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Abstract Based on the review of nonlinear forcing singular vector (NFSV)
for dealing with the most disturbing model error and the optimal forcing vec-
tor (OFV) for neutralizing model error effect, the NFSV-data assimilation
(NFSV-DA) approach was reinterpreted as neutralizing combined effect of
model errors and initial errors in predictions. Then the calculation of adjoint-
related gradient was derived for solving the NFSV-DA. With the applications
to El Niño and tropical cyclone predictabilities, the usefulness of the NFSV-
DA was emphasized for improving prediction skill of weather and climate.
Furthermore, how to further consummate the NFSV-DA was discussed and
future works were prospected. It is finally expected that the NFSV-DA be-
comes operational and greatly increases the prediction level of weather and
climate.
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1. Introduction
The essence of numerical weather forecast and climate prediction is to solve an
initial value problem of complex partial differential equations. Due to the lack of
observations, errors often occur in initial values and then greatly limit forecasting
levels of weather and climate [26,28]. Field observations are never dense enough to
satisfy the demands of initialization in predictions; furthermore, it is very costly to
acquire these observations. Therefore, increasing additional observations in a few
key areas but not over the full field (i.e., target observations; [30]) and assimilating
them to initial field have been thought of as an economic and effective way to
reduce the effects of initial errors [24,26]. Besides, current numerical models cannot
yet exactly describe the motions of atmosphere and ocean fluids and there exist
inevitable model errors, which also severely influence the accuracy of prediction
results [12,23]. That is to say, it is both initial errors and model errors that jointly
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lead to prediction errors of weather and climate. The current facts, as discussed
above, are the lack of adequate observations and the imperfect of numerical models;
then significant initial errors and model errors are still non-negligible in current
predictions of weather and climate. Even so, the meteorologists have to conduct
operational forecasts to serve the demand of disaster prevention and mitigation. In
this situation, one has to encounter such a challenging question as how to maximize
the forecasting capability of a prediction system by considering both the initial
errors and model errors. To address this question, two aspects of studies should be
concerned. One is to explore the reasons of yielding prediction uncertainties; and
the other is to study the methods to reduce prediction uncertainties [27].

This paper mainly focuses on the discussion of the second aspect of studies, that
is, the methods to reduce prediction uncertainties. Generally, a present complete
prediction strategy is as follows. After identifying the major error source of predic-
tion uncertainties, an advanced assimilation method is applied to optimize initial
field by using the most useful observations (for example, “target observations”).
With the optimized initial field, numerical model is integrated and a deterministic
prediction is made. Keep this prediction in mind, multiply initial perturbations are
yielded to disturb this prediction and conduct ensemble forecasting, which cannot
only give a deterministic prediction by adopting ensemble mean but also estimate
its prediction uncertainties by evaluating ensemble spread, eventually obtaining a
complete high-quality prediction product. From this strategy, it is easily recognized
that data assimilation is essential for achieving a complete high-quality prediction
product.

Bauer et al. [3] have stated that a quiet revolution occurred in the past three
decades and numerical weather forecasting level improved almost 30%, especially
in the Southern Hemisphere. One of the major causes of this great improvement
is thought of as the use of variational data assimilation and satellite data since the
late 1990s. It is obvious that data assimilation plays a key role in current weather
forecast and climate prediction. However, the classical data assimilation is estab-
lished on the assumption of perfect model and only consists of reducing the effects of
initial errors [18]. Model errors, as mentioned above, is another source of prediction
errors; especially, more and more studies began to explore its roles in yielding pre-
diction uncertainties for achieving more accurate predictions. For example, Wang
et al. [34] demonstrated that the major cause of the low skill of weather ensemble
forecasting is the effect of model systematic errors; the Intergovernmental Panel on
Climate Change Fifth Assessment Report (IPCC AR5) also considered the effects
of model errors and its interaction with initial errors when redefining the climate
predictability [19]. In view of this situation, it is urgently important to reduce ef-
fects of model errors and their interactions with initial errors and finally improve
prediction level of weather and climate. Then, a tough question arises: how can
one achieve such a goal?

For the approaches to reduce model error effects, the one flashing into our mind
is to improve numerical models by updating and/or improving physical parameter-
ization schemes or to enhance their spatial-temporal resolutions. However, model
error sources are of diversity and complexity; furthermore, they are interactive, and
then the phenomenon of pressing gourd dipper float often happens when debugging
numerical models. It is therefore impossible to identify every model error source
and debug them to reduce their effects on prediction results. Then whether or not
one can consider combined effect of kinds of model error sources from a macroscopic
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perspective instead of the micro details of each model error source? furthermore, in
view of the fact that data assimilation has been successfully used to reduce initial
error effects and played a key role in improving prediction skill of weather and cli-
mate, it is wonder if data assimilation is also feasible for decreasing combined effect
of model errors.

To address these questions, the key issue to be first explored is how to describe
the combined effect of kinds of model error sources. Duan and Zhou [12] proposed
a nonlinear forcing singular vector (NFSV) approach to reveal the model error
that causes the largest prediction error (also see [11]). They proposed to adopt a
tendency perturbation for depicting combined effect of kinds of model error sources.
Inspired by the NFSV, Duan et al. [9] further introduced an optimal forcing vector
(OFV) approach, in attempt to obtaining an appropriate tendency correction term
to offset combined effect of model errors by assimilating relevant observations (also
see [7]). Then in the present article, we will synthetically review the NFSV for
dealing with optimally-growing model errors and the OFV for offsetting model
error effects and update the OFV as a new data assimilation approach for dealing
with combined effect of model errors and its interaction with initial errors, finally
reviewing its usefulness in weather and climate predictability and future possible
uses toward operational predictions of weather and climate.

The remainder of the paper is organized as follows. The NFSV-data assimila-
tion (NFSV-DA) approach is formulated in section 2 and its calculation is derived
in section 3. Section 4 gives a review on the usefulness of the NFSV-DA in the
predictability studies of El Niño and tropical cyclone. Finally, section 5 provides a
summary and a discussion to the further work and possible uses of the NFSV-DA.

2. The NFSV-DA for neutralizing combined effect
of model errors and its interaction with initial
errors

To reveal spatial dependence of combined effect of kinds of model errors, Duan and
Zhou [12] used a tendency perturbation to describe combined effect of model errors
and proposed the NFSV method to disclose the model error of particular structure
that is responsible for the largest deviation from the reference state. Obviously,
the NFSV is related to a maximization problem. A dynamical equation for a state
vector U is written as in the Eq.(2.1),

∂U
∂t = F (U(x, t)),

U |t=0= U0, in Ω× [0, τ ]
(2.1)

where U(x, t)=(U1(x, t),U2(x, t), · · · ,Un(x, t)) and U0 is its initial state; (x, t) ∈
Ω× [0, τ ] with Ω being a domain in Rn and t being the time of τ < +∞; and F is a
nonlinear operator. If the Eq.(2.1) and U0 are exactly known, the final state at the
future time τ can be solved by integrating the Eq.(2.1). Such final state U(x, τ)
can be expressed as in Eq.(2.2)

U(x, τ) = Mτ (U0), (2.2)
where Mτ is the propagator of the Eq.(2.1), which “propagates” the initial state U0

to the final time τ and output the final state U(x, τ). In numerical weather forecast
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and climate prediction, a prediction is usually contaminated by both initial errors
and model errors. With a tendency perturbation f (x, t) describing combined effect
of model errors, a realistic prediction model can be of the equations as in Eq.(2.3).

∂(U+u)
∂t = F(U + u) + f (x, t),

U + u |t=0= U0 + u0,
(2.3)

where u0 is initial error, then u represents prediction error caused by both initial
error and model error. If Mτ (f ) denotes the propagator of the Eq.(2.3), the final
state can be expressed as in the Eq.(2.4).

Mτ (f )(U0 + u0) = U(x, τ) + u(x, τ), (2.4)

where U(x, τ) = Mτ (0)(U0) = Mτ (U0) [see Eq.(2.2)]. With the assumption of per-
fect initial field and constant tendency perturbation f (x) for simplicity, the NFSV
can be defined as follows.

Jδ(f δ) = max
∥f∥≤δ

J(f ), (2.5)

where
J(f ) = ∥Mτ (f )(U0)− Mτ (0)(U0)∥ (2.6)

and ∥f∥ ≤ δ is the constraint condition defined by the L2 norm ∥ · ∥ and constrains
the maximum amplitude of f (x) (i.e. combined effect of model errors). The cost
function J evaluates the amplitude of the prediction error with respect to the refer-
ence state Mτ (0)(U0) caused by f . After solving the Eq.(2.5), one can obtain the
NFSV f δ. The NFSV represents the model error that causes the largest prediction
error and has particular spatial structure responsible for its optimal growth.

Along the thinking of the tendency perturbation describing the combined effect
of model errors, Duan et al. [9] further suggested an optimal forcing vector (OFV)
approach to obtain an appropriate correction term for minimizing the distance
between model simulations and observations when only considering effect of model
errors. In this paper, it will be further updated to reveal the correction term that
makes the model simulation with initial error and model error effects closest to the
observation at the final time τ . Then the renewed OFV can be expressed as the
following minimization problem.

Jo(f
′
o) = min

f ′
∥Mτ (f)(f ′)(U0 + u0)− Uobs(x, τ)∥, (2.7)

where Uobs(x, τ) is the observation at time τ , Mτ (f) is the forecast model with model
errors and the model error f here needs to be offset by the tendency perturbation
f ′ to be solved, and Mτ (f)(U0 + u0) represents reference simulation contaminated
by initial error and model error. Then the Eq.(2.7) solves the renewed OFV f ′

o.
Relating the renewed OFV to NFSV, if concerned problem is applied to the pre-

diction model Eq.(2.3), the NFSV can be understood as the tendency perturbation
f ′ that is superimposed on f and of most sensitivities to the reference simulation
Mτ (f)(U0 + u0) and this reference simulation can thus be greatly improved after
filtering model errors suggested by the NFSV sensitivity; then in this situation for
the renewed OFV, it can be interpreted as the tendency perturbation f ′ that makes
the updated simulation Mτ (f)(f ′)(U0 + u0) to have the largest departure from the
reference simulation Mτ (f)(U0 + u0) but has the constraint to make the updated
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simulation is closest to the observation. In this way, the renewed OFV can also be
expressed by the Eq.(2.8) as a maximization problem with the constraint f ′ ∈ Ω,
which is similar to that for the NFSV mathematically.

J(f ′
o) = max

f ′∈Ω
∥Mτ (f)(f ′)(U0 + u0)− Mτ (f)(U0 + u0)∥, (2.8)

where
Ω = {f ′|J(f ′) = min

f ′
∥Mτ (f)(f ′)(U0 + u0)− Uobs(x, τ)∥}.

The OFV and NFSV are essentially different in dynamics; and the former is related
to a minimization problem for searching for tendency perturbation to minimize
the distance between simulation and observation while the latter is a maximization
problem for looking for the most sensitive tendency perturbation that maximizes
the departure from the reference simulation. Nevertheless, in this paper they are
mathematically unified into a NFSV-related maximization problem (Eq. (2.8));
furthermore, they are mutually supported dynamically. Therefore, to emphasize the
unity of NFSV and OFV in mathematics and simultaneously reflect the difference
of them in dynamics, the renewed OFV is restated as “NFSV-DA”[also see Tao and
Duan [31]].

From the definition of the NFSV-DA, it is easily seen that the correction term
determined by the NFSV-DA is applicable for state simulations that have had rel-
evant observations for reference. In fact, the NFSV-DA with initial error effects
being neglected, i.e. the original OFV, had been applied to correct the simulation
of ENSO events and then constructed the optimal observation array for improving
initialization of ENSO predictions [7]. Also, with the application of an ENSO model
corrected by the NFSV-DA, the role of nonlinear physical processes in the formula-
tion of the ENSO modes was clearly evaluated, thus providing a new interpretation
to the ENSO diversities [6]. However, when we are operating a realistic prediction,
there are not referable observations during the prediction period and, thus, we can-
not obtain the correction term of the NFSV-DA timely. In view of this limitation,
Tao and Duan [31] established a statistical model to depict the lead-lag relationship
between the correction term determined by the NFSV-DA and the observed sea
surface temperature anomaly using historical data for El Niño-Southern Oscillation
(ENSO) prediction. Clearly, Tao and Duan [31] suggested a way to determine the
correction term during prediction period. Then when the prediction starts, the sta-
tistical model would tell us what correction term should be used in the prediction
period; that is to say, which correction term one should adopt to offset the future
prediction error caused by combined effect of model errors and initial errors. As
such, the NFSV-DA has the potential for applications to real-time prediction of
weather and climate.

The Eqs. (2.7) and (2.8) for NFSV-DA ensure the smallest distance between
the predictions and the observations. In fact, one can also define the NFSV-DA
to make the prediction results during the whole prediction period closest to the
observations. That is, it solves the following assimilation problem.

Jo(f
′
o) = min

f′

τ∑
t=0

∥Mt(f)(f ′)(U0 + u0)− Uobs(x, t)∥ (2.9)

where t ∈ [0, τ ] is the time during the prediction period from 0 to time τ .
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As discussed above, the renewed OFV is granted with a new interpretation
according to the combined effect of model errors and initial errors and the NFSV-DA
is formed for simulations of weather and climate. Then it becomes an approach to
correct combined effect of model errors and initial errors associated with numerical
weather forecast and climate prediction by considering the relationship between the
correction term and the observations at the start time of predictions, thus providing
a new idea for improving prediction level of weather and climate (also see [32]).

3. The calculation of NFSV-DA
The NFSV-DA defined by both Eq.(2.7) and Eq.(2.9) are respectively related to an
unconstrained optimization problem. For the sake of simplicity, we directly use Mt

instead of Mt(f) above and then the basic problem they solve is the minimal value
of the Eq.(3.1).

J(f ′) =
1

2
∥Mt(f

′)(U0 + u0)− Uobs(x, t)∥2 (3.1)

To solve the minimal value of Eq.(3.1), the gradient of the cost function J with
respect to f ′ is required, which represents the fastest-descending direction of J
toward its minimal value. In numerical weather forecast and climate prediction,
the minimization problem of the Eq.(3.1) is often relevant with high dimensions
of numerical models. For such large-scale optimization, the gradient is usually
calculated efficiently by integrating the adjoint of numerical models. To facilitate
readers, we derive it here based on the NFSV in Duan and Zhou [12] and Feng
and Duan [14]. If the Eq.(3.1) adopts the L2 norm, it can be rewritten as an inner
product form with the sign < · >.

J(f ′) =
1

2
< u(t),u(t) >, (3.2)

where u(t) = Mt(f ′)(U0 + u0)− Uobs(x, t)
The first-order variation of J follows.

δJ =< u(t), δu(t) >=<
∂J

∂u0
, δu0 > + <

∂J

∂f ′ , δf ′ >, (3.3)

where δu(t) and δf ′ are the solutions of the following tangent linear model.

∂δu
∂t = ∂F (U(t)+u(t))

∂u δu + δf ′,

∂δf ′

∂t = 0,

δu|t=0 = δu0,

δf ′|t=0 = δf ′.

(3.4)

Two Lagrangian Multipliers λ1 and λ2 are introduced and there obtain that

δJ = < u(t), δu(t) > −
∫ t

0

< λ1(t
′),

∂δu
∂t′

− ∂F (U(t′) + u(t′))
∂u δu − δf ′ > dt′

−
∫ t

0

< λ2(t
′),

∂δf ′

∂t′
> dt′.

(3.5)
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An integration by parts is applied to the Eq.(3.5), then one can get

∫ t

0

< λ1(t
′),

∂δu
∂t′

> dt′=

∫ t

0

∂

∂t′
< λ1(t′), δu > dt′ −

∫ t

0

<
∂λ1(t′)
∂t′ , δu > dt′

=<λ1(t), δu(t)>−<λ1(0), δu(0)>−
∫ t

0

<
∂λ1(t′)
∂t′ , δu>dt′

and ∫ t

0

< λ2(t
′),

∂δf ′

∂t′
> dt′

=

∫ t

0

∂

∂t′
< λ2(t

′), δf ′ > dt′ −
∫ t

0

<
∂λ2(t

′)

∂t′
, δf ′ > dt′

= < λ2(t), δf ′(t) > − < λ2(0), δf ′(0) > −
∫ t

0

<
∂λ2(t

′)

∂t′
, δf ′ > dt′

= < λ2 (t) , δf ′ > − < λ2(0), δf ′ > −
∫ t

0

<
∂λ2(t

′)

∂t′
, δf ′ > dt′.

Then δJ is derived as follows.

δJ =

∫ t

0

<
∂λ1(t

′)

∂t
, δu > dt′+ < u (t)− λ1 (t) , δu (t) > + < λ1 (0) , δu (0) >

+

∫ t

0

< λ1(t
′),

[
∂F (U + u)

∂u

]
δu > dt′ +

∫ t

0

< λ1(t
′), δf ′ > dt′

+

∫ t

0

<
∂λ2(t

′)

∂t
, δf ′ > dt′ + < λ2 (0) , δf ′ > − < λ2 (t) , δf ′ >

=

∫ t

0

<
∂λ1(t

′)

∂t
, δu > dt′ + < u (t)− λ1 (t) , δu (t) > + < λ1 (0) , δu (0) >

+

∫ t

0

<

[
∂F (U + u)

∂u

]∗
λ1(t

′), δu > dt′ +

∫ t

0

< λ1(t
′), δf ′ > dt′

+

∫ t

0

<
∂λ2(t

′)

∂t
, δf ′ > dt′ + < λ2 (0) , δf ′ > + < 0− λ2 (t) , δf ′ >,

(3.6)

where [·]∗ denotes an adjoint. Comparison is performed between Eqs.(3.6) and (3.3)
and the gradients of J with respect to initial perturbations u0 (see Eq.(3.7)) and
tendency perturbations f ′ (see Eq.(3.8)) can be obtained, respectively.

∂J

∂u0
= −λ1 (0) , (3.7)

and

∂J

∂f ′ = − λ2 (0) , (3.8)
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where λ1 (t) and λ2 (t) satisfies

∂λ1(t
′)

∂t′ +
[
∂F (U+u)

∂u

]∗
λ1(t

′) = 0,

∂λ2(t
′)

∂t′ + λ1(t
′) = 0,

λ1|t′=0 = u (t) ,

λ2|t′=t = 0,

(3.9)

and the Eq.(3.9) is the adjoint equation of tangent linear model Eq.(3.4).
It is clear that the gradient associated with the NFSV-DA can be calculated with

∂J
∂f ′ = −λ2(0). With this gradient information, the correction term f ′

o determined by
the NFSV-DA can be automatically calculation using an optimization solver such as
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm (see
[22] for the details of L-BFGS).

4. Evaluations to abilities of NFSV-DA in improv-
ing prediction skill of weather and climate

Numerical weather forecast and climate prediction are often contaminated by both
initial errors and model errors; and the NFSV-DA here aims at offsetting the predic-
tion errors caused by them and thus improving the prediction level. Then we ask:
how well does the NFSV-DA perform in predictions of weather and climate? Actu-
ally, since the NFSV-DA including the original OFV and renewed OFV here was
proposed, it has been applied to the studies of predictability associated with high-
impact weather event tropical cyclone (TC) and climate event El Niño predictions.
Next, we will summarize the results of these studies and evaluate the potential role
of the NFSV-DA in improving numerical weather forecast and climate prediction.

4.1. El Niño predictability
El Niño is a famous phenomenon of interannual time scale in the tropical Pacific
Ocean and has great global effects on weather and climate anomalies. El Niño
predictions are always very important for disaster prevention and mitigation. There
are mainly two flavors of El Niño: one has a warm sea surface temperature (SST)
center in the eastern tropical Pacific Ocean and is often named EP-El Niño while
the other possesses a warm SST center in the central Pacific Ocean and is entitled as
CP-El Niño [1]. Due to different climate effects of two flavors of El Niño, it is very
necessary to predict the types of El Niño [20]. Presently, types of El Niño can only
be distinguished with a lead time of 1-4 months in hindcast experiments [17]. In
realistic forecasts, the prediction skill of the types of El Niño is almost zero. Results
have shown that initial errors of particular structure can cause large prediction error
of EP-El Niño; especially, the spring predictability barrier (SPB), which causes the
prediction skill of El Niño decreasing rapidly when predictions are made bestride
spring and is often encountered by El Niño predictions, has been thought of as being
resulted from the initial error effects [10,16,25,35]. For CP-El Niño events, Tian and
Duan [33] demonstrated that they are more predictable than the EP-El Niño events
without the effects of model errors, whereas in realistic forecasting, the EP-El Niño
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events usually present higher forecasting skill than the CP-El Niño events. Beyond
doubt, it is model errors that cause such a contradiction. Furthermore, most of
current models cannot simulate well the types of El Niño, which also reflects the
effect of model error on simulation of types of El Niño. It is therefore inferred that,
if predicting the types of El Niño, both initial errors and model errors are ought to
be jointly considered. As mentioned earlier, the NFSV-DA deals with reduction of
prediction error caused by initial and model errors, which exactly meets the need
of prediction of types of El Niño. Now we just evaluate how well it performs in
improving predictions of types of El Niño by retrospecting previous results.

Figure 1. The winter SST patterns of CP-El Niño in the (a) observations, (b) ICM predictions and
(c) NFSV-ICM predictions, where the lead time is six months. The PCC is the spatial correlation
coefficient between the observation and prediction. The NFSV-ICM, compared with the ICM, reproduced
successfully CP-El Niño events of concerned much well. This figure is from [32].

Tao and Duan [31] applied the NFSV-DA to an intermediate complex model
(ICM; [36]) and established a new ENSO forecasting system: NFSV-ICM, which,
due to the use of the NFSV-DA approach, considers the reduction of prediction
errors caused by initial and model errors. When the NFSV-ICM was used to predict
the El Niño events after the middle of 1970s, it can predict well the dominant SST
anomaly modes of EP- and CP-El Niño events in their mature phases while the
original ICM predicts CP-El Niño into either an EP-El Niño event or a cool event
and fails to output CP-El Niño in predictions (see Figure 1); especially, the NFSV-
ICM greatly weakened the effect of SPB phenomenon (see [31, 32]). If it is the
question that how long the NFSV-ICM can predict which type of El Niño will
occur, the results in Tao et al. [32] suggested that the NFSV-ICM can identify the
types of El Niño at a lead time of at least 7 months. It is obvious that the ability
of the NFSV-ICM identifying the types of El Niño in predictions is greatly superior
to that of the lead times 1-4 months shown in previous study [17].
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The NFSV-ICM has also been applied in the real-time prediction of El Niño
events during recent five years. For these El Niño predictions, there are many
models internationally that underwent severe challenging [2]. For example, most of
the models failed to predict 2015/16 strong El Niño event with a 12-month lead time
and then subsequent double La Nina variability during 2016-2018 [21]; for the 2019
CP-El Niño event, many models tended to predict it a strong EP-El Niño event
at the beginning of the year; and for the ongoing 2021/22 La Nina event, a lot of
models are experiencing another confusing. However, for these events the NFSV-
ICM performed well in predicting their warm and cold phases and even their types
(see Figure 2 for 2019 CP-El Niño prediction made by the NFSV-ICM), certainly
highlighting the advantages of the NFSV-DA in improving climate predictions.

Figure 2. The observed SST anomalies from January 1st, 2019 to December 30th, 2019 and their
predictions made by NFSV-ICM. (a) Observations and (b) predictions. The predictions captured the
dominant mode of the observed SST anomalies, which exhibited a CP-El Niño event.

From above discussions, it is obvious that the NFSV-ICM has had a better
performance in predicting and distinguishing the types of El Niño events. Of course,
this is due to the fact that the NFSV-ICM offsets effect of both initial errors and
model errors by the NFSV-DA. With this skill, it is expected that the NFSV-ICM
can continue to keep better performance in the future predictions; even with the
increasing of new observations, the NFSV-DA can show greater advantages in future
predictions of ENSO.

4.2. TC intensity and rainfall
TCs are a kind of typical high-impact weather events, which are an intense circular
storm phenomenon that originates over warm tropical oceans and is characterized by
low atmospheric pressure, high winds, and heavy rain. TCs cause the most dramatic
and damaging effects and then the forecasts of TCs are extremely important for
disaster prevention and mitigation. TC track and intensity and accompanied rainfall
are often concerned for TC forecasts. The forecasts of TC track have been greatly
improved in recent 30 years despite there still exist non-negligible uncertainties
[5, 13]; in contrast, the forecasting level of TC intensity is far behind that of the
TC track, even the forecast of TC rainfall is much worse. Some studies emphasized
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effect of the errors occurring in intensity and structure of initial eddy on TC intensity
forecasts while other studies thought that model errors play a much important role
in yielding forecasting uncertainties of TC intensity [4,15]. In any case, it is logical
that TC intensity forecasts require to jointly consider initial errors and model errors,
which certainly provides an opportunity to evaluate the role of the NFSV-DA in
offsetting the error effects and improving TC forecasting level. In this section, we
evaluate the usefulness of the NFSV-DA in neutralizing prediction errors caused by
initial errors and model errors.

Qin et al. [29] first applied the NFSV approach of dealing with the most disturb-
ing model error (i.e. solving the a maximization problem) to identify the optimally-
growing tendency perturbations of nine TC cases using the Weather Research and
Forecasting (WRF; http://www.wrf-model.org/) model. Then they concluded that
these tendency perturbations result in the largest departure of the TC intensity
measured by sea level pressure (SLP) from the reference simulations; especially,
they emphasized the much strong sensitivity of potential temperature change, com-
pared to that of moisture change, in causing this departure. Then Qin et al. [29]
demonstrated that the forecast of the TC intensity with a 24-hour lead time is more
sensitive to the change of the potential temperature than to that of the moisture;
especially being sensitive to the changes of potential temperature in the lower and
middle layers of the atmosphere around the center of the TCs. In view of this result,
it can infer that the potential temperature change is one of sensitive meteorologi-
cal factors and the area of the lower and middle layers of the atmosphere around
the center of the TCs represents the sensitive area of TC intensity forecasts at the
24-hour lead time. As expected, when the NFSV-DA was applied to the tendency
equation of potential temperature and an appropriate correction term was obtained
to offset combined effect of initial errors and model errors, the forecasted minimum
SLPs, i.e. the TC intensity, are much closer to the best-track data than the ref-
erence forecasts (Figure 3) (see [8, 29]). This reflects the strong sensitivity of the
TC intensity to the change of potential temperature, also sheds light on that NFSV
sensitivity and NFSV-DA are mutually supported dynamically.

For TC rainfalls, they were shown to be more sensitive to the moisture change,
and then the NFSV-DA was applied to the moisture tendency, finally improving
the TC rainfall forecasting level (see [29]). As an example, for the TC case Dujuan,
the rainfall is mainly concentrated at -6 h (i.e. the 6 hours before initial time
of forecasts), then decreases rapidly after 0 h (i.e. the initial time), and finally
becomes zero at 6 h in the reference forecast (see Figure 4). However, when the
NFSV-DA was applied to the tendency of the moisture tendency equation, the
rainfall appears at 6 h, which coincides with the fact. All these indicate that
the correction of moisture change contributes to the improvement of TC rainfall
forecasts much more, which reflects the strong sensitivity of the TC rainfall on
the moisture change revealed by the NFSV. Simultaneously, this indicates that
the NFSV-DA can effectively reduce effect of prediction uncertainties enhanced by
the moisture change sensitivity, eventually showing its usefulness in improving TC
intensity and rainfall forecast.

5. Summary and discussion
The NFSV approach for dealing with the most sensitive model error and the OFV
approach for offsetting model error effects were reviewed. Relating OFV to NFSV,
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Figure 3. The intensity forecasts of nine TCs the NFSV-DA. Red lines represent the observed TC
intensities measured by the minimum SLP, black lines are for the reference forecasts, and the blue
lines denote the forecasts made by the NSFV-tendency assimilation, which, compared to the reference
forecasts, are much close to the observation. This figure is from Duan and Qin [8].

Figure 4. TC rainfall (> 0.5 mm; red color) at −6 h (a) and 0 h (b) in reference forecast, and at 6 h
in the forecast made by the NFSV-DA (c) for the TC case Dujuan, respectively. The forecast made by
the NFSV-DA presented the rainfall at 6 h, which did not appear in reference. This figure is from Qin
et al. [29].

we updated the OFV to the “NFSV-DA” approach for neutralizing combined effect
of model errors and initial errors. The gradient of the cost function with respect to
tendency perturbation was derived to solve the large scale of optimization problem of
the NFSV-DA. Thus, a novel approach of data assimilation is prepared for numerical
weather forecast and climate prediction.

Applications to high-impact weather and climate event forecasts were retro-
spected to evaluate the potential role of the NFSV-DA in improving forecasting
levels. Specifically, for both El Niño prediction and TC forecast, the NFSV-DA can
help improve greatly the prediction levels of El Niño diversity and TC intensity and
rainfall, especially making a breakthrough in overcoming SPB effect and reproduc-
ing TC rainfall in predictions. Therefore, the NFSV-DA has potential for becoming
a useful assimilation approach for offsetting combined effect of model errors and
initial errors and improving weather and climate prediction skill.
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Despite the NFSV-DA has achieved successful applications in prediction of El
Niño and TCs, it remains unknown whether or not the NFSV-DA is still useful when
it is used to the forecasts of other weather and climate events. Therefore, more
weather and climate phenomena should be investigated to explore the robustness of
the usefulness of the NFSV-DA in improving prediction level. For the calculation
of the NFSV-DA, although the adjoint-related gradient was derived to enable itself
applicable for solving predictability problem of large scale, it is still time consuming
and limits the efficiency of real-time weather forecast. Furthermore, it is not all
numerical models that possess an adjoint; especially, developing the adjoint of a
model is cumbersome and time-consuming, which greatly limits the widespread
applications of the NFSV-DA. It is therefore that a much efficient algorithm should
be developed to calculate the NFSV-DA, especially avoidance of the use of adjoint
models. In any case, there are still works to consummate the NFSV-DA approach.
And it is expected that the NFSV-DA will be much useful in improving weather
and climate predictions.
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