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Abstract
This paper considers the general stokes problems applying the Deep learning Galerkin
Method (DGM) and gives the convergence of the DGM which contains two parts. First,
guided by data and physical laws, depending on the L2 error we construct an objective func-
tion and control the performance of the approximation solution by minimizing the objective
function in which the prior knowledge of PDEs and data are encoded. Then, we prove the
convergence of the neural network to the exact solution. In particular, due to it is mesh
free, the DGM can reduce the computational complexity and achieve the competitive results
especially in face of the high dimensional problems. With this, compared with traditional
numerical methods, numerical results verify the theoretical analysis and show the applica-
bility and effectiveness of the proposed method.

Keywords General Stokes equations · Deep Galerkin Method · Convergence · Neural
network · Deep learning

Mathematics Subject Classification 00-01 · 99-00

1 Introduction

Partial Differential Equations (PDEs) can mathematically model and describe certain objec-
tive laws in the fields of physical chemistry, finance, natural phenomenon and engineering
technology et al. Consequently, numerical methods such as finite element method, finite
difference method and finite volume method have been flourishing in the past decades for
modeling mechanics problems via solving PDEs [1–4]. Alternatively, the other methods, just
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like generalized finite element basis functions [5] and construction of multiple difference
schemes [6] have broad applications in the same way. Although these methods are well used
in PDEs and have achieved good results, the generation of grid often has a certain impact on
the computational efficiency especially for high dimensional problems.

There has mathematical guarantee called universal approximation theorem [7] which
stating that a single layer neural network could approximate many functions in Sobolev
spaces. Neural networks have become an alternative to the numerical solution of differential
equations, because they avoid some of the drawbacks of traditional numerical techniques. It
has been considered in various forms previously since the 1990s and gains a lot of interests
for efficiently solving differential equations [8]. For example, domain discretization usually
involves a simple square domain, and does not require special processing for nonlinear
differential equations. Such as Cellular Neural Network and Distributed Parameter Neural
Network are used for one-dimensional PDEs [9, 10], single layer Chebyshev neural network
[11], recurrent neural network and ansatz method [12, 13] can also solve the PDEs. Sun et
al. [14, 15] used Bernstein neural network and extreme learning machine to solve low order
ordinary differential equations and elliptic PDEs.

Due to the limit of the traditionalmethods, researchers gradually consider the deep learning
methods for solving higher-dimensional problems. Inspired by machine learning, the deep
learningmethods learn the parameters of neural network byminimizing an objective function.
These methods combine the random sampled data and the prior knowledge of PDEs and thus
can avoidmesh generation to some certain extent.With this, deep learningmethod has certain
adaptability for unknown data, which can guarantee the high accuracy through training the
models [16–30]. Despite such remarkable works, the theoretical research still needs to be
promoted. Latterly, quiet a few researchers enriched mathematical analysis on the excellent
performance of deep neural network in PDEs [31–35].

In this paper, the DGM is applied to solve the general d-dimentional incompressible
Stokes problems, which is trained on batches of randomly sampled points satisfying the
differential operator, initial condition and boundary condition without generating mesh grid.
The optimal solution is obtained by using the stochastic gradient descent method instead
of a linear combination of basic functions. In particular, this method computes variables in
parallel and overcomes the infeasibility and limitations of the traditional numerical methods
especially for the high dimensional incompressible Stokes equations. Based on the objective
function, the DGM numerically manifests the efficiency and flexibility. Moreover, we prove
the convergence of the objective function and the convergence of the neural network to the
exact solution.

The remaining of this paper is organized as follows: In Sect. 2,we provide the preliminaries
of methodology of the PDEs. In Sect. 3, we prove the convergence of the objective function
and the convergence of the neural network to the exact solution. Section 4 gives numerical
examples to demonstrate the efficiency of the proposed framework and justify our theoretical
analysis. Finally, Sect. 5 presents a conclusion.
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2 Methodology

Let � be a bounded, compact and open subset of Rd(d = 2, 3, ...). With regular boundary
∂� ⊂ R

d-1. We consider the general Stokes equations with Dirichlet boundary condition.

αu − ν∇2u + ∇ p = f , in �, (1)

∇ · u = 0, in �, (2)

u = g, on ∂�, (3)

where α > 0 is a positive constant, ν denotes the viscosity coefficient, u and p represent
velocity and pressure respectively, f and g are source terms. For notational brevity, we set
u = (u, p) and define

G[u] = αu − ν∇2u + ∇ p − f . (4)

Here, we recall the classical Sobolev spaces

Hk(�) =
{
υ ∈ L2(�) : Dα

wυ ∈ L2(�),∀α, | α |≤ k
}
,

Hk
0 (�) =

{
υ ∈ Hk(�) : υ |∂�= 0

}
,

L2
0(�) = {q ∈ L2(�) :

∫

�

qdx = 0},
and their norm

‖ υ ‖k = √
(υ, υ)k =

{ k∑
|α|=0

∫

�

(Dα
wυ)2dx

} 1
2

,

‖q‖0 =
(∫

�

q2dx

) 1
2

,

where k > 0 is a positive integer and ‖q‖0 denotes the norm on L2
0(�) or (L2(�))i , i =

1, 2, 3, Dα
wυ is the generalized derivative of υ, and (·, ·) represents the inner product.

In order to obtain the well-posedness of the general Stokes equations, we have the follow-
ing results.

Lemma 2.1 [38] Assume that � is a bounded and connected open subset of Rd with a
Lipschitz-continuous boundary �, f ∈ [L2(�)]d and g ∈ [H1/2(�)]d such that

∫

�

g · −→n ds = 0,

there exists a unique pair u ∈ [H1
0 (�)]d × L2

0(�) of the general Stokes Eqs. (1)-(3). Fur-
thermore, we have

∥∥u∥∥
2 + ∥∥p∥∥1 ≤ C(

∥∥ f
∥∥−1 + ∥∥g∥∥3/2,∂�

). (5)

Generally, assuming that U = (
U (x;θ1), P(x;θ2)

)
is the approximate solution to the

general Stokes Eqs. (1)-(3), θ1 and θ2 are the stacked components of the neural network’s
parameters θ for velocity and pressure respectively. Define the objective function

J (U ) =
∥∥∥G[U ](x; θ)

∥∥∥
2

0,�,ω1
+

∥∥∥∇ ·U (x; θ1)

∥∥∥
2

0,�,ω1

+
∥∥∥U (x; θ1) − g(x)

∥∥∥
2

0,∂�,ω2
.

(6)
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Fig. 1 The neural network architecture of the general Stokes equations

It should be noted that J (U ) can measure how well the approximate solution satisfies
differential operator, divergence condition and boundary condition. Notice that

∥∥ f (y)
∥∥2
0,Y,ω

=
∫

Y

∣∣ f (y)∣∣2ω(y)dy,

where ω(y) is the probability density of y in Y .
Our goal is to find the parameters θ such that U minimizes the objective function J (U ).

Especially, if J (U ) = 0 then U is the solution to the general Stokes Eqs. (1)-(3). However,
it is computationally infeasible to estimate θ by directly minimizing J (U ) when integrated
over a higher dimensional region. Here, we apply a sequence of random sampled points from
� and ∂� to avoid forming mesh grid. The main idea of the DGM for the general Stokes
equations are displayed in Fig. 1.

In this process, the “learning rate"αn ∈ (0, 1) decreases as n → ∞. The term∇θG(θn, sn)
is unbiased estimate of ∇θ J

(
U (·; θn)

)
because we can estimate the population parameters

by sample mathematical expectations such as

E

[
∇θG(θn, sn) | θn

]
= ∇θ J

(
U (· ; θn)

)
. (7)

In order to illustrate more vividly, the pseudocode is shown in Algorithm 1.

3 Convergence Analysis

Undoubtedly, the objective function J (U ) can measure how well the neural network U
satisfies the differential operator, boundary condition and divergence condition. We know
that the total errors of neural networks-based supervised learning can be decomposed into
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Algorithm 1: Deep learning Galerkin Method
Input: Randomly sample points sn = (xn , rn), Max Iterations M , learning rate αn .
Output: θn+1.
Initialize the parameters θ ;
while iterations ≤ M do

read current;

G(θn , sn) =
(
G[U ](xn; θ)

)2

+ (∇ ·U (xn; θ1)
)2 +

(
U (rn; θ1) − g(x)

)2

and

θn+1 = θn − αn∇θG(θn , sn).

if lim
n→∞‖∇θG(θn , sn)‖ = 0 then

return the parameters θn+1;
else

go back to the beginning of current section;

end
end

three components: (a) approximation error, (b) optimization errors, and (c) estimation error.
In this paper, the convergence analysis we discussed is generalization error, which contains
approximation error and estimation error.

In more detail, the “convergence” means that we can use the multilayer feed forward
networks U to universally approximate the exact solution to the general Stokes equations.
Therefore, the neural network U can make the objective function J (U ) arbitrarily small.
As we known from [7], if there is only one hidden layer and one output, then the set of all
functions implemented by such a network withm and n hidden units for velocity and pressure
are

[Cm
u (ϕ)]d =

{
�(x) : Rd 
→ R

d
∣∣∣��(x) =

m∑
i=1

βiϕ
( d∑
j=1

σ j i x j + ci
)}

,

and

Cn
p(ψ) =

{
�(x) : Rd 
→ R

∣∣∣�(x) =
n∑

i=1

β ′
iψ

( d∑
j=1

σ ′
j i x j + c′

i

)}
,

where � = 1, 2, . . . , d, �(x) = (
�1(x),�2(x), · · · ,�d(x)

)
, ϕ and ψ are the shared

activation functions of the hidden units in C2(�), bounded and non-constant. x j is input,
βi , β

′
i , σ j i and σ ′

j i are weights, ci and c
′
i are thresholds of neural network.

More generally, we still use the similar notation

[Cu(ϕ)]d × Cp(ψ)

for the multilayer neural networks with an arbitrarily large number of hidden units m and n
respectively such as [Cu(ϕ)]d × Cp(ψ) = ⋃

m≥1[Cm
u (ϕ)]d × ⋃

n≥1 C
n
p(ψ). The parameters

can be written as follows

θ�
1 = (β�

1, · · · , β�
m, σ �

11, · · · , σ �
dm, c�

1, · · · , c�
m),

θ2 = (β ′
1, · · · , β ′

n, σ
′
11, · · · , σ ′

dn, c
′
1, · · · , c′

n),
(8)
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where � = 1, 2, . . . , d, θ1 ∈ R
(2+d)md and θ2 ∈ R

(2+d)n .
In this section, we show that the neural network U

n
with n hidden units for U and P

satisfies the differential operator, boundary condition and divergence condition arbitrarily
well for sufficiently large n. Moreover, we prove that there exists U

n ∈ [Cn
u(ϕ)]d × Cn

p(ψ)

such that J (U
n
) → 0 as n → ∞. Another significant consideration, we give the convergence

of U
n → u as n → ∞ where u is the exact solution to the general Stokes Eqs. (1)-(3).

3.1 Convergence of the Objective Function J(U)

A particularly important processing, we use the multilayer feed forward networks U to
universally approximate the exact solution to the general Stokes equations. Certainly, the
neural network U can make the objective function J (U ) arbitrarily small. Thus, using the
results of [7] and the following lemma, we obtain the convergence of the objective function
J (U ). First, we give the following assumption.

Lemma 3.1 Assume that∇u(x),
u(x) and∇ p(x) are locally Lipschitz with Lipschitz coef-
ficient that they have at most polynomial growth on u(x) and p(x). Then, for some constants
0 ≤ qi ≤ ∞(i = 1, 2, 3, 4) we have

| 
U − 
u |≤ (| ∇U |q1/2 + | ∇u |q2/2) | ∇U − ∇u |, (9)

| ∇P − ∇ p |≤ (| P |q3/2 + | p |q4/2) | P − p | . (10)

Theorem 3.1 Under the assumption of Lemma 3.1, there exists a neural network U ∈
[Cu(ϕ)]d × Cp(ψ), satisfying

J (U ) ≤ Cε, ∀ε > 0, (11)

where C depends on the data {�,α, ν, ω1, ω2, f }.

Proof ByTheorem3 of [7], we can conclude that there existsU ∈ [Cu(ϕ)]d×Cp(ψ)which is
uniformly 2-dense on compacts of C2(�̄)×C1(�̄). Itmeans that for u ∈ C2(�̄)×C1(�̄), ∀ε >

0, it follows that

max
a≤2

sup
x∈�

| ∂ax U (x) − ∂ax u(x) |< ε, (12)

sup
x∈�

| P(x) − p(x) |< ε. (13)

According to the Lemma 3.1, using the Hölder inequality and Young inequality, setting
r1 and r2 are conjugate numbers such that 1

r1
+ 1

r2
= 1, we find that
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∫

�

| 
U − 
u |2 dω1(x)

≤
∫

�

(
| ∇U |q1 + | ∇u |q2

)(
∇U − ∇u

)2
dω1(x)

≤
[ ∫

�

(
| ∇U |q1 + | ∇u |q2

)r1
dω1(x)

]1/r1

×
[ ∫

�

(
∇U − ∇u

)2r2
dω1(x)

]1/r2

≤
[ ∫

�

(
| ∇U − ∇u |q1 + | ∇u |q1∨q2

)r1
dω1(x)

]1/r1

×
[ ∫

�

(
∇U − ∇u

)2r2
dω1(x)

]1/r2

≤ Cε2,

(14)

where q1 ∨ q2 = max{q1, q2}.
Similarly,

∫

�

| ∇P − ∇ p |2 dω1(x)

≤
∫

�

(
| P |q3 + | p |q4

)(
P − p

)2
dω1(x)

≤
[ ∫

�

(
| P |q3 + | p |q4

)r3
dω1(x)

]1/r3

×
[ ∫

�

(P − p) |2r4 dω1(x)
]1/r4

≤
[ ∫

�

(
| P − p |q3 + | p |q3∨q4

)r3
dω1(x)

]1/r3

×
[ ∫

�

(
P − p

)2r4
dω1(x)

]1/r4

≤ Cε2,

(15)

where 1
r3

+ 1
r4

= 1 and q3 ∨ q4 = max{q3, q4}.
For the boundary condition, we have

∫

∂�

| U − u |2 dω2(x) ≤ Cε2. (16)

Thanks to (14)-(16), we obtain
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J (U ) = ∥∥G[U ](x; θ)
∥∥2

�,ω1
+ ∥∥∇ ·U (x; θ)

∥∥2
�,ω1

+ ∥∥U (x; θ) − g(x)
∥∥2

∂�,ω2

=
∫

�

| 
U − 
u |2 dω1(x) +
∫

�

| ∇P − ∇ p |2 dω1(x)

+
∫

�

| αU − αu |2 dω1(x) +
∫

�

| ∇ · u |2 dω1(x)

+
∫

�

| ∇ · (U − u) |2 dω1(x) +
∫

∂�

| U − u |2 dω2(x)

≤ Cε2,

(17)

which implies (11) after rescaling ε. ��

3.2 Convergence of the Neural Network to the General Stokes Solution

We have discussed the convergence of the objective function J (U ) in the last subsection.
Next we give the convergence of the neural networkU

n
to the exact solution u for the general

Stokes equations with homogeneous boundary condition

αu − ν∇2u + ∇ p = f , in �, (18)

∇ · u = 0, in �, (19)

u = 0, on ∂�. (20)

Recall the form of the objective function with

J (U ) = ‖G[U ]‖20,� + ‖∇ ·U‖20,� + ‖U‖20,∂�.

By Theorem 3.1, we obtain

J (U
n
) → 0 as n → ∞.

Furthermore, according to the thought of the Galerkin method, each neural networkU
n =

(Un, Pn) satisfies the following equations

G[Un] = 0, in �, (21)

∇ ·Un = 0, in �, (22)

Un = 0, on ∂�. (23)

In this subsection, we do not explore more discussions on inhomogeneous problems since
the inhomogeneous problems can be solved by the corresponding homogeneous method (See
Sect. 4 of Chapter V in [36] or Chapter 8 of [37] for details). For convenience, we provide a
theorem to guarantee the convergence of the neural network U

n
and the exact solution u to

the Eqs. (18)-(20).

Theorem 3.2 Under the assumptions of Lemma 3.1, Theorem 3.1, the neural network Un

can converge strongly to u in L2(�), and the Pn converges strongly to p in H−1(�). In
addition, if the sequences {Un}n∈N and {Pn}n∈N are uniformly bounded and equicontinuous
in �, they can uniformly converge to u and p respectively in �.

Proof The existence and uniqueness for the solution of (18)-(20) are proved by the Sad-
dle point theorem (See Lemma 2.1). We briefly consider the boundness of (Un, Pn) ∈
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[Cn
u(ϕ)]d ⋂[H1

0 (�)]d × Cn
p(ψ)

⋂
L2
0(�) for the Eqs. (21)-(23). Multiplying the above

equations by (v, q) ∈ [Cn
u(ϕ)]d ⋂[H1

0 (�)]d × Cn
p(ψ)

⋂
L2
0(�), we obtain the variational

formulation as follows:

α(Un, v) + ν(∇Un,∇v) − (∇Pn, v) + (∇ ·Un, q) = ( f , v). (24)

Noting that

(∇Pn, v) = −(∇ · v, Pn), (25)

taking (v, q) = (Un, Pn) in (24), and using the definition of the H1-norm, it follows that

‖Un‖1,� ≤ C‖ f ‖−1,�. (26)

By using the uniformly boundedness ofUn , we can extract a subsequence {Un}n∈N ofUn

which can converge weakly in H1(�). Due to the compact embedding H1(�) ↪→ L2(�),
we have lim

n→∞ ‖ Un − u ‖0,�= 0.

In order to study the pressure of the general Stokes problem, let v ∈ [Cn
u(ϕ)]d ∩[H1

0 (�)]d ,
we define

L(v) =: ( f , v) − α(Un, v) − ν(∇Un,∇v) = 0. (27)

Then

< L, v >= 0, ∀v ∈ [Cn
u(ϕ)]d ∩ [H1

0 (�)]d ,
where < ·, · > stands for the duality pairing between [Cn

u(ϕ)]d ∩ [H1
0 (�)]d and it’s dual

space.
In addition, there exists Pn ∈ Cn

p(ψ) ∩ L2
0(�), for ∀v ∈ [Cn

u(ϕ)]d ∩ [H1
0 (�)]d such that

< L, v >=
∫

�

Pndivvdx = −(Pn, divv).

Namely,

(Pn, divv) = α(Un, v) + ν(∇Un,∇v) − ( f , v). (28)

What’s more, as in Theorem 3.3 of [40], we find that

∇Un → ∇u almost everywhere in �,

which concludes that Pn can converge weakly to p since d(v, Pn)⇀d(v, p). Applying the
same approach as for the strong convergence of {Un}n∈N to u in L2(�). Consequently, due
to the compact embedding L2(�) ↪→ H−1(�), we can obtain

lim
n→∞ ‖ Pn − p ‖−1,�= 0.

For all these reasons, {Un}n∈N can converge strongly to u in L2(�), {Pn}n∈N converges
strongly to p in H−1(�). Noting that {Un}n∈N and {Pn}n∈N are uniformly bounded and
equicontinuous in �, we can conclude that {Un}n∈N and {Pn}n∈N converge uniformly to u
and p by the well known Arzelà-Ascoli theorem. ��
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Fig. 2 The datasets in 2D case

Fig. 3 The datasets in 3D case
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Fig. 4 The relative error of different neurons

4 Numerical Experiments

The general Stokes problems are considered in this section especially with the high
dimentional problems. Our numerical experiments are based on Tensorflow [41] and the
configuration of the computer is 64-bit Intel Xeon Silver 4116 (2 processors). In order to
demonstrate the effectiveness and accuracy of the DGM, we compute the L1, L2 relative
errors and J (U ) as follows

err L1 = ‖ U − u ‖L1

‖ u ‖L1
, (29)

err L2 = ‖ U − u ‖L2

‖ u ‖L2
, (30)

J (U ) = 1

N

N∑
i=1

[∥∥G[Ui ]
∥∥2
0 + ∥∥∇ ·Ui

∥∥2
0 + ∥∥Ui − gi

∥∥2
0

]
, (31)

where Ui and ui are the neural network and exact solution on each point i = 1, 2, · · · N of
datasets, respectively. Here, we only calculate the error of velocity and the pressure is similar.
For conveniently, we set the same number of network layers to solveU and P simultaneously.
The datasets in 2D case contain 1000, 2000, 4000 and 8000 samples respectively (See Fig. 2.
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Table 1 The performance of the DGM for the 2D Stokes equations

ARCH a1 1000 2000 4000 8000

err L1 9.87 × 10−3 1.08 × 10−2 1.18 × 10−2 1.14 × 10−2

err L2 9.48 × 10−3 1.05 × 10−2 1.13 × 10−2 1.09 × 10−2

J (U ) 1.52 × 10−2 2.05 × 10−3 1.75 × 10−3 1.79 × 10−3

ARCHa2 1000 2000 3000 4000

err L1 3.79 × 10−5 4.81 × 10−5 2.95 × 10−5 4.48 × 10−5

err L2 3.99 × 10−5 5.11 × 10−5 3.15 × 10−5 4.75 × 10−5

J (U ) 9.60 × 10−8 2.71 × 10−7 1.02 × 10−7 5.14 × 10−7

ARCH a3 1000 2000 3000 4000

err L1 1.65 × 10−5 9.02 × 10−6 7.71 × 10−6 8.59 × 10−6

err L2 1.75 × 10−5 9.83 × 10−6 8.49 × 10−6 9.47 × 10−6

J (U ) 1.77 × 10−8 4.36 × 10−8 1.15 × 10−8 2.59 × 10−9

Fig. 5 The absolute error with points in 2D and 3D case

And in 3D case, the datasets contain 1200, 2400, 4800 and 9600 samples respectively (See
Fig. 3).

4.1 The Stokes Equations

In this subsection, we consider the Stokes equations with homogeneous boundary condition
both in 2D and 3D cases. Set ν = 1 and ν = 0.025 for 2D and 3D cases respectively. Use
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Fig. 6 The relative errors of different training data both in 2D and 3D case (α = 1)

the following exact solutions,

u1(x1, x2) = 2sin(πx1)
2sin(πx2)cos(πx2)π,

u2(x1, x2) = −2sin(πx1)sin(πx2)
2cos(πx1)π,

p(x1, x2) = cos(πx1)cos(πx2),

(32)

in � = (0, 1)2 and

u1(x, y, z) = sin(πx)2(sin(2π y)sin(π z)2 − sin(π y)2sin(2π z)),

u2(x, y, z) = sin(π y)2(sin(2π z)sin(πx)2 − sin(π z)2sin(2πx)),

u3(x, y, z) = sin(π z)2(sin(2πx)sin(π y)2 − sin(πx)2sin(2π y)),

p(x, y, z) = sin(πx)sin(π y)cos(π z),

(33)

in � = (0, 1)3. Then, the right hands f (x, y) and f (x, y, z) can be determined by Eq. (1),
respectively.

For the stokes equations, the results of relative errors and J (U ) are plotted in Fig. 4. It
can be observed that the results produced by the DGM converge as the number of neurons
increases. Obviously, fromFig. 4(b), for 3D problems, fewer neurons is not enough to achieve
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Fig. 7 The relative errors of different α and ARCH both in 2D and 3D case (α = 1)

the required precision. Therefore, it is indispensable to adoptmore neurons since the non-wide
and non-deep neural network has great limitation for the expression of nonlinear relationship.
Here, we choose 16 units each layer for ARCH a1-a3(1-3 hidden layers) in 2D case, 32 units
each layer for ARCH b1-b3(1-3 hidden layers) in 3D case.

Table 1 displays the value of relative error and J (U ) in 2D case, the best results for each
ARCH aremarked out. FromTable 1we can find that numerical results with different datasets
are less distinguishable. Additionally, Fig. 5 shows that the absolute error with points both
in 2D and 3D case. From the above results, we can find that with the decrease of J (U ), the
relative errors between the exact solution and the approximate solution tends to converge,
which indicate that the DGM can solve the stoke problem accurately and effectively.

4.2 The General Stokes Equations

For the general stokes problems, [42] proposed the problem of topology optimization of
fluids in Stokes flow and [43] applied the physics informed neural network for inverse design.
Consider the focus of this article is not the inverse design, we utilize a forward thought to
solve the general stokes problems with different α and verify the performance of the DGM.
Similarly, we utilize same ARCH, ν and the analytical solutions for 2D and 3D cases as
before. Consequently, the right hands f (x, y) and f (x, y, z) can be derived by Eq. (1).
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Fig. 8 The absolute error with points in 2D and 3D case for different α

Here, we firstly consider whether the precision of the neural network is related to the
number of hidden layers and the size of the datasets. Figure 6 shows that the accuracy of the
neural networks tends to be small and stable only as the hidden layer increases. A particularly
significant consideration, the relative error drops rapidly once the training data more than
100 whether in 2D or 3D case. Figures 7 and 8 display that the relative and absolute errors
with different α and ARCH both in 2D and 3D case. Seen from Fig. 7, the approximation
solution to the general Stokes problem can still maintain a stable effect with the increase of
α especially in higher hidden layers.
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Fig. 9 The contrast of the 2D driven cavity flow (ν = 0.025)

Fig. 10 The contrast of the 2D driven cavity flow (ν = 0.5)

4.3 The Driven Cavity Flow

The driven cavity flows have been extensively applied as test cases for validating the incom-
pressible fluid dynamics algorithm. The corner singularities for the 2D fluid flows are very
important since most examples of physical interest have corners. In these two examples,
we consider the 2D driven flow in a rectangular cavity when the top surface moves with a
constant velocity along its length. The upper corners where the moving surface meets the
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Fig. 11 The contrast of the 3D driven cavity flow (y = 0.5 and ν = 0.025)

Fig. 12 The contrast of the 3D driven cavity flow (y = 0.5 and ν = 0.5)

stationary walls are singular points of the flow at the multi-valued horizontal velocity. The
lower corners are also weakly singular points. Moreover, we also consider the 3D driven flow
in a cube of unit volume, centered at x = y = z = 0.5. A unit tangential velocity in the x
direction is prescribed 1 at the top surface, while zero velocity is prescribed on the remaining
bounding surfaces in numerical examples. Here, we set ν = 0.025 and ν = 0.5 for 2D and
3D cases.
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Table 2 The relative errors
between the results of the DGM
and FreeFem

2D (ν = 0.025) ARCH a1 ARCH a2 ARCH a3

err L1 8.81 × 10−2 4.28 × 10−2 3.76 × 10−2

err L2 4.50 × 10−3 7.90 × 10−3 7.10 × 10−3

2D (ν = 0.5) ARCH a1 ARCH a2 ARCH a3

err L1 5.71 × 10−2 7.00 × 10−3 3.68 × 10−4

err L2 4.70 × 10−3 4.60 × 10−3 3.90 × 10−3

3D (ν = 0.025) ARCH b1 ARCH b2 ARCHb3

err L1 3.07 × 10−1 2.02 × 10−1 1.81 × 10−1

err L2 6.90 × 10−3 5.40 × 10−3 5.30 × 10−3

3D (ν = 0.5) ARCH b1 ARCH b2 ARCH b3

err L1 2.68 × 10−1 2.02 × 10−1 1.75 × 10−1

err L2 1.00 × 10−2 7.50 × 10−3 6.50 × 10−3

We train the DGM in 2D case (1000 training data points, ν = 0.025, 0.5 and ARCH
a1-a3) and compare the results with the FreeFem in Figures 9, 10. Similarly, by using 1200
training data points and ARCH b3, the results in 3D case are depicted in Figures 11, 12.
Table 2 provides relative errors to reflect the closeness between the results of the DGM and
the FreeFem. The above numerical results indicate that the DGM has competitiveness to
model physical phenomena when ν changed.

5 Conclusions

This paper applies the DGM to solve the general Stokes problems in 2D and 3D. This
method can transform the traditional grid mesh method into a grid free algorithm by using
the random sampled data. Besides, we set the objective function appropriately to convert the
constrained problem into an unconstrained problem in the sense and give two theorems to
ensure the convergence of the objective function and the convergence of the neural network
to the exact solution. In general, this method is based on drawing random sampled points
from the domain, which can be readily extended to arbitrary domains. The numerical results
fully demonstrate the convergence properties of the DGM completely. But, we need more
deliberations on the elements which have great impact in experiments. For example, how to
construct the most suitable objective function for measuring loss and applied to optimization,
whether the deeper network can get better results and randomness has a positive effect on
the algorithm.
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