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Abstract

Extreme precipitation events are a major natural hazard and cause significant

socio-economic damages. Precipitation events are spatially extended and, thus,

can cause large water accumulations, which can lead to flooding events. In order

to help design flood protection infrastructure, a detailed investigation of the tem-

poral and spatial dependencies of extreme precipitation is essential. Here, we

use a statistical spatial extremes framework to systematically study the historical

and projected spatial–temporal characteristics of extreme precipitation in

Germany. For this purpose, we use data from 10 high-resolution global climate

model-regional climate model (GCM-RCM) combinations from the EURO-

CORDEX initiative and derive a statistical spatial extremes precipitation model.

Our results show that there are large spreads in reproducing the temporal–
spatial characters of extreme precipitation. Few climate simulations can well

present the temporal clustering of observed extreme precipitation in both sum-

mer and winter. In reproducing the spatial dependencies of the observations,

most GCM-RCM combinations behave well in summer, while in winter most

RCMs produce too many spatially localized extreme precipitation events.

The derived statistical model, which accounts for both the spatial and tem-

poral variability, performs well in representing the spatial dependency and

intensity characteristics in summer. Furthermore, global warming will have

a significant impact on the temporal and spatial dependencies of extreme

precipitation in Germany. There will be more temporal-dependent and

homogeneous extreme precipitation in summer; and more temporal-

independent and localized extreme precipitation in winter. The intensity

quantified by the 25-year return level of the 10 GCM-RCM combinations is

increasing; with relative changes ranging from 5.33% to 53.24% in summer

and from −15.38% to 32.33% in winter under RCP8.5. A future projection by
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our statistical spatial extremes model using projected temperature from

GCM-RCM combinations as a covariate shows that the 25-year return level

will increase by 3.02% under RCP2.6 and 4.16% under RCP8.5 in winter.
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1 | INTRODUCTION

Extreme precipitation events are of great concern due to
their direct impact on humans, infrastructure and ecosys-
tems (Franzke, 2017, 2021; Franzke & Torell�o i
Sentelles, 2020; Hallegatte et al., 2013; Masson-Delmotte
et al., 2021; Merz et al., 2010). How the characteristics of
extreme precipitation changes with global warming is of
significant social concern, with rainfall-driven floods being
one of the most costly natural hazards worldwide.
Although numerous studies have shown the intensification
of heavy precipitation events with climate change, there is
a wide variety of intensification changes in different regions
(Donat et al., 2016; O'Gorman & Schneider, 2009; Zeder &
Fischer, 2020). A detailed description of extremal statistics
of precipitation in specific regions will be more helpful for
local governments to support city planning policies and
design flood protection infrastructure.

Global climate models (GCMs) have been used as an
efficient way for studying the historical and projected
future changes in climate extremes. However, extreme pre-
cipitation simulated by GCMs is often not adequately
reproduced because of their coarse grid resolution and
their subsequent need of parameterizations, which lead to
the misrepresentation of physical processes, (van der Wiel
et al., 2016; Wang et al., 2014). High-resolution regional
climate models (RCMs), which possess higher resolution
and resolve better physical and dynamical processes, have
shown an improved capability in reproducing extreme pre-
cipitation, especially over Europe (Ehmele et al., 2020;
Sunyer et al., 2016). Recently, the EURO-CORDEX histori-
cal and future projection simulations have been provided
as part of the European Copernicus Climate Change
Service (C3S), resulting in 0.11�-resolution climate simula-
tions (Jacob et al., 2020). This offers the possibility of more
reliable projected climate simulations.

Besides dynamical climate models, statistical models
are also an efficient way to study extreme precipitation.
Without involving the complexity of physical processes,
statistical models aim to generate surrogate time series,
resembling the observed statistical and spatial character-
istics of extreme precipitation. Many statistical processes
are available to model extreme precipitation, such as the
fractional Poisson process, copula-based processes and

the max-stable process (Hannachi, 2014; Kim &
Onof, 2020; Paschalis et al., 2013; Yang, Franzke, &
Fu, 2020; Yang, Franzke, & Fu, Z., 2020). It has been
shown that statistical models are competitive in model-
ling extreme precipitation (Yang, Franzke, & Fu, 2020).
Moreover, by adding a time-dependent covariate in the
statistical model, these models might also be able to gen-
erate projected extreme precipitation, which has the
potential to serve as a complementary approach for
climate impact studies.

Dynamical and statistical models are both useful tools
to study the characteristics of extreme precipitation. In
order to get reliable projections of extreme precipitation,
evaluation of how well the models simulate historical
extreme precipitation is necessary. In many previous stud-
ies, climate extreme indices (Expert Team on Climate
Change Detection and Indices, ETCCDI), suggested by
Zhang et al. (2011), including the percentile-based intensi-
ties and durations of an event, are computed to character-
ize extreme precipitation (Alexander & Arblaster, 2017;
Dosio & Fischer, 2018).

However, in order to get a detailed description of the
extreme precipitation characteristics in a region, it is not
sufficient to only summarize extremes in terms of magni-
tudes and durations. For example, extreme precipitation
events can occur in close succession; potentially delivering
large precipitation accumulations. Moreover, a large spa-
tial extent of extreme precipitation events can be hazard-
ous, as it can trigger a larger surface runoff response,
which increases the risk of flooding and landslides (Barton
et al., 2016; Martius et al., 2013). Although previous stud-
ies have analysed the statistical properties and dynamical
contributions of temporal clusters of historical extreme
precipitation events, namely the extreme precipitation in
the mid-western region of North America (Villarini
et al., 2011) and southern Switzerland (Barton et al., 2016),
it has not been studied widely how well climate models
reproduce the temporal clustering of extreme precipitation
and how it changes with global warming.

Furthermore, since extreme precipitation events do not
occur at a single point, there would be a clear spatial depen-
dence of extreme intensities at short or medium distances.
A stronger spatial dependence means there is a higher prob-
ability that the extremes at two close points occur
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simultaneously. While a weaker spatial dependence indi-
cates that the extremes are more localized. Studying the his-
torical and projected spatial dependence of extreme
precipitation is crucial for risk estimation and hydrological
management over a certain region. So far, the spatial depen-
dence has not been widely investigated and no study has
investigated projected future trends of the spatial depen-
dence of extreme precipitation as far as we are aware of.

In this study, we selected Germany, which has the
second-largest population in Europe and regularly experi-
ences flooding events, as our research region. It has a typi-
cal mid-latitude moderate climate, characterized by a
western flow with abundant precipitation associated with
frontal systems in winter and more convective precipitation
in summer (Warrach-Sagi et al., 2013). We will investigate
the temporal and spatial dependence of extreme precipita-
tion and its projected future changes in the summer (JJA—
June, July and August) and winter (DJF—December,
January and February) seasons using 10 high-resolution
GCM-RCM combinations and one statistical model over
Germany. We will address the following research questions:

1. How well do dynamical and statistical climate models
reproduce the temporal and spatial dependencies of
daily extreme precipitation?

2. How will the temporal and spatial dependencies of
extreme precipitation change under different future
climate scenarios?

The use of these statistical extreme value methods
provides us with new insights into the quality and accu-
racy of RCM outputs, and also helps us to study projected
future climate change. The remainder of this paper is
structured as follows. In Section 2, we describe the 1 km
resolution observational dataset (HYRAS) and the
10 GCM-RCM combination simulations with a resolution
of 0.11�. The Max-stable statistical model is described in
Section 3, where we also introduce the statistical methods
to quantify the temporal and spatial dependence of
extremes. In Section 4, we evaluate the historical daily
extreme precipitation of GCM-RCM combinations and
the statistical model with the observations. In Section 5,
we assess the future projections of extreme precipitation.
Conclusions and discussions are given in Section 6.

2 | DATA

2.1 | The HYRAS gridded precipitation
data set

The HYRAS gridded daily precipitation data set is pro-
vided by the Deutscher Wetterdienst (DWD) Climate

Data Center, covering Germany with a resolution of
1 km during the period of 1931 through 2021 and has
been widely used in climate and hydrological studies
(https://opendata.dwd.de/climate_environment/CDC/
grids_germany/daily/hyras_de/precipitation/, Rauthe
et al. (2013)). More than 5000 rainfall gauges are used
for the HYRAS dataset, with the REGNIE interpolation
method, in which a multiple linear regression is
applied to create background fields of precipitation.
The high-resolution dataset can provide more details of
extreme precipitation variability (Hu & Franzke, 2020).
Here, we study the observations during the time period
1961–2005.

2.2 | The RCM data sets

We use daily precipitation sums from a series of
GCM-RCM combinations with a resolution of 0.11�,
collected by the European Coordinated Regional Cli-
mate Downscaling Experiment program (EURO-COR-
DEX) (https://esgf-data.dkrz.de/search/cordex-dkrz/).
To keep the consistence of the studying period with
the observations period, we selected the period
between 1961 and 2005 as the historical condition.
To keep the same data length with the historical con-
dition, for the future scenarios, we select two Repre-
sentative Concentration Pathway (RCP 2.6 and 8.5)
scenarios during the years of 2056–2100 (Gu
et al., 2020; van Vuuren et al., 2011). According to
the selection criteria, there are 10 GCM-RCM combi-
nations available in the public archive. The list of
GCMs, RCMs and modelling institutions are given in
Table 1. To reduce the bias induced by the interpolat-
ing method (Zou et al., 2021), we choose the closest
grid point of the observational data set to compare
with the model simulations followed by Diaconescu
et al. (2018) and Pendergrass and Knutti (2018).

3 | METHODS

3.1 | Generation of a spatial statistical
model: The max-stable model

Multi-variate extreme-value distributions of a spatial
model can be represented as a max-stable process
(de Haan, 1984; de Haan & Pereira, 2006). The
max-stable distribution is described as follows
(Ribatet, 2017): Let X1, X2,…, be a sequence of indepen-
dent copies of a random variable vector X. If there exist
normalizing sequences cn>0 :n≥1f g and dn :n≥1f g
such that
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max i=1,…,nXi−dn
cn

!Z,n!∞ ð1Þ

in distribution, then provided it is non-degenerate, the
random variable vector Z has a max-stable process. For
multiple locations, the marginal distribution of the vari-
able Z are generalized extreme value (GEV) distributed
with different location, scale and shape parameters. Dif-
ferent from the spatial GEV models, the max-stable
model permits spatial dependence. Recently, pairwise
likelihood fitting methods have been developed, paving
the way into the generation of max-stable models
(Ribatet, 2017; Westra & Sisson, 2011). Based on the spec-
tral representation of the max-stable process, there are
three steps for modelling the spatial extremes using a
max-stable model (Ribatet, 2009):

1. Modelling the spatial dependence
We transform each annual maximum precipitation
series Y into unit-Frechet margin series Z (GEV
[1,1,1]) by Equation (2):

Z= 1+ξ
Y −μ

σ

� �1
ξ

, ð2Þ

where μ, σ and ξ are the location, scale and shape param-
eters. Then the Z series over the region are fitted by a
two-dimensional spatial statistical model by using the

pairwise likelihood method (Ribatet, 2009). Here, we test
the Smith model, the Schlather model, the extremal-t
model and the Brown–Resnick model to see which model
fits the data best. Different models will give different spa-
tial structures. The specific expression for each model is
displayed in Table 2. The fitting procedure is explained in
detail by Ribatet (2017). To select the best model for
representing the spatial structure of extreme precipita-
tion, we calculate the Takeuchi Information Criterion
(TIC) value of each model, which is suitable for the
model under misspecification (Ribatet, 2009; Varin &
Vidoni, 2005). The model with the minimum TIC can be
considered as the best model to reproduce the spatial
dependence structure of the series Z over the region.

2. Modelling the Marginal Distribution
The marginal distribution of each Y is modelled by a
spatial GEV distribution. Specifically, in each grid (x),

TABLE 1 Summary of the global climate model-regional climate model (GCM-RCM) combinations used in the study.

GCM RCM Model name Modelling institution

MPI-M-MPI-ESM-LR REMO2009 MPIESM-REMO2009 MPI-CSC, Max-Planck Institute, Germany

MPI-M-MPI-ESM-LR RACMO22E MPIESM-RACMO22E MPI-CSC, Max-Planck Institute, Germany

MPI-M-MPI-ESM-LR RCA4 MPIESM-RCA4 MPI-CSC, Max-Planck Institute, Germany

NCC-NorESM1-M REMO2015 NorESM-REMO2015 GERICS, Climate Service Center Germany

NCC-NorESM1-M RACMO22E NorESM-RACMO22E KNMI, Royal Netherlands Meteorological
Institute, Ministry of Infrastructure and the
Environment, Netherlands

NCC-NorESM1-M RCA4 NorESM-RCA4 SMHI, Swedish Meteorological and Hydrological
Institute, Sweden

MOHC-HadGEM2-ES HadRCM3-GA7-05 HadGEM2-HadREM3 MOHC, Met Office Hadley Centre, United
Kingdom

MOHC-HadGEM2-ES RCA4 HadGEM2-RCA4 SMHI, Swedish Meteorological and Hydrological
Institute, Sweden

IPSL-IPSL-CM5A-MR REMO2015 CM5A-REMO2015 GERICS, Climate Service Centre Germany,
Germany

CNRM-CERFACS-CNRM-CM5 ALARO-0 CNRM-ALARO-0 RMIB-UGent, Royal Meteorological Institute of
Belgium and Ghent University, Belgium

TABLE 2 Specific expressions of the spatial dependence

models.

Model Expression

Schlather Yi xð Þ : x � χf g= ffiffiffiffiffi
2π

p
max 0,ϵ xð Þf g : x � χ

Extremal-t Y i xð Þ : x � χf g= cνmax 0,ϵ xð Þf gν : x � χf g,
cν=

ffiffiffi
π

p
2−

ν−2
2 Γ ν+1

2

� �
Brown-
Resnick

Yi xð Þ : x � χf g= exp ϵ xð Þ−γ xð Þf g,x � χf g,
γ xð Þ= x=λð Þα

Smith Yi xð Þ : x � χf g= exp ϵ xð Þ−γ xð Þf g,x � χf g,
γ xð Þ= x=λð Þ2

4 YANG ET AL.
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we fitted the series Y xð Þ with the GEV distribution
where μ xð Þ,σ xð Þ,ξ xð Þ are the location, scale and shape
parameters, respectively. These parameters are mod-
elled dependent on the longitude (lon xð Þ), latitude
(lat xð Þ) of each grid and the seasonal mean tempera-
ture of Germany (T) (Equation (3)). The maximum-
likelihood method is used for estimating the parame-
ters and the best model is chosen by the minimum
TIC value as well.

μ x,Tð Þ=β00+β01lon xð Þ+β02lat xð Þ+β03T

σ x,Tð Þ=β10+β11lon xð Þ+β12lat xð Þ+β13T

ξ x,Tð Þ=β20+β21lon xð Þ+β22lat xð Þ+β23T

ð3Þ

3. Joint Modelling
After we determined the best models for both spatial
dependence (Z0) and marginal distribution (GEV
(μ0,σ0,ξ0)), we combine the two models by the inverse
function of Equation (2). Then, we are able to gener-
ate the statistical extreme precipitation model (Y 0,
Equation (4)) which preserves the same spatial
dependence and the marginal distributions over
Germany.

Y 0 xð Þ=
σ0 xð Þ Z0 xð Þξ0 xð Þ−1

� �
ξ0 xð Þ +μ0 xð Þ ð4Þ

3.2 | The spatial dependence coefficient

To quantify the spatial dependence between two grid
points, a common method is the (semi) variogram in geo-
statistics. However, when working with extreme values,
the variogram is not a useful tool since the variogram of
simple max-stable processes may not exist. As a substi-
tute to the (semi) variogram, here we use the extremal
coefficient (θ) based on the F-madogram, proposed by
Cooley et al. (2006). It can better reflect the spatial depen-
dence between extremes and has been used as an effec-
tive tool to quantify the spatial dependence (Hu &
Franzke, 2020; Yang, Franzke, & Fu, 2020). The extremal
coefficient is defined by,

bθ x1−x2ð Þ= 1+2νF x1−x2ð Þ
1−2νF x1−x2ð Þ : ð5Þ

where

νF x1−x2ð Þ= 1
2n

Xn
i=1

j F zi x1ð Þð Þ−F zi x2ð Þð Þ
			,�

ð6Þ

F zð Þ= exp −1=zð Þ: ð7Þ

Z xð Þ is a stationary max-stable random field with unit
Frecht margins. zi x1ð Þ and zi x2ð Þ are the i-th observations
of Z(x) at locations x1, x2 and n is the total number of
observations. The extremal index lies between 1 and 2.bθ=1 denotes the observations at two grid points that are
totally spatially dependent and bθ=2 means the two obser-
vations are spatially independent.

3.3 | The temporal extremal index

The extremal index is a useful indicator of how much
temporal serial clustering of exceedances of a threshold
occurs in the limit of the distribution. Various estimators
have been applied for the extremal index (Ferreira, 2018;
Kopp et al., 2021; Moloney et al., 2019). Here, we adopt
the ‘runs’ method, one of the simplest but widely used
ways of estimating the extremal index, proposed by Coles
(2001). In the precipitation time series, we define the
90th percentile as the threshold and count the number of
extremes exceeding the threshold (nu). The successive
extremes should be defined as a cluster. Pragmatically,
the extremes might be interrupted by a short pulse
(Bernardara et al., 2007). So in the runs method the clus-
ter is taken as terminated when the series stayed below
the threshold for at least rc steps. In this study, we define
the rc as three steps and count the number of clusters
(nc). The extremal Index is computed by dividing the
number of clusters nc, by the number of exceedances nu

bκ= nc
nu

ð8Þ

The bκ has a value range from 0 to 1. bκ=1 means the
extremes are independent, which means all clusters are
composed solely of a single extreme. bκ<1 indicates that
the extremes appear in clusters and there is temporal
dependency between the extremes. The smaller bκ means
there are more clustered extremes.

3.4 | Return levels of the extremes

In hydrological studies, return levels and periods are
widely used to describe and quantify risks of extremes.

YANG ET AL. 5
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Following Laflamme et al. (2016), here we use the
25-year return level as an indicator to evaluate the
extreme magnitudes simulated by the GCM-RCM combi-
nations and the statistical model. For each dataset, sea-
sonal maxima at each grid are first fitted to the GEV
distribution by the maximum likelihood method. The
96th quantile value of the fitted GEV distribution is
defined as the 25-year return level of each grid.

The performance of each simulation in reproducing the
extreme precipitation character over the study region is
evaluated using the root-mean-squared-error (RMSE). Tak-
ing the 25-year return level as an example, the RMSE
defined as

RMSE=
1
K

XK
n=1

em,n−eo,nð Þ2
" #1=2

ð9Þ

where, em,n and eo,n represent the 25-year return levels at
grid point n in the model and the closest corresponding
observation grid point o, respectively. K is the total num-
ber of grid points over Germany. The evaluations on the
spatial dependence (using extremal coefficient introduced
in Section 3.2) and temporal cluster (using extremal
index introduced in Section 3.3) are quantified in similar
ways by RMSEs. Besides the RMSE, the spatial correla-
tion is also applied in the evaluation.

4 | OBSERVED RESULTS AND
MODEL EVALUATION

In this section, we evaluate the historical temporal and
spatial dependencies, return levels of extreme precipita-
tion generated by GCM-RCM combinations and the max-
stable model.

4.1 | Temporal dependence of extreme
precipitation

Figure 1 shows the temporal extremal index of
HYRAS and of all GCM-RCM combinations, as well
as the multi-model mean in summer and winter. The
observed extremes tend to appear more indepen-
dently in summer (κ=0:87), while they tend to occur
more clustered in winter (κ=0:63). This is a result of dif-
ferent types of precipitation. In summer, most of the
extreme precipitation is caused by convective systems,
which usually tend to occur independently from each
other. While in winter, extreme precipitation is mostly
induced by the large-scale circulation and often lasts for
several days.

In summer, the clustered extreme precipitation events
tend to occur in the northern and central part of
Germany. There is a considerable spread in this statistic
across different climate model simulations, as most
models show an underestimation of serial clustering
compared with the observations, especially the models
driven by MPIESM and NorESM1 (see Figure 1). While
for the RCMs driven by HadGEM2, there is an obvious
overestimation of the clustering in the western and
southern part of Germany. The RCMs driven by CM5A
behave relatively well in reproducing the serial clusters,
with the spatial correlation of 0.21 and 0.24 in the
CM5A-REMO2015 and CM5A-ALARO-0 simulations,
respectively. The CM5A-ALARO-0 simulation also pre-
sent the lowest RMSE among the 10 GCM-RCM combi-
nations (see Table 3). Both the GCM and RCM influence
the temporal cluster of extremes in the simulations. The
selection of the GCM tend to impact the sign of the differ-
ences between the simulations and observations (see
Figure 1). For example, the RCMs driven by MPIESM
show an overall overestimation of the extremal index and
the RCMs driven by HadGEM2 tend to present an under-
estimation of the index. The MPIESM-RCA4 and
HadGEM2-RCA4 simulations, which are sharing the
same RCM but are driven by different GCMs, show oppo-
site differences in the extremal indices. The selection of
the RCM tend to impact the details of the geographical
distribution of the extremal index, since there are large
differences of spatial correlations in the simulations that
have the same GCMs but different RCMs (see Table 3).
So both the GCMs and RCMs have significant impacts on
simulating the temporal cluster of extreme precipitation
in summer. The multi-model mean could largely capture
the features seen in southern Germany, but underesti-
mates the extremal index in the northwest.

In winter, the observed clustered extreme precipita-
tion events tend to occur in western Germany. Each
climate model simulation shows a large deviation from
the observed extreme clustering. Most climate model
simulations present higher temporal extremal indices
across Germany, which means the extreme precipita-
tion simulated by GCM-RCM combinations tend to
occur more independently than observations. In partic-
ular, for the CM5A-REMO2015 simulation, there is an
underestimation of serial clustering across the whole of
Germany. The HadGEM2-HadREM3 and CM5A-
ALARO-0 are the two simulations that perform the
best in characterizing the observed temporal cluster
behaviour, with spatial correlations of 0.41 and 0.33.
Though the HadGEM2-HadREM3 shows higher spatial
correlations, it underestimates the clustering charac-
teristics in western Germany, so that the RMSE is
larger than the CM5A-ALARO-0 simulation (see

6 YANG ET AL.
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FIGURE 1 Geographical distributions of the extremal indexes of observations and climate model simulations in (a) summer and (b)

winter. [Colour figure can be viewed at wileyonlinelibrary.com]

YANG ET AL. 7
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Table 3). The GCMs and RCMs both influence the tem-
poral cluster of extreme precipitation in winter. In par-
ticular, the CM5A-REMO2015 and CM5A-ALARO-0
simulations, which have the same GCM but different
RCMs, show totally different extremal indices (see
Figure 1). Though the MPIESM-RCA4, NorESM-RCA4
and HadGEM2-RCA4 have the same RCM, their spatial
correlations with the observations are 0.23, −0.04 and
0.24, respectively (see Table 3). Different from the
results in summer, the multi-model mean cannot
reproduce the spatial characteristics of the extreme clus-
tering well in winter. It shows more independent
extremes, especially in the western part. Previous studies
have shown that the temporal clustering characteristics of
extreme precipitation is associated with large-scale climate
modes, such as the Arctic Oscillation (AO) and the North
Atlantic Oscillation (NAO) (Yang & Villarini, 2019). An
improvement of simulating the large-scale climate modes
in climate models may help improve the capabilities in
simulating the temporal clusters of extreme precipitation.
Nevertheless, how to improve the capabilities of climate
model simulations on temporal cluster of extreme precipi-
tation still needs further studies.

4.2 | Spatial dependence of extreme
precipitation

To show the spatial dependence over the whole region,
we compute the distribution of the extremal coefficients
over all pairs of grid points. Figure 2 compares the distri-
bution of the mean and the uncertainty of the extremal
coefficients as a function of pairwise distances in observa-
tions and GCM-RCM combinations in summer and win-
ter. As expected, as the distance between two grid points
increases, the spatial dependence becomes weaker. Com-
pared with the observed extremes in summer, the θ
values in winter decrease, which means the spatial
dependence of extremes in winter is stronger. This may
be related to the different types of extreme precipitation
events in different seasons. In summer most of the

extreme precipitation events are caused by localized
convective systems, while in winter extreme events are
more likely caused by large-scale systems, so that the
extreme magnitudes are more spatially dependent. It is
consistent with Cabral et al. (2020), who evaluated the
spatial homogeneity based on two statistics over
Germany and found the extremal spatial dependence
structure of precipitation is stronger during winter than
summer.

All of the GCM-RCM combinations are capable of
reproducing the weakening dependence as the distance
increases. To quantify the simulation capabilities, we com-
pute the RMSE, as shown in Table 4. In summer, 5 climate
model simulations overlap well with the observations and
show lower RMSEs, which are MPIESM-RACMO22E,
NorESM1-RACMO22E, HadGEM2-HadREM3, HadGEM2-
RCA4 and CM5-ALARO-0 simulations. All the five simula-
tions show the same RMSEs of 0.04 (see Table 4). Among
the remaining 5 climate model simulations, MPIESM-
REMO2009, NorESM1-REMO2015 and CM5A-REMO2015
significantly underestimate the spatial dependence
when the distance between the two grid points are shorter
than 200 km. This might be related to the weak spatial
dependence of convective precipitation. The MPI-RCA4
and NorESM1-RCA4 simulations significantly overestimate
the dependence regardless of the distance.

In winter, the GCM-RCM combinations perform even
worse in simulating the spatial dependence. Most of them
(8 out of 10) significantly underestimate the spatial depen-
dence (see Figure 2). In particular, MPI-REMO2009,
HadGEM2-HadREM3 and CM5A-REMO2015 show sys-
tematically a lower spatial dependence regardless of the dis-
tance. Other models have a better extremal coefficient
behaviour when the distances are small, but a large
deviation when two grid points are more than 150 km
apart (MPIESM-RACMO22E, NorESM1-REMO2015,
NorESM1-RCA4, HadGEM2-RCA4 and CM5-ALARO-0).
Only NorESM-RAMCO22E presents the best spatial depen-
dence of extremes in both seasons, as quantified by the
RMSE shown in Table 4. The mean RMSE of the ten simu-
lations is 0.102 in winter, while the mean RMSE is 0.072 in

TABLE 3 Spatial Correlations of the temporal extremal index between climate model and observation.

Season R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Summer 0.23 0.18 −0.07 0.22 0.20 −0.09 −0.04 0.11 0.21 0.24

(0.035) (0.034) (0.042) (0.037) (0.037) (0.036) (0.036) (0.053) (0.039) (0.029)

Winter −0.02 0.18 0.23 −0.05 0.13 −0.04 0.41 0.24 0.24 0.33

(0.060) (0.061) (0.051) (0.067) (0.064) (0.055) (0.042) (0.046) (0.070) (0.038)

Note: The root-mean-squared-error (RMSE) of each climate model is shown in brackets. The best two models are marked in bold. R1:MPIESM-REMO2009, R2:

MPIESM-RACMO22E, R3:MPIESM-RCA4, R4:NorESM1-REMO2015, R5:NorESM1-RACMO22E, R6:NorESM1-RCA4, R7:HadGEM2-HadREM3, R8:
HadGEM2-RCA4, R9:CM5A-REMO2015, R10:CM5A-ALARO-0.

8 YANG ET AL.
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summer, indicating the spatial dependence of extreme pre-
cipitation is worse simulated in winter than in summer.
Since GCM-RCM combination outputs are widely used as
inputs for the hydrological models to estimate the risk of
flooding and study the water resource management, the
ability of them in accurately modelling the spatial depen-
dencies is necessary. For example, an underestimation of
spatial dependence will lead to a underestimation of the
affected area and the probability of joint extreme events.
However, our results show that the GCM-RCM combina-
tions lack the ability to well represent the spatial dependen-
cies of extreme precipitation, especially in winter.

Both good GCMs and RCMs are necessary to obtain
higher capabilities in simulating the spatial dependence.

Taking the three RCMs driven by the same NorESM1
model as an example, the NorESM1-REMO2015 simula-
tion underestimate the spatial dependence of extremes in
summer, while the NorESM1-RCA4 simulation overesti-
mate the dependence. Moreover, if the same RCM is
driven by different GCMs, the results will also be differ-
ent, such as the MPIESM-RCA4, NorESM1-RCA4 and
HadGEM2-RCA4 simulations. The first two simulations
overestimate the extremal dependence in summer, while
the last simulation shows an overall agreement with the
observations. Both the quality of GCM and RCM will
influence the simulation in reproducing the spatial
dependence of extremes. As discussed in Diaconescu
et al. (2007) that if large scale-errors are present in the

FIGURE 2 The distribution of the extremal coefficients as a function of pairwise distances in observations (black circles) and climate

model simulations (blue circles for summer, red circles for winter). Error bars correspond to one standard deviation. [Colour figure can be

viewed at wileyonlinelibrary.com]
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lateral boundary conditions provided by the GCM, the
features in their RCMs will be rather poor. Nevertheless,
further studies are needed in how to improve the simula-
tion ability of spatial dependence in GCM-RCM simula-
tions and what mechanisms can account for this
behaviour.

The statistical model may overcome the shortcomings
of GCM-RCM combinations on simulating the spatial
extremes. Figure 3 compares the distribution of the extre-
mal coefficients between the observations and the four
fitted max-stable models. In both seasons, the Extremal-t
and Brown-Resnick model simulate the spatial depen-
dence well. The Smith model shows that the extremes
reach independence at around 120 km in summer and
220 km in winter, which are much earlier than for the
observations. The Schlather model cannot well reproduce
the dependence at longer distances either. To quantita-
tively compare the simulation ability, Table 5 shows the
goodness of fit quantified by TIC values. The minimum
TIC is reached by the Extremal-t model in both seasons,
so that we adopt the Extremal-t model to characterize the

spatial dependence for the statistical model. Compared
with the GCM-RCM simulations, the statistical model
constructed by the Extremal-t model can better reproduce
the observed spatial dependence of extreme precipitation,
with the lowest RMSE in both summer and winter.

4.3 | Return level of extreme
precipitation

The return levels of the statistical model is dependent on
both the spatial dependence model and the marginal dis-
tribution models. According to the methodology, after we
select the appropriate model for the spatial dependence,
we need to decide on the marginal distribution of the sta-
tistical models. The marginal distributions of the statisti-
cal model are modelled by a spatial GEV distribution
(Equation 3). The location parameter of the GEV distri-
bution provides the mean intensity of the extremes, while
the scale and shape parameters describe how the
extremes decay.

TABLE 4 Root-mean-squared-error

(RMSE) of different models in

presenting the spatial dependence

coefficient The best two models are

marked in bold.)

Season R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 S

Summer 0.06 0.04 0.22 0.08 0.04 0.11 0.04 0.04 0.05 0.04 0.02

Winter 0.13 0.10 0.05 0.08 0.04 0.12 0.15 0.07 0.16 0.12 0.04

Note: R1:MPIESM-REMO2009, R2:MPIESM-RACMO22E, R3:MPIESM-RCA4, R4:NorESM1-REMO2015,
R5:NorESM1-RACMO22E, R6:NorESM1-RCA4, R7:HadGEM2-HadREM3, R8:HadGEM2-RCA4, R9:CM5A-

REMO2015, R10:CM5A-ALARO-0. S denotes statistical model (Max-stable model).
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FIGURE 3 The distribution of the extremal coefficient as a function of pairwise distances in observations (black circles) and the fitted

extremal coefficient functions (lines) in (a) summer and (b) winter. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 5 TIC values of different

statistical models.
Season Schlather Smith Extremal-t Brown-Resnick

Summer 9,829,916 9,789,065 9,761,672 9,762,466

Winter 9,454,427 9,521,484 9,429,685 9,429,874

Note: Bold font indicates the most parsimonious model.
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According to Equation (3), each parameter of
the spatial GEV distribution (μ, σ, ξ) has 23=8
combinations of covariates (Take μ x,Tð Þ in Equation
(3) as an example, the 8 combinations
are: μ x,Tð Þ=β00;μ x,Tð Þ=β00+β01lon xð Þ;μ x,Tð Þ=β00+β02lat xð Þ;
μ x,Tð Þ = β00+β03T;μ x,Tð Þ= β00+β01lon xð Þ+β02lat xð Þ;μ x,Tð Þ
=β00+β01lon xð Þ+β03T;μ x,Tð Þ=β00+β02lat xð Þ+β03T;μ x,Tð Þ=
β00+β01lon xð Þ+β02lat xð Þ+β03T). For the three parameters,
there are 83=512 covariate combinations in total (β00, β

1
0,

β20 must be included). We fit the observed extreme pre-
cipitation series to each combination using the
maximum-likelihood method, and select the model with
the minimum TIC value. The best marginal distributions
of the statistical model are shown in Equation (10) for
summer

μ� lon+ lat

σ� lon+ lat

ξ� lon+ lat

ð10Þ

and Equation (11) for winter

μ� lon+ lat+T

σ� lon+ lat+T

ξ� lon+T

ð11Þ

Different from the marginal models covering the
Brandenburg-Berlin region, in which the parameter only
consists of longitude or latitude, the models covering the
whole of Germany are more complicated (Yang,
Franzke, & Fu, 2020a). Both the longitude and latitude
are needed to construct the marginal distribution. This is
reasonable since we are now dealing with a larger and
more spatially complex area which is correspondingly
displayed in the complexity of the statistical model.

The best marginal model in summer does not consist
of temperature covariate, which indicates that the temper-
ature does not show a significant impact with the histori-
cal extreme precipitation in summer. The marginal
distribution in winter including temperature as the covari-
ate shows the minimum TIC value, indicating that global
warming has a significant influence on the extreme precip-
itation magnitudes in winter. The findings that there are
significant positive trends of extreme precipitation during
the winter season, but insignificant overall trends in the
summer season in Germany, are consistent with previous
studies (Moberg & Jones, 2005; Tabari et al., 2020). The
changes of extreme precipitation anomalies are modulated
by both large atmospheric circulations and anthropogenic
activities (Chen & Sun, 2021; Tabari & Willems, 2018; Xu
et al., 2021). By comparing ALL and GHG-alone forcing

CMIP6 simulations, Tabari et al. (2020) found that the
contributions of anthropogenic influences to extreme pre-
cipitation is latitude dependent and can reach up to 26%–
41% for latitudes between 50� and 60�. The contributions
are also seasonally dependent, with a weaker contribution
in summer and a more robust signal in winter.

Figure 4 shows the geographical distribution of the
25-year return level estimated from observations and the
difference with the GCM-RCM combinations and the sta-
tistical model in summer. The observed 25-year return
levels ranges from 50 mm to 80 mm for most regions of
Germany in summer. High intensities of more than
100 mm are mostly observed in the regions of the Bavar-
ian Alps along the southern boundary of Germany,
which might be associated with the advection of moist
warm air from the Mediterranean basin (Murawski
et al., 2016). Most models show large dry biases in the
southern and eastern parts of Germany and wet biases in
the western part. The results are consistent with Prein
et al. (2016), who also find the underestimation of simu-
lated extreme precipitation in the Southeastern Germany
and overestimation in Central and Western Germany by
the use of eight simulations from the EURO-CORDEX
ensemble. It is notable that in contrast to other models,
NorESM1-RACMO22E and HadGEM2-HadREM3 exhibit
large dry biases; while MPIESM-REMO2009 and CNRM-
CM5-ALARO-0 show large wet biases over most of the
regions. In HadGEM2-HadREM3, the large dry bias is
more than 50 mm, mostly located in southern and east-
ern Germany.

Table 6 shows the RMSEs of the 25-year return levels
simulated by the 10 GCM-RCM simulations and the sta-
tistical model. The MPIESM-RACMO22E and the statisti-
cal model show the best performance in reproducing the
25-year return levels in summer. The RMSEs of
MPIESM-RACMO22E and the statistical model are
10.20 mm (percentage of RMSE [pRMSE]: 17.64%) and
11.26 mm [pRMSE:19.48%]), respectively. The percent-
ages of the RMSE values are calculated since the differ-
ences in the absolute RMSE values are not obvious. The
HadGEM2-HadREM3 is the worst, the RMSE of which is
almost twice of the best model. The statistical model is
able to well present the magnitudes of observed extreme
precipitation in summer, though it shows an obvious
overestimation of return levels in the south-eastern part
of Germany.

In winter, the 25-year return levels range from 20 to
40 mm over most of the regions (see Figure 4). High
intensities of more than 60 mm are located in the south
of Nordrhein-Westfalen, north of Baden-Württemberg
and east of Bavaria. The spatial patterns of the return
levels in winter are strongly affected by orography. Most
of the high-return levels are located in mountainous

YANG ET AL. 11
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FIGURE 4 Geographical distributions of intensity (mm) at 25-year return levels of observation, and absolute bias from simulations of

global climate model-regional climate model (GCM-RCM) combinations and Max-stable model in (a) summer and (b) winter. [Colour figure

can be viewed at wileyonlinelibrary.com]
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regions. The mountainous regions, by having complex
orography interacting with atmospheric flows, modulate
the extreme precipitation. Most simulations show an
underestimation in the south and an overestimation in the
north. The bias of the model simulations is largely depen-
dent on the downscaling models. The simulations down-
scaled by REMO2015 and REMO2009 have strongly
shifted patterns over the main orographic features of
Germany. The simulations downscaled by RCA4 show
positive biases in the northern and southern boundaries,
but negative biases in the central part. Among the 10 simu-
lations, the best two models are MPIESM-RACMO22E and
NorESM1-RACMO22E, with the RMSE values of 7.35 mm
(pRMSE:21.33%) and 8.64 mm (pRMSE:25.07%) (see
Table 6). The worst model is MPIESM-RCA4, with RMSE
value of 20.44 mm (pRMSE:59.32%). The models of
MPIESM-RACMO22E and MPIESM-RCA4, which has the
same GCM but different RCM, perform totally different in
the capabilities in simulating the extreme precipitation, as
one being the best while the other is the worst. It indicates
that the selection of the RCM has an important impact on
the extreme precipitation intensity. In comparison with
the other GCM-RCM combinations (such as the
NorESM1-REMO2015 and NorESM1-RACMO22E), simi-
lar results can be obtained. The results that the RCMs play
a dominant role in biases of extreme precipitation intensity
simulation over Europe are consistent with previous stud-
ies (Berg, Wagner, et al., 2013; Vautard et al., 2021). The
dependence may probably be due to the physical parame-
terizations in the RCMs. The statistical model also lacks
the ability to well represent the orographic feature. It
underestimates the intensities over the mountains and
overestimates the intensities in other areas. The statistical
model is ranked the seventh of all the 11 models, as it can-
not well reproduce the localized high intensities.

Overall, there is large spread in simulating the 25-year
return level in the GCM-RCM combination ensembles in
both summer and winter. If we take an average of RMSE
of the 10 simulations, it presents a lower RMSE of
12.56 mm (pRMSE: 21.72%) in summer, compared with
the 12.93 mm (pRMSE: 37.52%) in winter, indicating that
the 0.11� EURO-CORDEX simulations perform better in
reproducing the extreme precipitation intensities in sum-
mer than in winter. Many previous studies have also

evaluated the dynamical climate models on simulating the
extreme precipitation and attempted to explain the reasons
for the bad performances. A few studies have found that
the climate model simulations produces stronger biases of
precipitation in winter than in summer in Germany (Berg,
Moseley, & Haerter, 2013a; Toelle et al., 2018; Vautard
et al., 2021). By using the nine ensemble RCMs, Rauscher
et al. (2009) found that the ensemble mean presents a 20%
bias of amount in precipitation in winter and less than
10% bias in summer over Europe. The seasonal difference
may be attributed to the seasonal dependence of the gauge
undercatch in the observations, which tend to be larger in
winter than in summer (Rauscher et al., 2009; Tian
et al., 2007; Yang et al., 2005).

In summary, we evaluated how well the 10 GCM-
RCM combinations simulate extreme precipitation with
respect to temporal clustering, spatial dependence of
extremes and intensities during the period 1961–2005 over
Germany. Most GCM-RCM combinations produce more
serially and spatially independent extreme precipitation
events in winter, and some GCM-RCM combinations,
such as NorESM1-RCA4 and MPIESM-RCA4 significantly
overestimate the spatial dependencies of extremes in sum-
mer. The max-stable statistical model, constructed by the
Extremal-t function, can relatively well reproduce the spa-
tial dependence. The intensity of the extremes simulated
by the max-stable ranked the second in summer and
seventh in winter among the 11 climate simulations.

5 | FUTURE PROJECTIONS

While observations tell us about the present-day situation
of extreme precipitation events, climate models enable us
to study the characteristics of projected future extreme
precipitation and their likely future change. Though pre-
vious studies have demonstrated that climate change will
have a significant impact on the magnitude and fre-
quency of extreme precipitation (Wagner et al., 2013),
how climate change will affect the temporal and spatial
dependencies of extreme precipitation has not been
widely addressed so far. A better understanding of how
the temporal and spatial dependencies of extreme precipi-
tation will change in a warmer climate is important for

TABLE 6 Root-mean-squared-error (RMSE) (unit: mm) of different models in presenting the 25-year return levels (the best two models

are marked in bold.)

Season R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 S

Summer 12.38 10.20 12.62 11.52 12.78 12.49 16.21 13.64 11.26 12.53 11.26

Winter 11.16 7.35 20.44 15.14 8.64 18.19 19.24 9.06 11.32 8.77 11.64

Note: R1:MPIESM-REMO2009, R2:MPIESM-RACMO22E, R3:MPIESM-RCA4, R4:NorESM1-REMO2015, R5:NorESM1-RACMO22E, R6:NorESM1-RCA4, R7:
HadGEM2-HadREM3, R8:HadGEM2-RCA4, R9:CM5A-REMO2015, R10:CM5A-ALARO-0. S denotes statistical model (Max-stable model).
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many climate impact studies, especially impact studies
investigating the likely future changes of natural hazards.
Spatial extremes are important for estimating the projected
probability of joint extreme events and water resource man-
agement. Since our max-stable model has regional tempera-
ture as a co-variate in winter, we can also obtain a projected
statistical extreme precipitation model in winter with the
projected temperature taken from the GCM-RCM
combinations.

5.1 | Temporal dependence of extreme
precipitation

We find that climate change will have a significant
impact on the temporal dependencies of extreme precipi-
tation. Figure 5 shows the geographical distributions of
the extremal index changes of projected extreme precipi-
tation under RCP8.5 during the period 2056 through
2100 relative to the period of 1961 through 2005. In the

FIGURE 5 Geographical distributions of the extremal index changes of projected extreme precipitation under RCP8.5 during the period

2056 through 2100 relative to the period of 1961 through 2005 in (a) summer and (b) winter. The filled circles mean the differences have

passed 95% significant tests. [Colour figure can be viewed at wileyonlinelibrary.com]

14 YANG ET AL.

 10970088, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.8038 by Institution O
f A

tm
ospheric Physics, W

iley O
nline L

ibrary on [24/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


summer season, more significant decreases of extremal
indices can be found among the GCM-RCM simulations,
which indicate that the extremes will be more clustered. In
particular, the MPIESM-RCA4 and HadGEM2-HadREM3
simulations show more clustered extremes almost across
the whole of Germany. The mean change of extremal index
averaged over Germany in each simulation is summarized
in Table 7. Seven out of 10 simulations show a lower mean
change of extremal index under the RCP8.5 scenario, indi-
cating that the extremes under RCP8.5 will be more clus-
tered. While under the RCP2.6 scenario, four simulations
show more clustered extremes while the other simulations
show more independent extremes.

In winter, the changes of extreme precipitation are
totally different from the results in summer. More
GCM-RCM combinations show higher extremal index
values under the RCP8.5 scenario (see Figure 5), indi-
cating that there are more independent extremes.
Five GCM-RCM combinations (MPIESM-REMO2009,
NorESM1-REMO2015, NorESM1-RACMO22E, NorESM1-
RCA4 and CM5A-REMO2015) show there are more
independent extremes over Germany, while 3 GCM-RCM
combinations (MPIESM-RACMO22E, HadGEM2-
HadREM3 and HadGEM2-RCA4) show there are more
dependent extremes in Western Germany and more inde-
pendent extremes in Eastern Germany. The geographical
distributions of the changes of the extremal indices under
RCP2.6 are similar with those under RCP8.5, but with
fewer significant grid points. If we take an average of the
changes in the 10 climate simulations over the domain,
more temporal clustered extremes in summer and more
independent extremes in winter will be projected. And the
clustering or independence of the extreme will intensify
under high concentration pathways.

5.2 | Spatial dependence of extreme
precipitation

Figure 6 shows the changes of the extremal coefficients
under climate change for the two seasons. In summer,
7 out of 10 GCM-RCM combinations show there are no

significant differences of the spatial dependence of pro-
jected precipitation relative to historical conditions.
NorESM1-RACMO22E, which is the best model to repro-
duce the spatial dependence of observed precipitation,
shows significantly stronger dependence at large dis-
tances under RCP8.5. That means that the magnitudes of
the extremes at long distances are stronger correlated and
that the extreme events might be more homogeneous.
However, the NorESM1-RCA4 and MPIESM-RCA4 show
that the extreme magnitudes are significantly less corre-
lated at distances longer than around 100 km under high
emission scenarios.

In winter, the result of NorESM1-RACMO22E shows
that there is a significant trend of increasing indepen-
dence under RCP2.6 relative to historical conditions. This
indicates that the magnitudes of extremes in winter at
different grid points are less correlated, which is a poten-
tial sign that the extremes in winter become more local-
ized in the future.

No significant changes of spatial dependences of
projected extreme precipitation are found in most GCM-
RCM combinations in both summer and winter. One
possible reason is that most GCM-RCM combinations
lack the ability of well reproducing the spatial depen-
dence of the extremes. A large bias exists between the
GCM-RCM combinations and the observation (Figure 2),
so that the changes of spatial dependence might not be
robust. Further studies are needed in how to improve the
simulation ability of spatial dependence and what mech-
anisms can account for this behaviour.

5.3 | Return level of extreme
precipitation

The box plot of the relative change of the 25-year return
levels in each grid during the period 2056–2100 with
respect to the period 1961–2005 under RCP2.6 and
RCP8.5 over Germany is shown in Figure 7. Comparisons
between the 10 GCM-RCM combinations reveal great
agreements in the increasing median values of extreme
precipitation intensities in summer. There is a much

TABLE 7 The mean change of extremal index averaged over Germany.

Season R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Mean

Summer (rcp2.6) 0.012 0.006 −0.047 −0.022 0.008 0.006 −0.056 −0.026 0.026 0.014 −0.008

Summer (rcp8.5) −0.021 0.001 −0.061 −0.033 −0.045 −0.052 −0.071 −0.059 0.015 0.012 −0.031

Winter (rcp2.6) 0.042 0.023 0.042 0.045 0.061 0.072 −0.018 −0.057 0.021 0.048 0.028

Winter (rcp8.5) 0.059 0.020 0.051 0.063 0.064 0.075 −0.017 0.016 0.071 −0.016 0.039

Note: R1:MPIESM-REMO2009, R2:MPIESM-RACMO22E, R3:MPIESM-RCA4, R4:NorESM1-REMO2015, R5:NorESM1-RACMO22E, R6:NorESM1-RCA4, R7:

HadGEM2-HadREM3, R8:HadGEM2-RCA4, R9:CM5A-REMO2015, R10:CM5A-ALARO-0.
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stronger increase under RCP8.5 than RCP2.6. The mean
intensification averaged over all the grid points of extreme
precipitation in 10 GCM-RCM combinations ranges from
1.74% (MPIESM-RCA4) to 39.88% (NorESM1-RCA4)
under RCP2.6 and from 5.33% (MPIESM-RCA4) to 53.24%
(NorESM1-RCA4) under RCP8.5 in summer. All the
10 GCM-RCM combinations simulate that in some regions
the increase of the intensities is more than 100%. The
multi-model mean shows the 25-year return levels will
increase 19.05% under RCP2.6 and 31.41% under RCP8.5.
For the investigation of regions which are projected to be
more affected by extreme precipitation events in the
future, the spatial distributions of the relative changes of
25-year return levels under RCP8.5 are shown in Figure 8.

The multi-model mean presents an overall intensification
of extreme precipitation across Germany. For individual
GCM-RCM combinations, the projected climate signal is
not clear. Apart from MPIESM-RCA4, the other models
present positive trends of intensities over most grid points.
The projected percentages of wet days of extreme precipi-
tation will also increase in the future period, as shown by
Wagner et al. (2013). This indicates that extreme precipita-
tion events not only intensify, but also occur more
frequently. The spatial distribution of the projected per-
centage of wet days is heterogeneous for individual GCM-
RCM combination as well. For the statistical modelling in
the historical condition, the model in summer does not
include the temperature covariance, which indicates that
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FIGURE 6 The distribution of the extremal coefficients as a function of pairwise distances in climate model simulations during the

period through 1961 to 2005 under historical conditions (black circles), the period through 2056 to 2100 under RCP2.6 scenario (blue circles)

and RCP8.5 scenario (red circles). Error bars correspond to one standard deviation. [Colour figure can be viewed at wileyonlinelibrary.com]
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the warmer climate will not have an impact on the histori-
cal extreme precipitation. An assumption is made here
that the statistical model that performs well in reprodu-
cing past climates is also more likely to yield robust projec-
tions for the future. So there are no significant changes of
projected extreme precipitation intensity in the statistical
model in summer.

In winter, 6 out of 10 GCM-RCM combinations show
an increased median intensity under RCP2.6 and 8 out of
10 GCM-RCM combinations show intensification under

RCP8.5 (see Figure 7). The mean increase of extreme pre-
cipitation intensities ranges from −27.77% (NorESM1-
RCA4) to 18.77% (CM5A-ALARO-0) under RCP2.6 and
from −15.38% (NorESM-RCA4) to 32.23% (MPIESM-
RACMO22E) under RCP8.5. The NorESM1-RCA4 and
HadGEM2-HadREM3 models show pronounced
decreased intensities, especially in the northern part of
Germany. For the multi-model mean the extreme inten-
sity is projected to decrease by 0.52% under RCP2.6 and
increase by 15.53% under RCP8.5. The increase is more
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FIGURE 7 Box plots (median, 25%–75% range and outlier values) of relative intensity changes (%) at 25-year return level in each grid

point of Germany for climate model simulations in (a) summer and (b) winter.(‘a’ stands for ‘MPIESM-REMO2009’, ‘b’ stands for
‘MPIESM-RACMO22E’, ‘c’ stands for ‘MPIESM-RCA4’, ‘d’ stands for ‘NorESM1-REMO2015’, ‘e’ stands for ‘NorESM1-RACMO22E’, ‘f’
stands for ‘NorESM1-RCA4’, ‘g’ stands for ‘HadGEM2-HadREM3’, ‘h’ stands for ‘HadGEM2-RCA4’, ‘i’ stands for ‘CM5A-REMO2015’,Vj’
stands for ‘CM5A-ALARO-0’.) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Geographical distributions of the relative 25-year return level changes (%) of the climate model simulations and one

statistical model during the period of 2056–2100 (RCP8.5 scenario) relative to the period of 1961–2005 (historical condition) in (a) summer

and (b) winter. [Colour figure can be viewed at wileyonlinelibrary.com]
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likely to occur in South Germany (see Figure 8). The pro-
jected max-stable model in winter is generated by the
spatial dependence information of the projected
NorESM-RACMO22E model and the mean projected
temperature of the 10 GCM-RCM combinations. It shows
that the intensification of extreme precipitation magni-
tudes over Germany is 3.02% under RCP2.6 and 4.16%
under RCP8.5.

Our statistical future projections are generated under
the assumption that the marginal distribution models of
extreme precipitation in the historical period is the same
as in the future scenarios. However, due to the complex
variabilities of the climate system, the marginal distribu-
tion models may change under different future scenar-
ios, which increases the uncertainties of the statistical
projections. Nevertheless, this is our first attempt to pro-
vide a statistical projected extreme precipitation model
and it may serve as a complement for climate change
studies.

6 | CONCLUSIONS AND
DISCUSSIONS

The extremes of hydrological variables exhibit substantial
dependencies over a wide range of temporal and spatial
scales. While most of the extreme precipitation evaluation
studies focus on how the models simulate the frequencies
or magnitudes of extreme precipitation events, little inter-
est has been paid to the dependencies of the extremes. The
temporal dependencies of extremes determine how much
the extremes are clustered, which is considered as the
main factor to trigger the natural hazards such as flooding.
The spatial dependencies of the extremes at two close sites
determine the risk that the extremes occur simultaneously.
Even if the two sites are further apart, the qualification of
the spatial dependence will also help estimate the proba-
bilities of concurrent extremes. So the successive and spa-
tially extended extreme precipitation events have great
socio-economic consequences and their probabilities
should be assessed precisely.

In this study, we use a spatial extremes framework to
systematically study the historical and projected temporal
and spatial characteristics of extreme precipitation in
Germany. We studied the performance of 10 high-
resolution GCM-RCM historical simulations in reprodu-
cing the temporal dependence (using the extreme index
as a measure), spatial dependence (using the extremal
coefficient as a measure) and intensities (using 25-year
return levels as a measure) against the 1-km gridded
observation dataset (HYRAS) over Germany. A statistical
model is also derived and evaluated with regard to the
spatial dependence and extreme precipitation intensities.

We find that there is large spread in simulating the
extreme precipitation among individual GCM-RCM com-
binations. In summer, though some GCM-RCM combi-
nations underestimate the temporal clustering of extreme
precipitation, the multi-model mean could capture the
gross features seen in the observations. The spatial
dependencies of extreme precipitation in summer can
also be simulated well among 5 out of 10 GCM-RCM
combinations. While in the winter season, the simulated
extremes are more independent and localized compared
with the observations. It shows a larger deviation of tem-
poral extremal index and spatial dependence coefficient
compared with observations. The result that the GCM-
RCM simulation cannot well reproduce the spatial
dependence of extremes at longer distance indicates that
the GCM-RCM combinations are not good at simulating
the homogeneous large-scale precipitation in winter. This
may be attributable to inaccurate simulations of large-
scale weather systems due to problematic parameteriza-
tions in models. In modelling the extreme intensities, the
GCM-RCM simulations present wet biases in the west
and drier biases in the east in the summer season, which
are consistent with the studies by Prein et al. (2016).
While in the winter season, most simulations show wet-
ter biases in the north and underestimate the extremes in
the south.

The simulation biases are a combination of both
GCMs and RCMs arising from a number of sources. The
contributions of the GCM versus RCM in the biases
depend on the extremal indices. For simulating the tem-
poral cluster in summer, the selection of GCM impacts
the sign of the differences between the simulations and
observation while the selection of RCMs impacts the geo-
graphical details. For simulating the extreme precipita-
tion intensity, the contribution of RCMs to the biases is
dominant. The dominant role of RCMs in simulating the
extreme precipitation intensities can also be found in pre-
vious studies by Vautard et al. (2021) and Berg, Wagner,
et al. (2013b). The max-stable statistical model, con-
structed by the Extremal-t model, can relatively well rep-
resent the spatial dependence and return levels of
observed extreme precipitation in summer compared
with individual GCM-RCM combinations. The ability of
the max-stable model in reproducing the 25-year return
level ranks as the second best in the summer and as the
seventh best in the winter, among the total 11 climate
simulations. In modelling the marginal distribution in
winter, the max-stable model including the temperature
covariate is the best. We then produce statistical future
projections by using the mean temperature under RCP2.6
and RCP8.5 as a covariate.

Global warming will have a significant impact on the
temporal clustering and spatial dependence of extreme
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precipitation over Germany. Although different GCM-
RCM simulations present a different geographical distri-
bution of the temporal extremal index, a relatively gen-
eral conclusion can be obtained that extremes tend to be
more dependent in the summer and more independent
in the winter under the RCP8.5 scenario. The inverse ten-
dency of the clustering of extreme precipitation is interest-
ing and deserves further study. The clustering trends in
the future projections are also region-dependent. With the
25 GCMs participating in CMIP6, Tuel and Martius
(2021) found that the clustering trends in future projec-
tions under the SSP85 scenario are strong in the tropics,
and generally weak in extra-tropics. Actually, the tempo-
ral cluster character of heavy precipitation over Europe
has been shown to be associated with the large-scale cli-
mate modes, such as AO and NAO (Yang &
Villarini, 2019). The changes of temporal cluster of pro-
jected extreme precipitation may be modulated by the
change of atmospheric modes under global warming
(Tuel & Martius, 2021). Atmospheric Rivers, which bring
air with high water content, also has impacts on the
dry/wet pattern of extreme precipitation in Germany,
which may have an influence on the temporal cluster of
projected extreme precipitation (Lavers & amd
Villarini, 2013; Newell et al., 1992). Besides the temporal
dependencies, global warming may also influence the spa-
tial dependencies. The NorESM1-RACMO22E, which
could best simulated the observed spatial dependence,
shows that the extremes will be more localized in winter
and more homogeneous in summer under RCP8.5.

Although few studies have considered the changes of
spatial dependence of extreme precipitation, some studies
examined the changes in the size of geographical area
impacted by extreme precipitation events. The size of the
affected geographical area by extreme precipitation events
is associated with the spatial dependence of the extremes,
since a higher spatial dependence of the extreme values at
two close gridpoints may indicate a higher probability of
extremal concurrence. However, among those studies,
how the size of the affected area changes with a warmer
climate is still under debate. Prein et al. (2017) and Berg,
Moseley, and Haerter (2013) found that the spatially
extended precipitation event size is increasing with the
global warming. On the other hand, Wasko et al. (2016)
showed that the spatial extent of extreme precipitation
events decrease with warmer temperature in Australia.
Benestad (2018) suggested the spatial extent of daily pre-
cipitation episodes has decreased in the last decade leading
to more intense localized precipitation. Moreover, climate
projections show a considerable decrease of spatial extent
of up to 28% by the end of the century. Recently, Matte
et al. (2022) investigated the adjacent areas affected by the
20-year extreme daily precipitation events over Europe by

the use of 19 members from the 0.11� GCM-RCM simula-
tions. Their studies show that the GCM-RCM simulations
are able to represent a similar size distribution of the area
affected by extreme precipitation events, compared with
the reanalysis ERA5. And the size distribution of extreme
precipitation events in the European case is due to the
RCM physical parametrizations. Under the global warm-
ing, the affected area will become larger for all of Europe
as well as various sub-regions.

The climatic change also has an impact on the magni-
tudes of extreme precipitation, but a large spread exists
between models. As pointed out by Araujo et al. (2022),
the changes of extreme precipitation under global warm-
ing are dependent on the locations, timescales and per-
centiles. In our study, the 10 high-resolution GCM-RCM
combinations all show an intensification of the mean
extreme precipitation averaged over Germany quantified
by 25-year return levels in summer. The multi-model
mean shows the 25-year return levels will increase by
19.05% under RCP2.6 and 31.41% under RCP8.5. Among
each simulation, the mean relative intensification aver-
aged over all the grid points ranges from 1.74% to 39.88%
under RCP2.6 and from 5.33% to 53.24% under RCP8.5.
In some regions, the intensification is more than 100%.
In winter, the ensemble mean shows a decrease of 0.52%
under RCP2.6 and an increase of 15.53% under RCP8.5.
In particular, NorESM1-RCA4 and HadGEM2-HadREM3
show decrease of extreme precipitation under the two
scenarios, while the NorESM1-REMO2015 and
NorESM1-RACMO22E show decreased extreme precipi-
tation under RCP2.6. The other GCM-RCM combinations
present intensification with the mean relative increase
ranging from 5.55% to 18.77% under RCP2.6 and from
12.92% to 32.23% under RCP8.5. The statistical model
projections also show that the extreme precipitation will
be heavier in winter due to global warming, with the
mean increase of 3.02% under RCP2.6 and 4.16% under
RCP8.5.

It is widely accepted that an increase of heavy precipi-
tation intensity will be projected by most dynamical cli-
mate models in the northern and central Europe, but the
simulations disagree on the magnitudes and geographical
details of the signals (Araujo et al., 2022; Luu et al., 2018;
Santos et al., 2019). Wagner et al. (2013) studied the pro-
jected heavy precipitation over Germany based on two
GCMs (ECHAM5 and CCCma3) and two RCMs (CLM
and WRF). A general increase of heavy precipitation
intensities can be found, but the changes vary signifi-
cantly for different ensemble members so that no robust
results can be obtained. In the south of France, the inten-
sity of a 1-in-100 year event in the historical climate may
increase with an uncertainty of between 1% and 27% by
using 10 EURO-CORDEX simulations (Luu et al., 2018).
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In some regions, the spread of climate models is compa-
rable or sometimes even larger than the climate change
signal (Zittis et al., 2019). By using 22 EURO-CORDEX
ensemble simulations, Rajczak and Schar (2017) found
that the simulation spread is seemingly larger in summer
than winter in central Europe. The RCM ensemble show
a spread ranging from 4% to 44% for the changes in the
summer 50-year return level and 13% to 39% for the
changes in winter during the period 2070–2099 relative to
the period 1981–2010. Overall, in the majority seasons
and regions of Europe, the heavy precipitation will inten-
sify (Coppola et al., 2020). Different from the extreme
temperature, the inter-model agreement and robustness
of extreme precipitation projections are much lower.
Nowadays, to improve the extreme precipitation simula-
tion capabilities and provide more reliable extreme pre-
cipitation projections, many research groups tried to
produce convective-permitting climate simulations,
which would resolve better convective processes at local
scale and interactions with large-scale circulation. It is
expected that more detailed structures of extreme precipi-
tation and more similarity to observations will be pre-
sented (Luu et al., 2022; Prein et al., 2015). The better
simulation generated by the convective-permitting
models may provide more reliable climate change studies
and its impacts.
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