iments starting from Jan(0) are completed. More sensitivity
experiments  starting  from  other  start  months,  such  as
Apr(0),  Jul(0),  and  so  on,  should  be  completed  to  explore
the influences of IO-related initial errors on SSTA forecasts
during La Niña predictions bestriding its decaying phase.

The  National  Marine  Environmental  Forecast  Center
has  an  operational  global  SST  forecast  model,  which  also
shows  good  performance  for  ENSO  prediction  (Zhang  et
al., 2018, 2019). Though the conclusions from this paper are
all based on the “perfect model” assumption, it is still of our
interests to apply them to operational forecasts to see how it
works  in  real  time.  What  are  the  influences  of  the  initial
errors  of  sea  temperature  in  the  tropical  Indian  Ocean  on
real  La Niña  predictions?  Will  the  sensitive  area  identified
in  this  study  remain  effective  in  operational  forecast  mod-
els?  ENSO  prediction  skill  can  be  further  improved  once
these questions are answered with sensitivity experiments car-
ried out with the operational forecast model.

In this study, we simply assume the model is perfect, so
no model errors are considered. However, due to an overly
strong Bjerknes feedback simulated in the equatorial Indian
Ocean, most Coupled Model Intercomparison Project Phase

Three  (CMIP3)  and  CMIP5  models  (including  the  CESM
we  used  in  this  study)  have  IOD  bias  (Cai  and  Cowan,
2013).  Moreover,  like  many  other  coupled  models,  the
CESM also has an overly strong variability of sea surface tem-
perature in the eastern Indian Ocean because of its exagger-
ated  sensitivity  to  thermocline  variations  (Wieners  et  al.,
2019).  Our  conclusions  may be  model-dependent  since  we
only  use  the  CESM, which is  also  flawed,  to  complete  the
sensitivity  experiments.  If  we  can  reduce  the  model  errors
in  ENSO  predictions  following  the  strategy  of Tao  et  al.
(2020) (i.e.,  using  the  Nonlinear  Forcing  Singular  Vector
(NFSV)  approach),  ENSO  prediction  skill  may  be  further
improved.
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