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ABSTRACT: In this paper, a new nonlinear forcing singular vector (NFSV) approach is proposed to provide mutually in-
dependent optimally combined modes of initial perturbations and model perturbations (C-NFSVs) in ensemble forecasts.
The C-NFSVs are a group of optimally growing structures that take into account the impact of the interaction between the
initial errors and the model errors effectively, generalizing the original NFSV for simulations of the impact of the
model errors. The C-NFSVs method is tested in the context of the Lorenz-96 model to demonstrate its potential to im-
prove ensemble forecast skills. This method is compared with the orthogonal conditional nonlinear optimal perturba-
tions (O-CNOPs) method for estimating only the initial uncertainties and the orthogonal NFSVs (O-NFSVs) for
estimating only the model uncertainties. The results demonstrate that when both the initial perturbations and model
perturbations are introduced in the forecasting system, the C-NFSVs are much more capable of achieving higher en-
semble forecasting skills. The use of a deep learning approach as a remedy for the expensive computational costs of
the C-NFSVs is evaluated. The results show that learning the impact of the C-NFSVs on the ensemble provides a use-
ful and efficient alternative for the operational implementation of C-NFSVs in forecasting suites dealing with the com-
bined effects of the initial errors and the model errors.

SIGNIFICANCE STATEMENT: A new ensemble forecasting method for dealing with combined effects of initial
errors and model errors, i.e., the C-NFSVs, is proposed, which is an extension of the NFSV approach for simulating
the model error effects in ensemble forecasts. The C-NFSVs provide mutually independent optimally combined
modes of initial perturbations and model perturbations. This new method is tested for generating ensemble fore-
casts in the context of the Lorenz-96 model, and there are indications that the optimally growing structures may
provide reliable ensemble forecasts. Furthermore, it is found that a hybrid dynamical-deep learning approach
could be a potential avenue for real-time ensemble forecasting systems when perturbations combine the impact of
the initial and the model errors.
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1. Introduction decrease experienced by the MCF. Toth and Kalnay (1993)
developed, in particular, the breeding method to find growing-
type initial perturbations, the bred vectors (BVs), and applied
it in the ensemble forecasting system at the National Centers
for Environmental Prediction (NCEP) in 1992. Similarly, non-
linear local Lyapunov vectors (Feng et al. 2014; Feng et al.
2016; Feng et al. 2018) and backward Lyapunov vectors (e.g.,
Vannitsem and Duan 2020; Demaeyer et al. 2022) were suc-
cessfully applied in the development of ensemble forecasts.
The European Centre for Medium-Range Weather Forecasts
(ECMWF) proposed an alternative method based on singular
vectors (SVs; Mureau et al. 1993; Buizza and Palmer 1995;
Molteni et al. 1996) and produced ensemble forecasts with
great success. The SVs capture the optimal unstable growth
property of the initial analysis errors in the linearized regime.
However, they cannot cope with the impact of nonlinear phys-
ical processes on the amplification of the initial perturbations
(Anderson 1997; Hamill et al. 2000).

Considering the limitations of the linear theory of SVs, Mu
et al. (2003) proposed the conditional nonlinear optimal per-
turbation (CNOP), which is an extension of the leading SV in
Corresponding author: Wansuo Duan, duanws@lasg.iap.ac.cn the nonlinear regime. CNOP fully considers the influence of

Due to the chaotic nature of the atmosphere, the initial
condition and numerical modeling uncertainties rapidly am-
plify (Nicolis et al. 2009). Ensemble forecasting is an impor-
tant way to estimate the prediction uncertainty and also to
provide probabilistic information on the occurrence of certain
events (e.g., Buizza 2019). Traditional ensemble forecasting
methods mainly address the impact of uncertainties on the ini-
tial conditions. The earliest method, given this context, is the
Monte Carlo forecasting method (MCF), which imposes ran-
dom initial perturbations on the initial analysis field and pro-
duces a set of ensemble members to estimate the probability
distribution of an event (Epstein 1969; Leith 1974). The MCF
was an important step forward in moving the ensemble fore-
casting approach from basic research to operational practice.
Subsequently, some studies suggested that growing-type ini-
tial perturbations can offer a good description of the initial
analysis errors (Mureau et al. 1993; Toth and Kalnay 1993,
1997), which overcome the problem of the initial perturbation
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nonlinear physical processes and represents the optimally
growing initial perturbation in the nonlinear regime. Mu and
Jiang (2008) replaced the leading SV with the CNOP to pro-
duce the initial perturbations of the ensemble forecasts, which
demonstrated higher forecast skills than the SVs (see also
Huo and Duan 2019; Zhou et al. 2021). To take into account
multiple nonlinear processes in the development of the initial
perturbations for ensemble forecasts, Duan and Huo (2016)
formulated the orthogonal CNOPs (O-CNOPs) method to
produce mutually independent nonlinear optimal initial per-
turbations for ensemble forecasting. The O-CNOPs have been
shown to display a higher ensemble forecast skill than the SVs
and BVs and a more reasonable ensemble spread for estimat-
ing the uncertainty in a hierarchy of models (Duan and Huo
2016; Huo et al. 2019; Wang and Duan 2019; Wang 2021).

The ensemble forecasting methods mentioned above focus
on considering the initial uncertainties, which are valid under
a perfect model assumption. However, there is no perfect
model in reality. Several studies have indicated that consider-
ing model errors is important for improving the skill of numer-
ical weather forecasting and climate prediction (Buizza et al.
1999; Palmer 2000; Orrell et al. 2001; Orrell 2005; Palmer et al.
2009; Duan et al. 2013; Vannitsem 2014). In view of this, new
ensemble forecasting methods have been designed to address
forecast uncertainties caused by model errors. For example,
the ECMWEF proposed a stochastically perturbed parameteri-
zation tendency scheme (SPPT; Buizza et al. 1999) and sto-
chastic kinetic energy backscatter scheme (SKEB; Shutts
2005), leading to important improvements of the ensemble
forecast skill (Berner et al. 2009; Palmer et al. 2009; Du et al.
2018; see also the special issue, Buizza 2019). Hou et al.
(2006) developed a stochastic total tendency perturbation
scheme (STTP) to emulate model uncertainties in the NCEP
global ensemble forecasting system in February 2010 (also see
Hou et al. 2008; Hou et al. 2010). In the STTP schemes, the sto-
chastic forcing term, similar to the random initial perturbations
in MCF, did not fully capture the rapid unstable growth behav-
ior of model errors. As argued above, the ensemble forecasting
system requires growing-type perturbations, which can make
the ensemble members deviate from the control forecast and
reliably encompass the true value. Therefore, in an ensemble
forecasting system incorporating the impact of model errors,
the key question is how to generate realistic rapidly growing
model perturbations.

To obtain rapidly growing model perturbations, Barkmeijer
et al. (2003) proposed using a forcing singular vector (FSV)
closely related to the SVs, which represents a rapidly growing
constant tendency perturbation in a linear framework. This
constant tendency perturbation describes the combined effects
of the model systematic errors and parts of state-dependent
model errors that are not explicitly described in the model
equations (Feng and Duan 2013). Due to the limitation of the
linear approximation of FSV, Duan and Zhou (2013) pro-
posed approaching this problem using the nonlinear forcing
singular vector (NFSV). The NFSV is a tendency perturbation
that makes the forecast deviate from the reference state more
significantly; and if it is used in an ensemble forecasting frame-
work, it could better encompass the truth and could provide
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more reliable ensembles. However, an ensemble forecasting
system requires a set of perturbations. This can be achieved
by formulating a new approach based on a set of orthogonal
NFSVs, following the idea of O-CNOPs developed in Duan and
Huo (2016). These vectors will be referred to as the O-NFSVs
in the following sections, see section 2. The O-NFSVs provide
mutually independent model tendency perturbations that en-
able the descriptions of the forecast uncertainties caused by
the model errors. However, in realistic forecasting systems,
the effect of both the initial errors and the model errors, espe-
cially the effect of their interaction, are inevitable (Nicolis et al.
2009). The key question to address in a fully integrated fore-
casting system is how to combine the initial errors and the
model errors correctly to obtain a reliable ensemble. Although
ensemble forecasting systems exist that consider both the ini-
tial errors and the model error effects (e.g., Buizza et al. 1999;
Hou et al. 2010), they are built by superimposing the indepen-
dent initial perturbations (such as SVs, BVs, or others) and
the model tendency perturbations (e.g., SPPT or STTP). To
date, no attention has been given to the dynamically coordi-
nated growth of the initial and the model perturbations,
which may limit the skill of the ensemble forecasts. To over-
come this limitation, we further extend the O-NFSVs by de-
veloping C-NFSVs that combine the impacts of the initial
errors and the model errors and formulate a novel ensemble
forecasting approach, which is tested in a simple setting
based on the Lorenz-96 model (Lorenz 1996).

The rest of this paper is organized as follows. In section 2,
the C-NFSVs are introduced, together with the particular
cases referred to as the O-NFSVs and O-CNOPs. In section 3,
the Lorenz-96 model adopted in this study is described. In
section 4, the experimental design is detailed, and in section 5,
the results of the ensemble forecasting experiments are pre-
sented. Then, the possible usefulness of deep learning in emu-
lating this type of ensemble forecast is discussed in section 6.
Finally, a summary and discussion are provided in section 7.

2. The C-NFSVs method and its two particular cases of
O-NFSVs and O-CNOPs

Let us start with a partial differential equation of the fol-
lowing form:
oU
v F[U(X, t)]a .
ot in Q X [0,7],
Ul = U,

2.1)

where U, and U(x, ¢) represent the initial field and its evolu-
tion in time, respectively, and F is a nonlinear differential op-
erator. Assuming that the dynamical system [Eq. (2.1)] and its
initial field are exactly known, then the state U(x, f) at a fu-
ture time 7 can be given by

Ux,T) = M (Uy), (2.2)
where M is the nonlinear propagator of Eq. (2.1).

Realistic forecasts are generally contaminated by both the
initial errors and the model errors. If one uses initial perturbations
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uy to represent the initial errors and tendency perturbations
f(x, r) to describe the combined effect of different kinds of
model errors (see Barkmeijer et al. 2003; Duan and Zhou
2013; Duan and Zhao 2014; Tao and Duan 2019; Tao et al.
2020), the equations of the forecast model can be written
as

(U + u) —F
at
U-+ul_,=U, +u,

(U + u) + f(x,1),

inQx[0,7T], (23)

where Q) represents a domain in R". If one uses M(f)(-) to de-
note the propagator of Eq. (2.3) from the initial time ¢ = 0 to
the prediction time ¢ = T, the corresponding prediction er-
ror (denoted by ur) can be expressed as

u, = M (H)(U, + uy) — M (Uy), (2.4)
where M(Uy) is the reference state (to be predicted), not
contaminated by any errors.

Based on Eq. (2.4), Mu et al. (2003) proposed the CNOP
by assuming a perfect model (i.e., f = 0), which represents the
initial error that causes the largest prediction error at the pre-
diction time. On the other hand, Duan and Zhou (2013) de-
veloped the NFSV approach under a perfect initial condition
assumption (i.e., uy = 0), which describes the model tendency
error that caused the largest prediction error at the prediction
time. Based on these two approaches and considering time-
constant model errors (i.e., tendency perturbation f is assumed
to be constant), we can express the maximization problem lead-
ing to the C-NFSVs as follows:

J(f;) = Ifne?lX”MT(fj)(UO + rf]) - MT(U())”;,» (2.5)
I 7
where
f, € R", (I, 1l, = oy,
i {f e R|lIEll, <oy, £LQ,, k=1,....j =1}, j>1,
(2.6)

and ||rf].||a = oy; the symbol {-} refers to an ensemble of vectors,
and L indicates the orthogonality; ||-||, and ||-|, are the norms
that are used to measure the amplitudes of the initial per-
turbations rf; and tendency perturbations f; and the depar-
ture from the reference state at time 7, respectively; of
and oy are positive constant numbers that constrain the am-
plitudes of the tendency perturbations and the initial
perturbations, respectively. Note that rf; is the initial per-
turbation, where r = oy/0; is the magnitude. The combined
modes (rf;,f;) define the C-NFSVs.

Here, we assume that the initial errors and the model errors
are closely related and amplify along the same direction in
phase space. This simplification makes life easier but is also
justified by the dynamics of the model errors that are also am-
plified by the generic chaotic mechanism at the origin of the
amplification of the initial errors and which after some time
behave as an initial error perturbation (Nicolis 2003; Vannitsem
2006; Nicolis et al. 2009).
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The C-NFSVs consist of mutually orthogonal initial perturba-
tions and tendency perturbations, which coherently maximize
the cost function at time T in (). In other words, the C-NFSVs
coherently induce perturbation evolution [i.e., ur in Eq. (2.4)],
which are the largest. Moreover, their corresponding objective
function values rank as ](f;) > ](f;) > > J(f:).

O-NFSVs: If the initial fields could be exactly known [i.e.,
ug = 0in Eq. (2.4) or r = 0 in Eq. (2.5)], the prediction errors
would only be caused by model errors f. Then, Eq. (2.5)
becomes

J(£) = max||M(£)(Uy) — M (Ui, 27

fieQ
which, combined with the constraint condition in Eq. (2.6),
provides a group of mutually orthogonal model tendency
perturbations. These tendency perturbations correspond to
the orthogonal NFSVs (O-NFSVs), which generalize the
NFSV idea defined in Duan and Zhou (2013) [i.e., the ten-
dency perturbation with j = 1 in Eq. (2.7)] to mutually or-
thogonal subspaces of the model tendencies.

O-CNOPs: If the model is considered perfect (i.e., f = 0)
and only initial errors u, are considered, Eq. (2.5) can be re-
written as

](“3/) = l{ngg ||MT(U0 + qu) - MT(UQ)”b- (2.8)
0=

Equation (2.8), together with ||u0].||a = gy, yields the O-CNOPs
defined by Duan and Huo (2016). For j = 1, the resultant
initial perturbation is the CNOP proposed by Mu et al.
(2003). The O-CNOPs have better performance than the
singular vectors and bred vectors in ensemble forecasts for
skillful typhoon tracks (Huo and Duan 2019; Huo et al.
2019).

To generate the C-NFSVs and their particular cases, one
should first solve the optimization problems given in Egs. (2.5),
(2.7), and (2.8). This is done using a nonmonotonic spectral pro-
jected gradient solver [SPG2; the details can be seen in Birgin
et al. (2000)], where the gradients of the cost function with re-
spect to the initial perturbation and the tendency perturbation
are needed. For the calculation of C-NFSVs, we refer to Duan
and Zhou (2013) for the computation of the gradient of the cost
function with respect to both the initial perturbations and ten-
dency perturbations. This is also reproduced in appendix A.
With this gradient information, we can compute the C-NFSVs
by descending along the direction of the gradient using the
SPG2 solver.

Please note that much accurate adjoint-gradient informa-
tion is used in the present study to compute the C-NFSVs
because of the simplicity of the Lorenz-96 model (see
section 3 for the Lorenz-96 model). There exist algo-
rithms that do not need an adjoint to calculate the gradient
but can still be used to compute the C-NFSVs for complex
models; the particle swarm optimization algorithm and the
genetic algorithm are examples. These algorithms have
been successfully applied in the calculation of the CNOP
and NFSV mentioned above [see the review of Wang et al.
(2020)].
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3. Lorenz-96 model

In this paper, the experiments are performed in the context
of the Lorenz-96 model (Lorenz 1996; Lorenz and Emanuel
1998). The model is governed by the dynamical equations:

ax,
X X)X - X+ (3.1)
where j = 1, 2, ..., m (meN) is the dimension of the state

space; the variable X; satisfies the cyclic boundary conditions,
ie., X-1 = Xu—1, Xo = Xy, and X,,,+1 = Xj, and they can be
thought of as representing nondimensional meteorological
quantities (e.g., temperature, pressure, vorticity, or gravita-
tional potential, etc.) that are equally spaced along a latitudi-
nal circle. The linear terms and constant term F describe the
internal dissipation of the atmosphere and the external forc-
ing, respectively.

Throughout the present study, the reference model di-
mension and forcing term are chosen as m = 40 and F = 8§,
displaying sensitivity to initial conditions (Lorenz 1996; Van
Kekem 2018). The Lorenz-96 model with this configuration
is integrated using a fourth-order Runge—Kutta scheme with
a nondimensional time step of 0.05 time units. Considering a
dimensional time unit of 5 days, the dissipative decay time
of the system is approximately one time unit, and the error-
doubling time is approximately 0.4 time units. These proper-
ties of the Lorenz-96 model are consistent with realistic
numerical weather forecast models (Lorenz and Emanuel
1998). Furthermore, when the system has reached its at-
tractor, the mean and standard deviation of the variable X;
are approximately equal to 2.3 and 3.6, respectively. This
system has been widely used in theoretical studies of error
dynamics (Vannitsem and Toth 2002; Orrell 2005), data
assimilation (Whitaker and Hamill 2002; Hunt et al. 2004;
Bai et al. 2013) and adaptive observation (Lorenz and
Emanuel 1998; Khare and Anderson 2006). This model has
also been often regarded as a platform to explore the use-
fulness of new ensemble forecasting approaches (Descamps
and Talagrand 2007; Revelli et al. 2010; Basnarkov and
Kocarev 2012; Feng et al. 2016; Grudzien et al. 2020). The
Lorenz-96 model with the above configuration is therefore
also used here for examining the possible impact of using
the C-NFSVs for ensemble forecasting.

4. Experimental strategy

In the present study, the Lorenz-96 model is assumed to be
imperfect, with additive model errors. A group of constant
tendency perturbations n; (j = 1, 2, ..., 40) randomly selected
from a dataset of normal distribution N (0, I) are supposed to
describe the model errors. Then, the perfect system can be
written as follows:

dX,
L= (X, - X )X |~ X +F+n.

dt j+1 T A2 (4.1)

After a spinup run of the reference given in Eq. (4.1), the sys-
tem is integrated for 292 000 time steps (dimensional 200 years)
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TABLE 1. Twelve combinations of optimization time period
T and the constraint radius. §; denotes the magnitude of the
initial analysis error measured by the L2-norm, & is the
magnitude of the tendency error measured by the L2-norm,
and E; (i = 1, 2, 3, ..., 12) represents the combination of the
four optimization time periods and three constraint radii.

Constraint radius

Optimization time

period T (days) 0.66y, 0.66¢ 0.86y, 0.86¢ 1.06y, 1.06¢
3 E; E, E;5
4 E4 ES EG
5 E7 Eg Ey
6 ElO Ell E12

to obtain a 200-yr time series of X, where X = (X1, Xa, ..., X40)-
From the time series, we take the state values of X every
1460 time steps (i.e., one year) as the initial values and their
respective subsequent 12-day (i.e., 48 time steps) evolution
as truth runs. Thus, a total of 200 truth runs are selected in
the present study.

The “observations” used are artificial and obtained by add-
ing random noises sampled from a standard normal distribu-
tion N(0, I) with a standard deviation of the observational
errors equal to 27% of the standard deviation of X; within the
time period of the data assimilation cycle. The “observations”
are assimilated by applying the four-dimensional variational
data assimilation (4D-Var) to the imperfect Lorenz-96 model
yielding the optimal initial field at the initial time of the fore-
cast. Starting from these initial fields, the Lorenz 96 model is
integrated for 12 days, providing the control forecasts associ-
ated with the 200 truth runs. Note that these control forecasts
here are contaminated by both the initial analysis errors and
model tendency errors.

Let us now consider the C-NFSVs for the description of the
uncertainties present in both the initial fields and model ten-
dencies and conduct the ensemble forecasting experiments.
The computation of the C-NFSVs depends on their constraint
radii [i.e., the positive constant numbers oy and o¢ in Eq. (2.6)]
and the optimization time periods [0, 7] (see section 2), which
are also two important factors affecting the ensemble forecast
skills. As such, we take different combinations of them to com-
pute the C-NFSVs (see Table 1). As in Orrell (2002), the maxi-
mal amplitude of the tendency perturbations is computed as

1

8, = , 42)

2

~|

|x(tj + A0 —s(t; + Az)”
I

T
2

where x(#; + Ar) denotes the truth state at time ¢; + Az using
Eq. (4.1), and s(f; + Ar) is its forecast at time #; + Ar using
Eq. (3.1) with the initial value being the true state x(t)),
and ||||; is an L2 norm. The maximal amplitude of the ini-
tial perturbations is fixed as

8 = lla(zy) — x(@)ll,, (4.3)

where a(f) is the initial analysis field of the control forecast
and x(fp) is the initial field of the truth run. Three kinds of
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constraint radii with oy and oy, i.e., 0.66; and 0.68;, 0.85; and
0.88¢, and &y and &, are experimentally selected for the initial
and tendency perturbations, which, together with the four se-
lected optimization times of 3, 4, 5 and 6 days, lead to a total
of 12 combinations (i.e., E;, i = 1,2, 3, ..., 12 in Table 1).
Note that the constraint radii above are chosen for the pur-
pose of analyzing their impact, while in a realistic forecast,
they should be estimated using Eqgs. (4.2) and (4.3) according
to the historical observations and their hindcasts by assuming
the former are truth runs and the latter are control forecasts.
For each of the truth runs, the control forecast is regarded as
the basic state around which the 20 orthogonal C-NFSVs are
computed for each E;, where the number of C-NFSVs is ex-
perimentally selected as 20, as it almost provides the highest
ensemble forecast skill. These 20 C-NFSVs are superimposed
to the initial field and model tendency of the control forecast
as positive and negative perturbation pairs and integrate in to
the model equation (3.1), leading to 40 perturbed forecasts
which, together with the control forecast, generate 41 ensem-
ble forecast members for each forecast date.

The evaluation of the quality of the ensemble forecast sys-
tem is often performed by analyzing the skill of the ensemble
mean in a deterministic way and by evaluating the skill of the
probabilistic forecast themselves. The information extracted
illustrates different aspects of the performance of the ensem-
ble forecast system. In the present study, the root-mean-square
error (RMSE) and the anomaly correlation coefficient (ACC)
between the mean of the ensemble members and the true state
are used to assess the quality of the deterministic forecast. The
Brier score (BS; Brier 1950) and the relative operating charac-
teristic curve area (ROCA; Mason 1982) are adopted to mea-
sure the probabilistic forecast skill of binary events. Here, we
define the following two categories of events: higher frequency
events (event 1) with X; > 2 and lower frequency events
(event 2) with X; > 5, and the two events occur with fre-
quencies of 0.53 and 0.25, respectively. The details of these
four scores are described in appendixes B, C, D, and E.
Note that the RMSE and BS are negatively oriented (i.e.,
the smaller the value is, the higher the ensemble forecast
skill is), while the ACC and ROCA are positively oriented
(i.e., the larger the value is, the higher the ensemble fore-
cast skill is).

5. Results

In this section, the experimental strategy described in the
last section is conducted, and the role of C-NFSVs in improv-
ing forecast skills is evaluated. Its performance is then com-
pared with the ensemble forecasting based on O-CNOPs and
O-NFSVs, emphasizing the importance of simultaneously
considering the initial and model errors in the maximization
problem leading to the C-NFSVs.

a. The ensemble forecast skill

The C-NFSVs experiments are listed in Table 1. The
O-CNOPs and O-NFSVs have been designed in such a way
that they have the same amplitudes as the C-NFSVs. For
all forecasting dates and lead times ranging from 6 h to 12 days,
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we compute the RMSE and ACC of the ensemble mean
(deterministic) forecasts for each E;, together with the BS
and ROCA of the two binary events for the probabilistic
forecasts. Figure 1 plots the RMSE, ACC, BS, and ROCA
averaged over all the lead times for all the forecast dates.

In Fig. 1, it is noticed that for any kind of perturbation,
their associated ensemble forecasts tend to achieve the high-
est skill when the perturbation amplitudes constrained by
E; are close to the amplitudes of the initial analysis errors
defined in Eq. (4.3) and/or the tendency errors defined in
Eq. (4.2). This suggests that if one adopts the O-CNOPs to es-
timate the initial error impact on the ensemble forecasts or
the O-NFSVs to measure the model error impact, their ampli-
tudes should be close to those of the initial analysis errors or
tendency errors, respectively. If one adopts the C-NFSVs to
consider the impact of both the initial and model errors, their
amplitudes are slightly smaller than the pure initial analysis
errors or tendency errors and provide higher skills as mea-
sured by the RMSE and ACC for the deterministic forecasting
or measured by the BS and ROCA in the case of probabilistic
forecasting.

Figure 1 also indicates that the skill based on the O-NFSVs
gradually increases with the optimization time intervals and
constraint radius. However, for the ensemble forecasts based
on the O-CNOPs, the skill undergoes a fast increase first and
then a slow increase when the optimization time intervals are
increased for small initial perturbations. For large initial per-
turbations, there is no substantial change in skill. In fact, the
forecast model adopted here includes a model error —m,
superimposed at each time step of the model integration, so it
accumulates, leading to a more significant impact at long lead
times. Therefore, the O-NFSVs with longer optimization time
intervals may be better for grasping the impact of model er-
rors for increasing lead times. The corresponding ensemble
forecasts with larger optimization time intervals may then ex-
hibit higher skills, as shown in Fig. 1. For the O-CNOPs, since
they only optimize the impact of the initial uncertainties, they
may not be very sensitive to the impact of the model errors at
long lead times, implying a reduced sensitivity of the skill to
the optimization time interval.

If we now compare the ensemble forecasting system based
on O-CNOPs, O-NFSVs and C-NFSVs for the same optimiza-
tion time interval, we find that the ensemble forecasts gener-
ated by the C-NFSVs often achieve the highest skill. This
means that there is a much larger space for the ensemble fore-
casting generated by C-NFSVs to improve the forecast skill
against the control forecast than those based on the O-NFSVs
and O-CNOPs, which, is because the C-NFSVs combine the
impact of both errors.

To further clarify the dependence of the skill on different
lead times, Fig. 2 displays the differences in performance
measures at each lead time for the highest skill experiments
(see Fig. 1). It is shown that, for all the lead times, the differ-
ences between the O-NFSVs (O-CNOPs) and C-NFSVs are
positive for RMSE and BS, and negative for ACC and ROCA
at most lead times, further indicating that the ensemble fore-
casting based on the C-NFSVs possess a higher skill than those
made by O-CNOPs and O-NFSVs. When comparing O-CNOPs
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FIG. 1. The skills of the ensemble forecasts generated by C-NFSVs (green), O-NFSVs (blue), and O-CNOPs (red),
as measured by the RMSE, ACC, BS, and ROCA. These values are obtained by averaging over 200 truth runs and all
lead times over 12 days. The intervals with dashed lines divide the E; that correspond to the same optimization time
period 7, and in each interval, the constraint radius increases with #, as shown in Table 1. The vertical axis represents

the RMSE, ACC, BS, and ROCA.

and O-NFSVs, Fig. 2 further indicates that in the early stage of
the forecasts, the ensembles based on the O-NFSVs have a
lower skill than those based on the C-NFSVs and O-CNOPs,
while for increasing lead times, the ensemble forecasts based on
the O-NFSVs gradually improve compared with those based on
the O-CNOPs and the C-NFSVs. This result indicates that the
impact of the initial errors dominates the forecast error in the
early stage of the forecasts, while when the lead time is large,
the impact of the model errors gradually increases, and the
O-NFSVs start to exert a stronger influence on the forecast
uncertainties with a progressive convergence to the skill of
the C-NFSVs.

b. Reliability

The above results have shown that the C-NFSVs allow for
obtaining higher skills than the O-NFSVs and O-CNOPs
when both the initial and model errors are present. In this
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section, we will explore the reliability of the probabilistic as-
pects of the ensemble forecasting system. In principle, a reli-
able ensemble should display a ratio between the RMSE of
the ensemble mean and the spread of the ensemble members
(i.e., the square root of the average of the variances of the en-
semble forecast members around their mean; see appendix B)
approaching 1 during the entire forecast time period (Bowler
2006; Leutbecher and Palmer 2008; Hopson 2014; Fortin et al.
2014), indicating that the spread is a good proxy for the en-
semble mean forecast error. Figure 3 shows the ratio of
the ensemble spread to RMSE for C-NFSVs, O-CNOPs, and
O-NFSVs when they achieve the highest skill in their respec-
tive settings (see Table 1 and Fig. 1), for (i) the O-CNOPs are
computed by taking the amplitude &; and the optimization
time of 5 days; (ii) the O-NFSVs are obtained with the ampli-
tude 8¢ and the optimization time of 6 days; and (iii) the
C-NFSVs are obtained by using the initial perturbation
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FiG. 2. The difference in skills between the ensemble forecasts generated by O-CNOPs and those generated by
C-NFSVs (red) and between the ensemble forecasts made by O-NFSVs and those made by C-NFSVs (blue). The horizon-
tal axis denotes the lead time, and the vertical axis represents the difference in the RMSE, ACC, BS, and ROCA values.

amplitude 0.86; and tendency perturbation amplitude 0.85,
together with an optimization time of 6 days. Note that the ra-
tio in Fig. 3a is averaged over all initial states and relevant
variables, while in Fig. 3b, the focus is on the individual varia-
bles, and the average is taken over the forecasting period. For
the latter, it is assumed that the Xjin the Lorenz-96 model de-
scribes the variables at the grid points along a latitudinal circle
(see section 3), and thus, the figure shows the spatial distribu-
tion of the ratio of the ensemble spread to the RMSE. Both
ratios in Figs. 3a,b show coherent results. That is, the ensem-
ble spread made by the C-NFSVs is much closer to the RMSE
of the ensemble mean forecasts and indicates that the C-NFSVs
provide a better estimate of the uncertainty either in time or in
space.

The Talagrand diagram (or rank histogram) is also a mea-
sure of the reliability for the ensemble forecasting system
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(Talagrand et al. 1997; Candille and Talagrand 2005). Specifi-
cally, a reliable ensemble has a flat histogram, indicating that
the observation is indistinguishable from any member of the
ensemble forecast. Figure 4 displays the Talagrand diagram of
the C-NFSVs, O-CNOPs, and O-NFSVs at varying lead times.
It is shown that the histograms for the C-NFSVs are much flat-
ter than those for the O-NFSVs and O-CNOPs. This suggests
that the ensemble forecasting made by the C-NFSVs is more
reliable than those based on the O-CNOPs and O-NFSVs in
the Lorenz-96 model.

The perturbation versus error correlation analysis (PECA;
see appendix F), another popular score, is also used to evalu-
ate the quality of the ensembles (Wei and Toth 2003; Buizza
et al. 2005; Wei et al. 2008). The higher the PECA values of
the individual (or optimally combined) ensemble members
are, the more successful the ensemble is in achieving its goal
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of capturing forecast errors. Figure 5 plots the PECA and in-
dicates that, for either the optimally combined ensembles
or the individual ones, the C-NFSVs and O-CNOPs tend to
explain a larger amount of the forecast errors present in
the control forecasts than the O-NFSVs in the early stage
of the forecasts. For longer lead times, the ability of the
O-NFSVs to explain the forecast error variances overtakes
that of the O-CNOPs. In any case, the C-NFSVs almost al-
ways possess the largest PECA value and explain the larg-

forecasts. The interpretation provided in section Sa is still
valid: the impact of the initial errors dominates the forecast
error in the early stage of the forecasts that the O-CNOPs
capture well, while for longer lead times, the O-NFSVs
start to exert a stronger influence on the forecast uncer-
tainties, with a progressive convergence to the optimal skill
of the C-NFSVs. All these results indicate that the ensem-
ble members generated by the C-NFSVs are much better
for capturing the forecast errors and lead to an enhanced

est amount of the forecast error variances of the control ensemble quality.
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FIG. 4. Talagrand diagrams for the ensemble forecasts made by (top) C-NFSVs, (middle) O-CNOPs, and (bottom) O-NFSVs with con-
figurations of the perturbation amplitudes and optimization times as in Fig. 3a, at lead times of (from left to right) 2, 4, 6, 8, and 10 days,
respectively. The red horizontal lines denote the expected value of the probability.
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c¢. Impact of the dynamics of the C-NFSVs on the
forecast skill

The dynamically growing similarity of the initial and tendency
perturbations is important in achieving a high skill in the current
ensemble forecasting system. To clarify this, we conduct the fol-
lowing two sets of experiments. The first set consists of perturb-
ing the system by combining the O-CNOPs and O-NFSVs in
ensemble forecasting mode in configurations in which they pro-
vide the highest skill. Specifically, the O-CNOPs are obtained
with the initial perturbation amplitudes 6y and the optimization
time interval of 5 days, while the O-NFSVs are the ones for
which the tendency perturbation amplitude is constrained by &¢
and the optimization time interval is fixed to 6 days (see Fig. 1).
These skills are compared with those of the C-NFSVs in their
best configuration (i.e., the initial perturbation amplitude with
a radius of 0.86; and tendency perturbation amplitude with a
radius of 0.85g, together with the optimization time interval of
6 days; see Fig. 1). The second set of experiments combines
O-CNOPs and O-NFSVs with the same optimization time inter-
val and amplitude of perturbations as in the C-NFSVs of the first
set. Figure 6 shows the comparisons of these two sets of experi-
ments. It is shown that the ensemble forecasts made by the
C-NFSVs consistently, on average, provide a smaller RMSE and
BS and a larger ACC and ROCA than those made by the com-
bined modes, which indicates that the C-NFSVs possess higher
ensemble forecast skills than the above kinds of combined
modes. This also suggests that the C-NFSVs are not a simple su-
perposition of O-CNOPs and O-NFSVs but possess dynamical
features that lead to a higher forecast skill. In other words, a sim-
ple combination of initial perturbations and tendency perturba-
tions may cause inconsistent dynamical behaviors between them
and would degrade the ensemble forecasting skill.

6. Tests of the use of deep learning to improve the
applicability of C-NFSVs for real-time forecasts

The computation cost of ensemble forecasting systems is a
challenge in an operational chain. The ensemble forecast method
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introduced in the present study is made of members perturbed
with C-NFSVs constructed through an SPG2 algorithm with mul-
tiple iterations along the fastest descent direction of the gradient
(see section 2), and a large amount of computation time is
needed. In this section, we propose an alternative way to es-
timate the evolution of the ensemble members generated by
the C-NFSVs rather than to compute C-NFSVs themselves
that would allow for a real-time implementation.

Deep learning (DL) techniques have been applied in weather
and climate forecasting (Salman et al. 2015, Scher 2018), statisti-
cal postprocessing (Rasp and Lerch 2018; Scheuerer et al. 2020;
Veldkamp et al. 2021; Vannitsem et al. 2021, for a recent re-
view), and uncertainty prediction (Scher and Messori 2018),
and have shown strong nonlinear fitting and prediction abilities.
The DL techniques allow for developing inference functions be-
tween an input and an output by learning a training dataset. For
the ensemble forecasts generated by the C-NFSVs of section 5,
the ensemble members for different truth runs are constructed
by perturbing control forecasts with their respective C-NFSVs
and are close to the control forecasts. Therefore, we can use the
control forecasts (also “hindcasts”) of a training set of truth
runs and their ensemble forecasting members generated by the
C-NFSVs and use the DL approach to learn the dependence re-
lationship of the ensemble forecasting members to the corre-
sponding control forecasts. These inference functions can then
be used to produce ensemble forecasting members in the testing
period. Clearly, if the DL approach is successful in achieving an
ensemble forecasting skill close to that of section 5, it can be
used to bypass the computational burden of the C-NFSVs be-
cause the training is done offline.

In the present study, the idea is to input the control forecast
to a DL model and output the corresponding ensemble mem-
bers around the control forecast. As the control forecast is
made of 40 spatial variables X; (j = 1,2, 3, ..., 40) integrated
over a time period of 10 days, it consists of a spatiotemporal
forecasting problem. In DL algorithms, the convolutional
neural network (CNN) is a tool well adapted to learn the fea-
tures of multidimensional datasets and is especially popular
for dealing with spatial information (LeCun et al. 2015;
Krizhevsky et al. 2017), while the long short-term memory
neural network (LSTM) is a network able to extract tempo-
ral information. The convolutional LSTM [ConvLSTM; Shi
et al. (2015)], which is a combination of LSTM and CNN, can
then be used for appropriately learning spatial-temporal data.
The difference between the ConvLSTM and the LSTM lies in
that the fully connected structure of the network is replaced
by a convolution operation that can identify spatial features.
More precisely, the output of ConvLSTM includes both tem-
poral and spatial dimensions but the memory unit connections
of ConvLSTM operate mainly on the temporal dimension,
while the convolutions capture the spatial information at a
specific time. Then, if the output of the ConvLSTM is used as
the input of the CNN, the spatial features of the adjacent time
can be further extracted, with the advantage of reducing the
number of parameters due to the sparse connectivity and pa-
rameter sharing of the CNN. The fully connected layers are
then “merging” the information provided by the CNN and
produce the output.
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FIG. 6. As in Fig. 2, but showing the skill performance differences between the ensemble forecasts made by the
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and between the combination of O-CNOPs and O-NFSVs with the same optimization time period and perturbation
amplitudes as in C-NFSVs and those made by C-NFSVs (blue).

We take the first consecutive 10-yr data (i.e., a total of
14 600 time steps with the time step being equal to 0.05) from
the 200-yr integration of the model Eq. (4.1) as truth runs. We
divide this time series into two parts: one part contains the
first 12 000 time step data as the training period, and the other
part includes the remaining 2600 time step data as the test pe-
riod. The training data for all the lead times are normalized
to have an amplitude in the interval [—1, 1] by calculating
2y = [z = 2 (Zmax — Zmin)] — 0.5} X 2, where z is the
original data, and Zmin, Zmax, and zy are the minimum, maxi-
mum and normalized values of the training data z for all the
lead times, respectively. These normalized data are the inputs
of the LSTM cells. Thanks to the ConvLSTM, the temporal fea-
tures of the control forecasts are extracted, while the local spa-
tial information is preserved. The output of the ConvLSTM is
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then used as the input of the CNNs, allowing for the identifica-
tion of the deeper spatial features of the control forecast. Then,
the fully connected layers are used for merging the features that
have been extracted and generating the output of the normal-
ized values of the 40 variables of an ensemble member at a
given lead time. Such a strategy is summarized in Fig. 7 describ-
ing Model-1. Note that for each member at each lead time,
there is a separate Model-1, so that a total of 400 DL models
with the architecture of Model-1 are used to generate the
40 ensemble members at lead times of 1, 2, 3, ..., 10 days.
Note that the system under investigation has only 40 dimensions.
In this context, the fully connected layers can be easily used to
merge the extracted features and generate the final output. In
an operational environment, the spatial dimensions are consider-
ably higher, and other types of layers, such as the deconvolution
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FIG. 7. Sketch of Model-1. Two ConvLSTM layers with filter sizes of 3 X 3 and 40 filters; four 3 X 3 convolutional layers with 80, 160, 320,
and 320 filters; three fully connected layers with 800, 200, and 40 nodes; batch normalization (BN) layers; 2 X 2 max pooling layers; and
dropout layers with a dropout rate of 0.2 are selected. The input {X]-’ }(Gi=1,2,...,40;t = 0,1,2,...,10) represents the control forecast of
40 variables with lead times from 0 to 10 days, and the output Y].’"”(j =1,2,...,40) represents the values of 40 variables of the mth ensemble
member at a given lead time ¢. For each member at each lead time, a separate Model-1 is used. A total of 400 Model-1s are used to generate

the ensemble members.

layers, should be used after the above CNN layers in Model-1 in-
stead of the fully connected layers. This should make the DL
models more adaptable to the high-dimensional problems asso-
ciated with operational forecasts.

In Model-1, we experimentally select two ConvLSTM
layers of 40 filters and four convolutional layers of 80, 160,
320 and 320 filters with each filter having the size 3 X 3
(where a padding is made for having the same size of input
and output) and three fully connected layers of 800, 200 and
40 nodes. In addition, batch normalization layers and max
pooling layers with a filter size of 2 X 2 and a stride of 2 are
empirically selected to enhance the efficiency of the training
process. Dropout layers with a dropout rate of 0.2 are also
used for regularization. Furthermore, the Leaky ReLU active
function is also introduced for learning nonlinear features
(Maas et al. 2013), and the Adam optimizer with a learning
rate of 107> (Kingma and Ba 2014) is used in the loss function
for minimizing the distance between the DL output and the
corresponding truth. In Model-1, the size of the mini batch for
each epoch in the training process is chosen as 100, and the
number of epochs is fixed to 200. All these hyperparameters
have been defined by trial and error.

Note that the final ensemble members are generated by
running several cycles of Model-1. More specifically, during
the training, a control run is injected in Model-1, and the val-
ues of 40 variables of one member at a given lead time are
produced as output, which are then compared with an ensem-
ble member by calculating a loss function that measures their
distance and/or similarity; after this, the Adam Optimizer is
applied to find improved parameters based on the batch gra-
dient descending direction. After several cycles, the decrease
in the loss function will reach saturation, and the optimal en-
semble member is obtained. In the present study, the loss
function is defined as
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Loss = @ X MSE — B X CC, (6.1)
where

n

[Ytruth - fg(X)]za

(6.2)

1 , 1
MSE = EZ (Ytruth - Yprcd) = ;
i=1 i

i=1

and

1 z COV(Ytruth’ Ypred)
cC= EZ p(eruth7 Ypred) = %Z
i=1 i=1 \/var(Ymnh) X Var(Ypred)

(6.3)

The loss function consists of a combination of MSE and CC,
where the MSE measures the mean square error between the
inferred 40 variables of an ensemble member at a given lead
time [represented by Y,.q in Eq. (6.2)] during the training pe-
riod and the real values [denoted by Yy in Eq. (6.2)]; CCis
the correlation coefficient between them; and n is the size of
the mini batch. The MSE reflects the magnitude of the error
and is sensitive to outliers but does not provide the location
of the error. Therefore, to make the ensemble members gen-
erated by Model-1 more efficient, the parameters « and 3 are
introduced for adjusting the weights of MSE and CC to reach
a good balance between the correction of the amplitude and
location. The outputs of the DL model are therefore normal-
ized to have an amplitude in the interval [—1, 1] using a hy-
perbolic tangent function (tanh; see Fig. 7), and the values of
a and B are fixed to 0.2 and 0.8 to achieve an optimal quality
for the ensemble members.

Figure 8 shows the corresponding RMSE, ACC, BS and
ROCA compared to those of the ensemble forecasts of section 5
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FIG. 8. The skills of the control forecast (gray) and the ensemble forecasts made by the C-NFSVs calculated by the
SPG2 (blue) and deep learning (DL) model (i.e., Model-1; red), as measured by RMSE, ACC, BS, and ROCA. These
values are obtained by an averaging over 2600 truth runs in the test period.

(for simplicity, hereafter referred to as “original forecasts”). It
is found that the ensemble forecasts generated by Model-1 are
close to the original forecasts when analyzing the deterministic
forecasting skills (RMSE and ACC). For probabilistic forecast-
ing, Model-1 presents a skill approximately 3.0% lower than the
original forecast but still acceptable.

It was also found that the ensemble spread inferred by
Model-1 is much smaller than the corresponding RMSE of
the ensemble mean. This indicates that the ensemble mem-
bers here, compared to those provided by the C-NFSVs, do
lack variability and therefore do not provide an appropriate
estimate of the uncertainty around the ensemble mean. Alter-
native ways should be found. To solve this issue, we further
use the architecture of Model-1 but change the model output
and associated loss function to directly estimate the RMSE of
the individual ensembles (i.e., the RMSE with the realization be-
ing N = 1 in appendix B), rather than using the corresponding
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ensemble spread (i.e., the spread with the realization being
N =1 in appendix B). For convenience, we refer to this
modified DL model as “Model-2.” In this situation, the in-
puts are still the control forecasts, but the outputs are now
the estimations of the RMSE of the individual ensembles at
a given lead time (i.e., replace the 40 nodes in the last dense
layer with 1 node). For lead times from 1 to 10 days, a total
of 10 DL models (i.e., Model-2) are trained. Furthermore,
in the loss function MSE, as in Eq. (6.2), Y, represents
the RMSE of the individual ensembles made by Model-1 in
the training period, and Ypq is its estimation based on
Model-2 and then applied in the testing period. Figure 9
shows the estimation of the RMSE averaged over all the
true runs and all the lead times in the testing period. The
RMSE forecasted by Model-2 is close to the RMSE of
Model-1. As a result, Model-1 combined with Model-2 pro-
vides an ensemble forecasting system mirroring that of the
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FIG. 9. RMSE of the ensemble forecasts based on Model-1 (blue
bars) and the corresponding ensemble spread (gray bars) and the
estimation of the RMSE of the ensemble forecasts (red bars), as
made by the deep learning model (i.e., the Model-2).

original forecasts, with results close to those predicted by
the original forecasting system.

The DL approach to ensemble forecasting based on the
C-NFSVs, as proposed in the present work, saves computing
time as it no longer needs an optimization process at each
forecasting date. However, many uncertainties are still pre-
sent concerning the construction of the DL model, especially
for the choice of the values of the hyperparameters, and other
inputs and outputs may also need considering. This needs fur-
ther investigation.

7. Summary and discussion

In this study, we extend the NFSV approach to address the
model error impact on ensemble forecasting and propose a
C-NFSV ensemble forecasting method that considers the
impact of both the initial and model errors. The C-NFSVs
provide a group of optimally growing combined perturbations
for both the initial conditions and the model tendencies.
Two particular cases were also considered: O-CNOPs and
O-NFSVs. The former is an ensemble forecasting method for-
merly proposed by Duan and Huo (2016), dealing with the
initial error impact on the forecasts, while the latter estimates
the model error impact. The usefulness of the C-NFSVs is
demonstrated in the context of the Lorenz (1996) system.

The results show that the ensemble forecasting based on
O-CNOPs has a higher skill than the one based on the
O-NFSVs in the early stage of the forecasts, while in the later
stage of the forecast, the impact of the model errors becomes
more prominent and the ensemble forecasting based on the
O-NFSVs excels. In any case, the forecasts based on the
C-NFSVs, thanks to their optimization on both the initial and
model errors, possess higher skill than the ones based on the
O-CNOPs and O-NFSVs. These results justify the interest in
using C-NFSVs in building ensemble forecasts.

Considering that developing an ensemble based on C-NFSVs
is challenging for ensemble forecasting in an operational en-
vironment, we also discuss the possible use of deep learning
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algorithms in providing ensemble forecast information simi-
lar to that generated by the C-NFSVs. We develop two dif-
ferent DL models, one that learns the link between the
control forecasts and the ensemble members and a second
that learns the link between the control and the RMSE of
the ensemble. These DL models allow bypassing of the opti-
mization problem to obtain the C-NFSVs at each forecast
date. In the context of the Lorenz-96 model, we show that
the ensemble forecasts made by the DL models have forecast-
ing skills close to those made by computing the C-NFSVs. This
suggests that the introduction of DL algorithms could not only
greatly reduce the computing time costs of the ensemble fore-
casting system made by the C-NFSVs but could also achieve a
comparable forecast skill. It also illustrates the potential of
the DL algorithms in the context of the operational ensem-
ble forecasts but the DL models must then be adapted to
the high-dimensional problems of the operational forecasts.
Furthermore, a large variety of DL architectures exist and
need to be optimized by trial or error. It should also be un-
derstood that the DL model requires a very large training
dataset during the training period, and then a large amount
of computational time is needed for calculating the C-NFSVs
before the operational implementation. Therefore, a highly effi-
cient and effective optimization algorithm is still necessary for
calculating the C-NFSVs during the hindcast period.

The current results also emphasize the importance of the dy-
namically coordinated growth of the initial perturbations and
model perturbations in improving the ensemble forecast skill.
In the same spirit, comparisons between C-NFSVs and the com-
bined modes of other types of initial perturbations (e.g., BVs or
SVs) and other types of model perturbations (such as STTP or
SPPT) are also worth performing in the future. Another inter-
esting avenue in the development of C-NFSVs is to consider
the effect of time-varying stochastic errors; a combined mode of
C-NFSVs and random forcing tendency perturbations may
cover a broader range of model errors and have potential for
further improving the ensemble forecast skill. In addition, given
the simplicity of the Lorenz-96 model, more realistic models
must be considered to examine the usefulness of the C-NFSVs
for ensemble forecasting systems. This will be the subject of a
follow-up work. In any case, it is expected that the C-NFSVs,
possibly combined with DL algorithms, will play an important
role in realistic ensemble forecasts in the future.
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APPENDIX A

A Derivation of the Gradients

The cost function associated with the C-NFSVs can be
written as follows:

o) = =3 Uy DF = =M (DU, + uy) = My (UIE
= —%(u(uo,f; T),u(uy, 1, 7)), (A1)

where
T 0 = MO, + w) = MUl (A2)

u(uy, £; 7) = M(£)(Up + uy) — MAUy) [i.e., ur in Eq. (2.4)
in section 2], and (-) is the inner product. By minimizing
Eq. (A1) using an existing optimization solver, the C-NFSVs
can be obtained, provided the gradients of the cost function
with respect to initial perturbations and model tendency per-
turbations are estimated. Following Duan and Zhou (2013),
the gradients can be computed.
The first-order variations of J;(uy, f) are

—6]1’5% . —311,
du, of
where Su(f) and Sf are governed by the following tangent
linear model:

—5J, = (u(T), du(T)) = < 6f>, (A3)

88u AF[U®) +u(?)] Su+ of.

6t Ju

asf

o : (Ad)
éul,_, = duy,

sfl,_, = of,

By introducing two Lagrangian multipliers 4; and 4,, we
obtain

= (u(7), 6u(T))

I < ., 2 05u F[U(g: u(?)]

- 2y(t), oot dt.
L >

With an integration by parts, we can obtain

r ddu Ty T1a)(¢)
L <)~1(t) >dt L 20010, b0yt - L< - ,8u>dt

= (44(T), 5u(T)) — (2,(0), 5u(0))

- Lj(‘”;t(” , 6u>dt

Su — 5i>dz

and
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LT<;»2(t) 65f>dz K%(Mr), ofydr — j:<a’1§t(t),3f>dz

= (%,(T), 88(T)) — (4,(0), 5F(0))

[

= (4(T), 8f) — (4,(0), f)

L <a/16 L)

Then, we derive 6J; as follows:

-on= [ 70

< [aF(U + u)

5f>dz

6f>dt

6u>dt +(u(T) = 2,(T), 8u(T)) + (4, (0), 5u(0))

>dt + J()T()»l(z), ofdr

amz(r)

- L< ’a( *
g
i

r a%(r) 6f>dt +(Ay(0), 86) + (0 — 4y(T), BF),

8f>dt +(3,(0), 8f) — (A, (T), 8)

>dt+ ((T) — 4,(T), 8u(T)) + (4,(0), 6u(0))

T
2,0, 6u>dt + J (4,(0), 8F)dt
0

(AS5)

where [-]* denotes the adjoint. By comparing (AS5) with (A3),
we can obtain the gradients of the cost function with respect
to initial perturbations [see Egs. (A6) and (AS8)] and model
tendency perturbations [see Egs. (A7) and (A8)]:

aJ
—L=—70), (A6)
and
aJy
i 2,(0), (A7)
where 21(¢) and A,(¢) satisfy
a2, (1) [aF (U + u)] =0
Jat
d
Az(” + 2,00 =0, (A8)
)ql,:T =u(7),
Ioli=r =0,

and Eq. (A8) is the adjoint equation of the tangent linear
model equation [Eq. (A4)].

Note that the gradients 4J,/du, = —2,(0) are used to calculate
O-CNOPs and aJ,/6f = —1,(0) to calculate the O-NFSVs. For
the C-NFSVs, since the initial perturbation is taken as wy = rf,
the gradient required is aJ,/6f = (3J,/9u,)(0uy/of) + oJ,/of =
—r2,(0) — 4,(0).
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Root-Mean-Square Error of the Ensemble Mean and
Ensemble Spread

The ensemble mean is calculated as follows. Let Y].
be the ensemble mean of the jth component of the M
members:

S ).
%= 2

E

where X}m) represents the jth component of the mth ensem-
ble member; j = 1,2, ..., Jand m = 1, 2, ..., M. The root-
mean-square error (RMSE) of the ensemble mean meas-
ures the difference between the ensemble mean Yl..n and
the observations O;, (i.e., the truth runs in the present
study), which is defined as follows:

121
RMSE = Z Z( i 0. (B1)
where N represents the number of realizations.
The ensemble spread is defined as follows:
1 N 1 J M
SPRD = 4/ 315> 4 Z X" -X,0 (B2
Nn=1] =1 m=

APPENDIX C

Anomaly Correlation Coefficient

The anomaly correlation coefficient (ACC) is used to
measure the similarity between the forecasted and observed
anomalies. The ACC is formulated as follows:

J
S o)
ACC = ,

‘/ZJ] -X) (0' -0

(C1)

where X/ = X, — CX and O} = 0, - CO in which X; is the
forecast value O; 1s the observatlon CX is the model cli-
matological state, CO is the observed chmatologlcal state,
X] is the forecasted anomaly, and O] is the observed
anomaly. The larger the ACC is, the higher the forecast
skill.

APPENDIX D

Brier Score

The Brier score (BS; Brier 1950) is the mean square er-
ror of the probability forecasts with the following definition:

BS :lzN](f - 0) (D1)
Nizl i il
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TABLE E1. Two-by-two contingency table of a binary event.

Observation

Forecast Yes No Total
Yes a b a+b
No c d c+d
Total a+c b+d

where N is the number of realizations of the prediction pro-
cess, and f; and o; are the probability of forecast and obser-
vation for the ith prediction process, respectively. A smaller
BS value indicates a better probability forecast skill.

APPENDIX E

Relative Operating Characteristic Curve Area

The relative operating characteristic curve area (ROCA;
Mason 1982) is a measure of the resolution of a prediction
system. By considering whether an event occurs at every
grid and checking the forecasts against the observations, we
can construct a two-category contingency table (see Table E1),
where a and b represent the number of hits and false alarms,
respectively; and ¢ and d represent the number of misses and
correct rejections, respectively.

Then, the hit rate and the false alarm rate can be calcu-
lated as in Egs. (E1) and (E2):

Hit rate : H = P(event predicted | event occurs)

=al(a + ¢, (E1)

False alarm rate : F = P(event predicted | event does not occur)

= bl(b + d). (E2)

The ROC curve can be obtained by the pairs H and F,
and the area under the ROC curve is called ROCA, which
decreases from 1 to 0 as more false alarm rates occur. The
ROCA is calculated as in Eq. (E3):.

F),

ROCA = fH(x)dx Z ( w1 T H)F — F),  (E3)

where M is the number of categories relative to probability
thresholds. A larger ROCA value indicates a better proba-
bility forecast. When the ROCA is greater than 0.5, the fore-
cast can be regarded as skillful.

APPENDIX F

Perturbation versus Error Correlation Analysis

The perturbation versus error correlation analysis (PECA)
measures how well ensemble perturbations can explain fore-
cast error variances (Wei and Toth 2003). Ensemble perturba-
tions are defined as the differences between perturbed fore-
casts and the corresponding control forecast:
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P,(1) = F(1) = F 1, (), (F1)
where Py(7), Fi(f), and F.(¢) are the ith ensemble perturba-
tion, ith perturbed forecast, and the control forecast, respec-
tively. The forecast errors E(f) are defined as the difference
between the control forecast F.(f) and the verifying analysis
F(¢) (ie., the truth runs in the present study):

E(t) = F_,(t) — F(?). (F2)
The a posteriori optimal combination of M perturbations is
obtained by solving the least squares problem:

M 2

E — ZaiPi

i=1

Min (F3)

2

By solving the optimal problem (F3), one obtains an opti-
mal &;, and then the optimally combined vector Py, can be
written as

a.P..

1

M=

Il
SN

Popl =

(F4)

1

If a pattern anomaly correlation between two vectors X and Y
is defined as

cov(X,Y)
cov(X, X)l/zcov(Y, Y)2°

AX,Y) = (FS)

where cov(-) is the covariance; then, the PECA can be cal-
culated by taking X = P; (or X = P,,) and Y = E. The
square of the correlation A? is the explained error variance.
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