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Abstract. In this paper, complex network theory has been applied to reveal the transport patterns and coopera-
tive regions of fine particulate matter (PM2.5) over China from 2015 to 2019. The results show that the degrees,
weighted degrees, and edge lengths of PM2.5 cities follow power law distributions. We find that the cities in the
Beijing–Tianjin–Hebei–Henan–Shandong (BTHHS) region have a strong ability to export PM2.5 pollution to
other cities. By analyzing the transport routes, we show that a mass of links extends southward from the BTHHS
to the Yangtze River Delta (YRD) regions with 1 or 2 d time lags. Hence, we conclude that earlier emission
reduction in the BTHHS region and early warning measures in the YRD region will provide better air pollution
mitigation in both regions. Moreover, significant links are concentrated in wintertime, suggesting the impact of
the winter monsoon. In addition, all cities have been divided into nine clusters according to their spatial corre-
lations. We suggest that the cities in the same clusters should be regarded as a whole to control the level of air
pollution. This approach is able to characterize the transport and cluster for other air pollutants, such as ozone
and NOx .

1 Introduction

The Earth system behaves as a complex self-regulating
system comprised of atmosphere, hydrosphere, cryosphere,
lithosphere, and biosphere, with highly nonlinear interac-
tions and feedbacks between the component parts (Steffen
et al., 2015). With the increasing understanding of interac-
tions between physical, chemical, biological, and human pro-
cesses, a new “science of the Earth”, known as Earth system
science (ESS), has been initiated (Steffen et al., 2020). Fa-
cilitated by its various tools and approaches, ESS has intro-
duced some new concepts and theories, the most important of
which is the concept of the Anthropocene (Malm and Horn-
borg, 2014). In the Anthropocene era, haze events have oc-
curred frequently in China, and the problem of air pollution

has received wide attention from the government, scholars,
and the public in China (Huang et al., 2014; Sheehan et al.,
2014).

Fine particulate matter (PM2.5) is the primary cause of
haze pollution (Ding et al., 2016; Cai et al., 2017). It has ad-
verse influences on human health, atmospheric visibility, and
global climate change (Liang et al., 2016; Liaoet al., 2017).
PM2.5 pollution is generated from both anthropogenic and
natural sources, including primary aerosols and secondary
aerosols that are produced in the atmosphere through the
chemistry of precursor gases (Squizzato et al., 2012). In re-
cent years, it has also been recognized that air pollution in a
given area is influenced not only by the air pollutant emis-
sions within the same region but also by the transport of air
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pollutants from other regions. Based on trajectory cluster-
ing methods, Li et al. (2019) concluded that regional PM2.5
transmission has become the key factor driving severe haze
in Beijing. By using the positive matrix factorization ap-
proach, Khuzestani et al. (2017) revealed that remote trans-
mission accounted for approximately 77 % of the PM2.5 con-
centration in the Ordos region. Furthermore, PM2.5 transmis-
sions are also examined using model simulations. For exam-
ple, Wang et al. (2014) quantified the regional contribution
of PM2.5 in southern Hebei by using Mesoscale Modeling
System Generation 5(MM5) and the Models-3 Community
Multiscale Air Quality (CMAQ) modeling system. Zhang et
al. (2017) investigated the effect of regional pollution trans-
port based on the GEOS-Chem chemical transport model
and its adjoint. These studies suggest that curbing air pol-
lution has not been a local issue, and the regional coordina-
tion could be an effective approach to improve the air qual-
ity of the regional atmospheric environment. In 2012, The
12th Five-Year Plan on Air Pollution Prevention and Control
in Key Regions approved proposed dividing China into three
key regions to jointly prevent air pollution, i.e., the Beijing–
Tianjin–Hebei (BTH) region, Yangtze River Delta (YRD),
and the Pearl River Delta (PRD), and major urban agglom-
erations such as Lanzhou–Xining, Wuhan and surround-
ing areas, and Shaanxi and Guanzhong city (MEP, 2012).
However, this kind of region division ignores the nonlin-
ear transport characteristics of PM2.5 concentrations; further-
more, considerable discrepancies exist in the above studies
of PM2.5 transmission in different cities and regions dur-
ing different air pollution periods. For example, the trans-
port from the BTH region to the YRD is significant during
the hazing periods (Huang et al., 2020). High PM2.5 to the
southwest and south of Beijing is related to the PM2.5 trans-
mission in Baoding and Hengshui in Hebei Province and
Dezhou, Liaocheng, Heze, Jining, and Zaozhuang in Shan-
dong Province, respectively (Li et al., 2015). Hence, PM2.5
transport for the whole of China over a long-time period is
not been fully understood; furthermore, the traditional ap-
proaches adopted in the above studies did not fully consider
the nonlinear transport processes between cities.

Methods are required that help to unveil the transport pro-
cesses at the national scale. In addition, it is important to
quantify their spatial and temporary interactions between
cities. During the last 2 decades, complex network theory has
been applied to reveal the statistical and dynamic topological
features in complex systems (Fountalis et al., 2014; Feldhoff
et al., 2015). In complex networks, geographical locations
are considered to be nodes. Links represent communications
between time series of nodes, and their strength is mea-
sured by the cross-correlation between records (Castrejon-
Pita and Read, 2010). The network-theory-based approach
has been used to study teleconnection patterns (Zhou et al.,
2015; Boers et al., 2019; Ying et al., 2019), El Niño events
(Yamasaki et al., 2008; Ludescher et al., 2013, 2014), the
North Atlantic Oscillation (Guez et al., 2012), Atlantic Mul-

tidecadal Oscillation (Wyatt et al., 2012), and Rossby waves
(Wang et al., 2013; Ying et al., 2020). This approach is also
useful in the studies of atmosphere environment systems, es-
pecially enabling us to investigate the nonlinear spatiotem-
poral dynamics between air pollution agents. Such nonlin-
ear relationships are critical for assessing the intrinsic dy-
namics of atmospheric pollution systems, but traditional sta-
tistical or model simulation methods are difficult to reveal.
The network-theory-based approach has been used to un-
cover the correlation pattern of PM2.5 concentrations (Zhang
et al., 2018), analyze the PM2.5 spillover routes in BTH re-
gion cities (Li et al., 2019), discriminate between urban and
rural tropospheric ozone (Rafael et al., 2019), and quan-
tify the interaction between upper-air conditions and surface
PM2.5 concentrations (Zhang et al., 2019). It is obvious that
complex network methods are valuable tools for depicting
and quantifying air pollution transmission and cluster among
cities. In addition, for traditional model simulation, numer-
ous parameters are needed in the simulation process. In con-
trast, complex network theory is performed based on time se-
ries of field observations, so the estimation process is faster
and more economic.

In the present study, we attempt to explore the transport
and cluster of PM2.5 based on complex networks, and in the
next section we introduce the data and methods. The patterns
of PM2.5 concentrations and their transport features and de-
marcation regions are presented in Sect. 3. Finally, the sum-
mary and discussion are detailed in Sect. 4.

2 Data and methods

2.1 Data

The daily PM2.5 concentration data for 336 cities over China
from 1 January 2015 to 31 December 2019 are used in this
study. These raw data were acquired from the China National
Environmental Monitoring Centre (CNEMC). We then pre-
processed these data according to the needs of the ambient
air quality standard for the validity of air pollutant concentra-
tion data. Specifically, the missing values in the PM2.5 data
are excluded. Following this, the error values, e.g., negative
values and those larger than 900 mg m−3 on a given day for
a given year, are removed, and for these years we deleted the
data corresponding to those days. As a result, we obtained
data for 360 valid days per year (data on 9 January, 1 April,
6 July, 5 September, and 29 November are removed), and
thus the total length is 5× 360 (1800 d).

The anomaly records of PM2.5 are adopted, where the
anomalies are obtained by subtracting the daily averages and
dividing them by the corresponding standard deviations to
remove the seasonal cycle.
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2.2 Methods

The network construction includes three steps. First, we cal-
culate the weight of the edges between nodes. Second, we ap-
ply a shuffled procedure to identify a certain threshold. Third,
we calculate network typological metrics to determine the in-
teraction strength between two nodes. Below, we detail each
step.

2.2.1 Step 1: the calculation of the weight links between
nodes

The anomalous PM2.5 time series of each node i is repre-
sented as δSi(t), where i is the node index. Similar to ear-
lier studies (Gozolchiani et al., 2011; Ying et al., 2020), we
define Xi,j (τ ) as the time-delayed cross-correlation function
for PM2.5 nodes (i and j ), i.e., δSi(t) and δSj (t). For τ > 0,

Xi,j (τ )=〈
δSi(t − τ )δSj (t)

〉
−〈δSi(t − τ )〉

〈
δSj (t)

〉√〈(
δSj (t − τ )−

〈
δSj (t − τ )

〉)2〉
·

√〈(
δSj (t)−

〈
δSj (t)

〉)2〉 , (1)

where τ denotes the time lag, which is in a range between
0 and +30 d, and Xi,j (τ )=Xj,i(−τ ). The bracket is the av-
erage over the time period of our study. We quantify the
strength of the correlations as follows (Gozolchiani et al.,
2011; Guez et al., 2014):

W
pos
i,j =

max
(
Xi,j

)
−mean

(
Xi,j

)
SD

(
Xi,j

) , (2)

W
neg
i,j =

min
(
Xi,j

)
−mean

(
Xi,j

)
SD

(
Xi,j

) . (3)

In this approach, max( ), mean( ), min( ), and SD( ) denote
the maximum, minimum, mean, and standard deviation of
the cross-correlation function Xi,j (τ ), respectively. The de-
viations in the link identification caused by persistence or au-
tocorrelation in the records are reduced through dividing the
SD(Xi,j ). We defined the maximum and minimum ofXi,j as
P

pos
i,j and P neg

i,j , respectively; τ pos
i,j and τ neg

i,j represent the max-
imum and minimum values of Xi,j (τ ), respectively; and the
sign of τ pos

i,j (or τ neg
i,j ) represents the direction of each posi-

tive (or negative) link. When τ pos
i,j > 0, the link is regarded as

coming from node i and pointing to node j . When τ pos
i,j < 0,

the link is regarded as pointing away from node j toward
node i. The direction is undefined when τ pos

i,j = 0. The defi-
nitions are similar for the negatively weighted links.

The adjacency matrix is defined as follows:

Apos
i,j =

(
1− δi,j

)
H
(
W

pos
i,j −Q

)
(4)

where δi,j is the Kronecker delta introduced to avoid self-
loops in the network and H (x) is the Heaviside step func-
tion (H (x > 0)= 1 and H (x < 0)= 0). Q denotes a certain

threshold value. The definitions are similar for the nega-
tively weighted links. We constructed networks by pruning
the links for which the statistical significance was below a
certain threshold (Guez et al., 2014). The threshold is deter-
mined according to the shuffle method, which is explained in
detail in the next section.

2.2.2 Step 2: the identification of the critical threshold

In the shuffled case, the order of years is permutated and the
order of days within each year is maintained for each pair
of nodes (Ying et al., 2020). For each link, we selected one
of two nodes randomly and then shuffled this time series by
persisting the order of days in each year and changing the
permutation of years several times. We then calculated the
cross-correlation function and weight links for the shuffled
datasets. The shuffling procedure represents the properties
of statistical quantities and the autocorrelations of the origi-
nal records, which may introduce unrealistic links. We only
considered the link weights in the original network that are
significantly higher than values in the shuffled case as a real
link; otherwise, they are classed as spurious links. According
to the principles mentioned above, Fig. 1 depicts the research
process and integration of analytical tools.

2.2.3 Step 3: the determination of network typological
metrics

The degree is the most common application for measuring
complex networks. A link that points toward a node is re-
ferred to as an “in-degree” link, and a link that points away
from a node is considered as an “out-degree” link. The “in-
weights” and “out-weights” for degrees of node i are denoted
as In(w)i and Out(w)i , representing the total incoming (or
outgoing) weighted links, respectively, as follows:

In(w)i =
∑
j

Aj,iWj,i, (5)

Out(w)i =
∑
j

Ai,jWi,j . (6)

The in- and out-weighted degrees represent a node’s depen-
dence on its surrounding nodes and the influence of the node
on the surroundings nodes, respectively. Nodes with higher
values in the network indicate a larger amount of connection
with other nodes, whereas zero values indicate that the node
is isolated.

The Girvan–Newman algorithm is used to explore regional
division in the networks. In binary networks, the quality of
community structure is typically measured by the modular-
ity (Q) function (Newman, 2006). A high value of Q sug-
gests a strong division of a network into clusters. Nodes in
the same community may have the same properties. TheQ in
networks is defined as follows:

Q=
1

2M

∑
i,j

[(
Ai,j −

kikj

2M

)
δ
(
σi,σj

)]
, (7)
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Figure 1. The flow chart of the method with complex network analysis. Please note that the above figure contains disputed territories.

Figure 2. Positive link weights as a function of geographical distancesDi,j for (a)Wpos
i,j

and (b) P pos
i,j

for real (blue) and shuffled (red) data.
Panels (c, d) are the same as panels (a, b) but for negative links.

where ki and kj are the weight of node i and j , respectively,
Ai,j is the adjacency matrix, δ is the membership function,
and M is the number of edges.

3 Results

3.1 Characteristics of the PM2.5 network

The function of positive link weights W pos
i,j and geographi-

cal distances Di,j for the original and the shuffled networks
are shown in Fig. 2a.W pos

i,j values in the original network are
greater than those in the shuffled network, indicating that the
stronger positive links are the result of information transport
of PM2.5 concentrations and the similarity of weather pat-
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Figure 3. PDF of positive (a) and negative (b) link weights for the original data and shuffled data. The blue lines represent the original data,
and the dashed red lines denote the shuffled cases.

Figure 4. (a) PDF for degree values (red dots) and the power law fit curve (black line). (b) PDF for weighted degrees (red dots) and the
power law fit curve (black line). (c) PDF for edge lengths (km) (red dots) and the power law fit curve (black line).

terns (Liu et al., 2022). For the relation between the largest
cross-correlation P pos

i,j versusDi,j , we observe that the values
in the shuffled case are smaller than those in the original case
(Fig. 2b), which is in agreement with the pattern of W pos

i,j . In
the negative case (Fig. 2c and d), there is no distinct differ-
ence between the original network and the shuffled network.

Figure 3 shows the probability density function (PDF) of
links in the original network and the shuffled network. The
PDF of positive link weights has a long tail in the original
data, which is not presented in the link weights of the shuffled
networks. The PDF of negative link weights is a signature
of random behavior, which further indicates that the many
significant positive links are not likely to occur by chance.
As a result, we consider links that are separated from the
shuffled links. Both W pos

i,j and P pos
i,j can be used as a measure

of the strength of links. In our analysis, positive link weights
of 4.2 are the threshold and accordingly gain the adjacency
matrix of the network.

In the network, 284 cities are connected by PM2.5 concen-
trations with 3930 links among cities. The clustering coef-
ficient measures the probability that the adjacent nodes of a
node are connected. If one city has a high clustering coeffi-
cient, there are close connections between its neighbors. In
this paper, the clustering coefficient is 0.46. We also analyze
the shuffled network with the same number of edges. A total

of 337 cities are connected, and the value in the shuffled net-
work is 0.07, suggesting that PM2.5 cities are more connected
to each other. The density of networks is 0.05 in the original
network, while the value is 0.03 in the shuffled network. It
reflects the degree of completeness of the network, and high
values mean strong connections between cities. The average
path length is 3.15 and 4.61 for the original and shuffled
network, indicating that cities transport the PM2.5 concentra-
tions to other cities crossed almost three other cities. PM2.5
cities have a higher clustering coefficient and lower average
path length compared with the shuffled network, demonstrat-
ing that cities with higher PM2.5 concentrations can quickly
affect their surrounding cities.

The degree of a node is one of the most important sta-
tistical properties in networks. The weighted degree charac-
terizes the total strength of correlation of the node with sur-
rounding cities. The PDF of degrees, weighted degrees, and
edge lengths of the nodes are shown in Fig. 4. It is found that
the degrees, weighted degrees, and edge lengths conform to
power law distributions that are associated with some climate
and weather phenomena such as the tropical circulations and
cyclones (Pierrehumbert, 1986). The power law exponents
are 1.3, 1.2, and 1.5, with R2 values 0.71, 0.70, and 0.63,
respectively. These links are heterogeneous, with few nodes
possessing the majority of links in the network. Most of the
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Figure 5. Distribution of in-weighted degree (a) and out-weighted degree (b) in the network of each node for positive cases.

PM2.5 concentration links remain confined to a handful of
cities.

To examine a node’s dependence or influencing role on
the other nodes, we analyze the patterns of in- and out-
weighted degrees. The direction of links is determined by
the sign of the time delay, which quantifies the incoming or
outgoing nodes. Links with zero time delay represent bidi-
rectional links. The in-weighted degree of each node mea-
sures incoming links towards the target city, and high val-
ues indicate a stronger export effect from source cities to
the target city. Out-weighted degrees denote the strength
of outgoing links to other cities, and higher values suggest
that more cities transfer their PM2.5 concentrations to the
target city. Figure 5 presents the spatial distribution of in-
and out-weighted degrees for the whole-year datasets. Dif-
ferent colors represent the ability to transmit. The dark red
indicates strong transmission capacity, while white indicates
weak transmission capacity. Regions in the Beijing–Tianjin–
Hebei–Henan–Shandong (BTHHS) region, YRD, and north-
western China show significant synchronicity with the rest of
the provinces in terms of PM2.5 mass concentrations. These
regions correspond to regions with high mean PM2.5 con-
centrations. Furthermore, we observe that the distribution of
the in-weighted degree is similar to that of the out-weighted
degree, which indicates that these cities are both recipients
and senders in the networks. This suggests that their pollu-
tion is not only due to the local emissions but also imported
from other cities. Therefore, solving air pollution should not
only rely on reducing emissions in a single city but also on
developing inter-city cooperation. Compared with the out-
weighted degrees, in-weighted degrees are stronger over the
BTHHS region. These cities (sending cities) can also ex-
port PM2.5 concentrations to other cities (recipient cities).
In addition, the values of in- and out-weighted degrees dis-
play remarkable differences in different seasons, as shown
in Fig. 6. The weighted degrees in summer and autumn are
small (Fig. 7b and c). In winter and spring, the values of in-
and out-weighted degrees are significant (especially in win-

tertime), and their patterns are similar to that of the whole
year.

3.2 Routes and clustering of the PM2.5

Both in- and out-weighted degrees offer information in terms
of nodes (cities). It is reported that urban air quality can be
substantially influenced by atmospheric transport of PM2.5
pollution from distant cities. An analysis of the edges can
contribute to revealing the transport routes of PM2.5 among
cities. A recent study found that PM2.5 concentrations over a
distance of 1000 km were related to a typical cyclonic scale
within the Rossby waves (Zhang et al., 2019). Here we dis-
cuss the transport path within 1000 km and only focus on
positive time lags. This is since they are typical links that
are related to different climate processes, and they thus en-
able detailed comparisons with the previous literature. The
transport routes show that southward propagation is predom-
inant in the sub-network (Fig. 7a; Zhang and Cao, 2015). We
focus on two groups of connections that belong to different
regions. The first group is made up of links that traveled from
the Gobi Desert over southwestern parts of Mongolia and the
Badain Jaran Desert to the BTH region. The second group is
made up of links transported from the BTHHS region to the
YRD region, and these links show a 1 or 2 d time lag. This
is consistent with previous studies obtained from the WRF-
Chem model (Huang et al., 2020). The outbreak of YRD pol-
lution usually peaks with a time lag of 1–2 d after that in the
BTHHS region.

In addition, we also analyzed the transport routes in dif-
ferent seasons (Fig. 8). The transport routes are significant
in autumn and winter, especially in wintertime. It means the
route features in winter are dominant over the whole year.
Here the southwestern links may be related to the East Asian
winter monsoon.

In complex networks, nodes that are closely related to
each other are more likely to be grouped in the same clus-
ter. Hence, cities are tightly bound to cities in the same clus-
ter and uncorrelated to cities in other clusters. The pollution
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Figure 6. Distribution of in-weighted degree (a) and out-weighted degree (b) in the network of each node for seasonal data.

transport routes presented above indicate that curbing air pol-
lution is more than just a local issue. In the following, we in-
vestigate the cluster features of our networks by utilizing the
modularity algorithm described above. Considering a larger
Q value means a more accurate community structure for net-
work segmentation, we calculate the Q value at each divi-
sion to obtain a better result. Here, 284 cities are divided

into 9 clusters, where the Q value obtains the maximum
value (0.56). The results present a strong regional character,
as shown in Fig. 7b. Cities that have the same color represent
the same cluster, which could be considered for collaborative
governance. These nine regions include the above-mentioned
three key regions: the BTH region, YRD region (contain-
ing Shanghai, Jiangsu, Anhui, and Zhejiang province), and
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Figure 7. (a) Map of PM2.5 transport links among the monitoring cities in China. (b) The cluster regions of PM2.5 concentrations. Different
colors represent different communities.

Figure 8. Distribution of transport paths in the network for spring (a), summer (b), autumn (c), and winter (d).

PRD region (including Guangdong and Guangxi). The other
interconnected areas are Heilongjiang and Jilin provinces;
Jilin and Liaoning provinces (northeastern China); Hunan
and Hubei provinces (central China); Jiangxi and Fujian
provinces; Guizhou, Chongqing, and Sichuan provinces; and
Shanxi, Shaanxi, Ningxia, and Gansu provinces.

4 Summary and discussion

By constructing PM2.5 networks based on complex network
approaches, it is found that the PDF of the degrees, weighted
degrees, and edge lengths of PM2.5 cities follow a power
law distribution, which indicates that the variability of PM2.5
concentrations in China is not random. Hence, it is reason-
able to analyze the transmission and cooperation regions of
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PM2.5 from the perspective of the whole national evolution
over a long period of time. To quantify the relations of PM2.5
among cities, the patterns of weighted degrees are investi-
gated. Higher weighted degrees are observed in the BTH re-
gion, which is consistent with the patterns of high levels of
PM2.5 concentrations. Cites in the BTH region have stronger
strength to export their PM2.5 pollution to other cities. The
distributions of weighted degrees exhibit significant differ-
ences in seasons, with the largest being in winter and the
smallest being in summer.

Based on the PM2.5 networks, the transport links and col-
laborative regions are analyzed. This showed that many links
traveled from the Gobi Desert over southwestern parts of
Mongolia and the Badain Jaran Desert to the BTH region.
The other group extends southward from the BTH region to
the YRD region and then further south to Fujian province
with a 1 or 2 d time lag. This is consistent with previous
studies obtained from the WRF-Chem model (Huang et al.,
2014). Although we get a similar transmission pattern in win-
ter, it possesses a stronger intensity. We demonstrate that this
is possibly due to the influence of cold fronts, which exactly
disperse the PM2.5 accumulated in the North China Plain to
the YRD region, which leads to the propagation of PM2.5
from the BTH region to the YRD region. Hence, links be-
tween the BTH region and the YRD region obtained over the
whole year are related to the cold front occurring in winter-
time.

In addition, we created a community detection dataset
based on the synchronicity of PM2.5 concentrations and ob-
tained nine clusters. Cities in the same regions should join
together to control air pollution. This result provides theo-
retical support for the Joint Prevention and Control of Air
Pollution (JPCAP) proposed by the national government. Re-
gional cooperation should be promoted in these regions to
implement regional policies to improve air quality.

A central implication of this study is that the transmission
and collaborative regions can be explored via the complex
network approach. For traditional model simulation, numer-
ous parameters are needed in the simulation process. In con-
trast, complex network theory is performed based on time se-
ries of field observations, so the estimation process is faster
and more economical. As our analysis is based on long-time
PM2.5 records in China rather than a particular region or
period of air pollution, it may provide a reference and ba-
sis for the development of effective regulatory policies pro-
duced by the government to improve air quality. Previous
researchers have demonstrated that the accumulated pollu-
tants in the North China Plain can transport the pollution via
strong winds to the YRD region based on traditional model
simulation, which is similar to our study. We also observed
that links that were transported from the BTHHS region to
the YRD region show a 1 or 2 d time lag. The result is con-
sistent with previous studies obtained from the WRF-Chem
model. Hence, complex network methodologies are useful
for the studies of the transport and clustering of air pollu-

tants in faster and more economical ways. Furthermore, there
is also potential for the study of other air pollutants, such as
ozone and NOx .

In addition, the study has some limitations. The relation-
ships between PM2.5 cities have been measured based on the
lagged correlations, which have yielded useful results. How-
ever, the peak of cross-correlation in a correlogram may be
spurious due to serial autocorrelation within each time series,
which is another common feature in geophysical time series.
Furthermore, the results cannot reveal causal relationships,
which may suffer from problems related to interpretability.
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