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Abstract
An ensemble data assimilation approach for El Niño-Southern Oscillation (ENSO) forecasting is proposed by embed-
ding nonlinear forcing singular vector-data assimilation (NFSV-DA) in the Zebiak–Cane model. This approach generalizes 
the NFSV-DA performed over a long time series of sea surface temperature anomaly (SSTA) to an ensemble NFSV-DA 
(EnNFSV-DA) that combines useful precursory signals existed additionally on different decades for ENSO predictions. 
With the EnNFSV-DA of the Zebiak–Cane model, the SSTA associated with ENSO events during 1961–2020 is predicted. 
It is shown that the ENSO forecasts made by the EnNFSV-DA outperform the control forecasts generated by a coupled 
initialization procedure and also the forecasts made by the NFSV-DA, and with the lead times of skillful forecasting being 
extended from less than 6 months in the control forecast and 10 months in the NFSV-DA to more than 12 months in the 
EnNFSV-DA. Furthermore, the “spring predictability barrier” (SPB) that severely limits ENSO forecasting becomes very 
weak in the predictions generated by the EnNFSV-DA of the Zebiak–Cane model. It is also encouraging that the use of the 
EnNFSV-DA can identify the warm signal in the equatorial central Pacific at a lead time of 8 months, which has a strong 
capacity to distinguish the types of El Niño events in predictions. Therefore, the EnNFSV-DA could be a useful DA approach 
to address both initial and model error effects and to significantly reduce the SPB phenomenon, especially in recognizing 
the types of El Niño in predictions.

Keywords  ENSO prediction · Data assimilation · Ensemble nonlinear forcing singular vector-data assimilation · ENSO 
diversity · Spring predictability barrier

1  Introduction

El Niño-Southern Oscillation (ENSO) has strong influences 
on global weather and climate (Alexander et al. 2002; Cane 
1984; McPhaden et al. 2006). However skillful ENSO pre-
dictions are presently only able to achieve 6-month lead time 
(Chen and Cane 2008; Tang et al. 2018). In particular, a new 

type of El Niño events have occurred frequently since the 
1990s and make the ENSO more diverse with eastern Pacific 
(EP)- and central Pacific (CP)-El Niño events (Ashok et al. 
2007; Kao and Yu 2009; Kug et al. 2009), which further 
increases the uncertainties in ENSO predictions (Barnston 
et al. 2012; Duan and Mu 2018; Ham and Kug 2012; Tao 
and Duan 2019; Tao et al. 2020). To date, most of the exist-
ing models remain unable to exhibit the diversity of El Niño 
types while still producing lower forecasting capabilities for 
CP El Niño events (Ham and Kug 2012; Hendon et al. 2009; 
Jeong et al. 2012; Kim et al. 2012; Ren et al. 2019; Zheng 
and Yu 2017).

Initial errors have a significant effect on the forecasting 
uncertainties of ENSO [see the reviews of Duan and Mu 
(2018) and Tang et al. (2018)]. Data assimilation approaches 
have been applied to reduce the effect of initial errors for 
ENSO forecasts (Chen et al. 1997; Gao et al. 2016; Keen-
lyside et al. 2005; Tang et al. 2004); especially, it has been 
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suggested that assimilating additional targeted observations 
in sensitive areas can obtain more accurate initial values, 
then more accurate ENSO predictions (Duan et al. 2018; 
Kramer and Dijkstra 2013; Langland 2005; Mu et al. 2015; 
Snyder 1996). However, for El Niño-type diversity, increas-
ing attention has been given to modeling error effects on 
ENSO forecasting. For example, Duan et al. (2014) demon-
strated that the Zebiak–Cane model (Zebiak and Cane 1987) 
presents an SST cold-tongue cooling bias that provides the 
condition for the frequent occurrence of CP El Niño events; 
Tao et al. (2020) improved the ability to distinguish the 
El Niño types of an ENSO model by correcting relevant 
atmospheric and ocean processes. In fact, model errors can 
be from the absence of some physical processes for simpli-
fied models, subgrid processes, atmospheric noise, and so 
on (Kleeman and Moore 1997; Lopez and Kirtman 2014; 
Moore and Kleeman 1999; Qi et al. 2017; Yu et al. 2003). 
Furthermore, these wide range sources of model errors 
interact and make it impossible to separate their effects and 
analyze each of them individually (Barkmeijer et al. 2003; 
Nicolis et al. 2009; Vannitsem and Toth 2002). To address 
this dilemma, Duan and Zhou (2013) developed a nonlinear 
forcing singular vector (NFSV) approach, which represents 
the combined model error that leads to the largest devia-
tion from a reference state in a nonlinear model (Duan and 
Zhao 2015; Duan and Zhou 2013). The NFSV-type tendency 
perturbation can identify the spatial structure of the model 
errors that have the largest effect on prediction uncertainties 
because NFSV considers the effect of nonlinearities (Duan 
and Zhao 2015; Tao et al. 2022).

Encouraged by the idea of NFSV, the review of Duan 
et al. (2022) proposed an NFSV-data assimilation (NFSV-
DA) approach that can offset the effect of prediction errors 
caused by both initial and model errors [also see Tao et al. 
(2020)]. By the idea of NFSV-DA, Duan et al. (2014) cor-
rected the Zebiak–Cane model and reproduced two types of 
El Niño events. Duan et al. (2018) further used this corrected 
model and provided the optimal observing array for deal-
ing with the challenge of ENSO predictions due to El Niño 
diversity. Despite these advances in NFSV-DA applications, 
they always remain in the scenario of ENSO simulations 
rather than predictions due to the difficulties that NFSV-DA 
has to adopt the observations during the prediction period 
when observations are absent. To realize the application of 
NFSV-DA in predictions, Tao and Duan (2019) innovatively 
trained a lead-lag relationship between the initial sea surface 
temperature anomaly (SSTA) and NFSV-type tendency per-
turbation generated by NFSV-DA, then promoted the NFSV-
DA to real-time predictions of El Niño events and achieved 
high forecasting skill for ENSO [see the review of Duan 
et al. (2022)].

The lead-lag relationship between the initial SSTA and 
NFSV-type tendency perturbation constructed by Tao and 

Duan (2019) was obtained through a singular value decom-
position [SVD; Bretherton et al. (1992)] method. The SVD 
method aims to extract the information that describes the 
relationship between two variables during a time period 
(i.e., the training period hereafter) at a large scale. Then, if 
the training period for SSTA is long enough that the multi-
decade information is included, the SVD only identifies the 
statistically significant components of the relationships from 
different years and decades. As a result, the SVD may filter 
out the relationships that occur among a few decades but not 
statistically significant during the whole training period. In 
fact, these relationships may be useful for predicting one 
leading state from a backward state on these decades (see 
Sect. 3). In the present study, we attempt to contain these fil-
tered relationships existed in some decades, in addition to the 
trained lead-lag relationship during the whole period. This 
encourages to propose an ensemble NFSV-DA (EnNFSV-
DA; see Sect. 3) approach for improving the ENSO predic-
tion, especially for the El Niño diversity forecasting skill. In 
addition, the ENSO forecasting is also limited by the spring 
predictability barrier (SPB) phenomenon, which remains 
unresolved. The SPB almost becomes an essential feature 
of ENSO forecasting, which often results in the ENSO fore-
casting skill to decline rapidly during the spring season for 
predictions that occur before spring (Duan and Wei 2013; 
Webster and Yang 1992). Quite a few studies emphasized 
the important role of initial errors in yielding the SPB [see 
the review of Duan and Mu (2018)]; simultaneously, and 
there exist other studies that argued that model errors can 
also cause an SPB for ENSO events (Tao et al. 2019; Wu 
et al. 1993). In any case, the EnNFSV-DA approach that is 
developed can offset the effect of initial and model errors. 
However, can this method eliminate the effect of the SPB? 
In the present study, we attempt to also address this question.

The paper is organized as follows. Section 2 introduces 
the Zebiak–Cane model and associated observations adopted 
in the present study. Section 3 proposes the EnNFSV-DA 
approach to predict ENSO using the Zebiak–Cane model. 
Section 4 shows the performance of the EnNFSV-DA in 
forecasting Niño3.4 index especially explores the ability 
to predict which type of El Niño will occur and eliminate 
the SPB. Finally, a summary and discussion are provided 
in Sect. 5.

2 � Zebiak–Cane model and associated 
observations

The intermediate coupled Zebiak–Cane model is adopted in 
the present study, which is an anomaly model consisting of a 
Gill-type steady-state linear atmospheric model and a reduced-
gravity ocean model, and depicts the thermodynamic anomaly 
of the tropical Pacific with oceanic and atmospheric anomalies 
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near the mean climatological state specified from observa-
tions (Zebiak and Cane 1987). This is the first coupled ocean-
atmosphere model to successfully simulate observed ENSO 
interannual variability. Since wined the fame for predicting the 
1986–1987 El Niño event, the Zebiak–Cane model has been 
widely adopted to study ENSO dynamics and predictability 
(Blumenthal 1991; Duan et al. 2014, 2022; Tang et al. 2008; 
Tao and Duan 2019; Xue et al. 1994). In the present study, 
we also use this model to explore the use of EnNFSV-DA in 
improving the capacity of ENSO forecasting. Note that the 
Zebiak–Cane model used here is the original version because 
its adjoint for the calculation of the NFSV-DA is ready [see 
section 3; Xu et al. (2006)], but the bias correction term used 
in the latest version of Lamont–Doherty Earth Observatory 
model [LDEO5; Chen et al. (2004)] has been adopt in this 
study to improve the forecasting skill in the Zebiak–Cane 
model.

The ERSST.v5 data (Huang et al. 2017) are used to ini-
tialize the Zebiak–Cane model for prediction via a coupled 
nudging scheme, where this initialization scheme can bring 
air-sea coupling information to model initial field and has 
been thought of as an effective initialization scheme of the 
Zebiak–Cane model by Chen et al. (2004). The ERSST.v5 
data is a global monthly dataset that spans from 1854 to 
the present and has spatial coverage over 88.0°N–88.0°S, 
0.0°E–358.0°E, with a grid spacing of 2°(longitude)× 
2°(latitude).

3 � The formulation of the EnNFSV‑DA 
for the Zebiak–Cane model

Duan et al. (2022), as mentioned in the introduction, pro-
posed the NFSV-DA that considers the combined effect of 
initial error and model errors and calculates the total ten-
dency perturbation that produces model results close to 
observations at a given lead time [also see Tao and Duan 
(2019)]. Specifically, for a forecast model, its equations can 
be expressed as in Eq. (1).

 where u is a forecast variable contaminated by initial and 
model errors, u0 is its initial state including errors, F is a 
nonlinear operator describing dynamical and physical laws 
for controlling the motions of u and the combined effects of 
kinds of model errors are contained in it, and t is the time. 
Suppose that M is the propagation of Eq. (1), the numerical 
solution of Eq. (1) at time t can be described as in Eq. (2),

With a disturbance f  superimposed on the model ten-
dency, Eq. (1) can be rewritten as in Eq. (3)

(1)
{

�u

�t
= F(u, t)

u|t=0 = u0

(2)u(x, t) = Mt

(
u0
)

Then its solution u(x, t) is as follows.

Then, NFSV-DA applies to Eq. (4) and defines a tendency 
perturbation f ∗ by Eq. (5).

 where uobs(x, t) is the observation, ‖⋅‖ is a norm for meas-
uring the departure of the results of the perturbed model 
from the observation, and other mathematical signs are as 
in Eqs. (1, 2, 3, 4). The Eq. (4) indicates that the tendency 
perturbation f  is superimposed on each time step of model 
integration to neutralize the errors in the forecast variable u ; 
however, these errors are caused by both initial and model 
errors. Therefore, the Eq. (5) solves the tendency perturba-
tion f ∗ that can offset the forecast error caused by both initial 
and model errors to the highest possible extent and produces 
the model results that are closest to the observations at time 
t , although the erroneous initial fields are not optimized for 
that specific purpose in the Eq. (5).

Regarding ENSO forecasting in the present study, we are 
concerned with the forecast of the SSTA field and therefore 
attribute the combined effect of the kinds of model errors 
to the SSTA tendency (this means that the perturbation is 
superimposed on the tendency of the SSTA equation). The 
corresponding NFSV-DA problem is defined as in Eq. (6).

 where X signifies the SSTA, 
[
tn−1, tn

]
 with n = 1, 2, 3… rep-

resent assimilation windows, utn−1 describes the variables 
outputted by the Zebiak–Cane model at time tn−1 , and 
f *
tn
(n = 1, 2, 3…) is the NFSV-type tendency perturbation 

we seek to make the model SSTA closest to the observation 
during the assimilation window 

[
tn−1, tn

]
.

We generate initial fields of the Zebiak–Cane model for 
a total of 589 months from 1960.12 to 2009.12 using the 
coupled initialization procedure mentioned in Sect. 2. Using 
these initial fields, we referred to Tao and Duan (2019) and 
calculated the NFSV-type tendency perturbations accord-
ing to Eq. (6) using the spectral projected gradient algo-
rithm [SPG2; Birgin et al. (2000)], where the adjoint of the 
Zebiak–Cane model is used to calculate the gradient of the 
cost function Eq. (6) with the tendency perturbation f. When 
the forecast period is 1 year, 12 NFSV-type tendency per-
turbations f = (f t1 … ft12 ) are obtained with the assimilation 
window 

[
tn−1, tn

]
 be one month in length, for a given initial 

time of the forecast. From each of the initial fields during the 

(3)
{

�u

�t
= F(u, t) + f

u|t=0 = u0

(4)u(x, t) = Mt(f )
(
u0
)

(5)J(f ∗) = min
f

‖‖‖Mt(f )
(
u0
)
− uobs(x, t)

‖‖‖

(6)J
(
f ∗
tn

)
= min

‖‖‖X
(
ftn , utn−1

)
− Xobs

(
tn
)‖‖‖
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period from December 1960 to December 2009, we integrate 
forward for 1 month and solve Eq. (6) with n = 1 such that 
the model SSTA is closest to the observation at time t1 , and 
ft1 is obtained; with the model initial field being corrected 
by ft1 at time t1 , we continue to integrate forward for 1 month 
and solve Eq. (6) with n = 2, obtain ft2 , and so on, where we 
finally obtain f = (f t1 , ft2 ,… ft12 ) . This outcome indicates that 
each monthly NFSV-type tendency perturbation is gener-
ated from the respective state field at the beginning of the 
month, which has been corrected by the tendency perturba-
tions ftn before this month. For convenience, we plot in Fig. 1 
a sketch diagram of the NFSV-type tendency perturbations 
f = (f t1 , ft2 ,… ft12 ) generated by NFSV-DA for different ini-
tial months. A composite analysis was performed on the 
components of f = (f t1 , ft2 ,… ft12 ) whose months overlap 
for different initial months; then, a total of 600 compos-
ite NFSV-type tendency perturbations were obtained from 
1961.1 to 2010.12, which are also plotted in Fig. 1.

We adopt the method of Ashok et al. (2007) to classify 
types of El Niño events; then nine EP El Niño and eleven 
CP El Niño events are predetermined (see Table 1). The 
components of the NFSV-type tendency perturbations dur-
ing EP and CP El Niño mature phase (i.e., the period from 
November to December and then to next January; NDJ) are 
displayed in Fig. 2. It is seen that either for EP or CP El 

Nino events, the NFSV-type tendency perturbations often 
exhibit large anomalies over the central tropical Pacific, 
sometimes prolonging to the east along the equator, 
although those of CP El Nino events are more scattered in 
distribution. This is probably because the amplitudes of 
SSTA over the areas of large NFSV-type tendency pertur-
bations simulated by the Zebiak–Cane model have large 
errors, and a much large tendency perturbation should be 
superimposed to offset them. The relationship between the 
monthly analysis SSTA made by the Zebiak–Cane model 
with the coupled nudging scheme in Chen et al. (2004) 
and the corresponding NFSV-type tendency perturbations 
f = (f t1 , ft2 ,… ft12 ) along the equator (see Fig. 3) is fur-
ther examined. It is found that the NFSV-type tendency 
perturbations also present an ENSO-oscillation over the 
east tropical Pacific, like that shown in the analysis SSTA. 
Furthermore, it can also be seen that the monthly depend-
ent NFSV-type tendency perturbations tend to exhibit a 
“seesaw-effect” with cooling and warming cycle at eastern 
and western Pacific during most of the years from 1961 to 
2010 and a basin warming along the equator during other 
years. From the definition of the NFSV-type tendency 
perturbations in Eq. (6), it is inferred that the predictions 
made by the Zebiak–Cane model with the coupled nudg-
ing scheme underestimate the SSTA over central tropi-
cal Pacific but overestimate them over the east tropical 
Pacific during the years when there are a seesaw-effect as 
above, while they tend to underestimate the SSTA along 
the whole equator during the years of a basin warming 
effect. Obviously, this is due to effect of both initial and 
model errors, and the NFSV-type tendency perturbations 
could offset these errors effects. Furthermore, from this 
it is known that the relationship between the NFSV-type 
tendency perturbations and the analysis SSTA made by the 
Zebiak–Cane model with the coupling nudging scheme 
is flow dependent, which encourages us to construct an 
equation similar to Tao and Duan (2019) that addresses 
this relationship. Then, we can use this equation to forecast 
future NFSV-type tendency perturbations according to the 
analysis SSTA made by the Zebiak–Cane model with the 
coupling nudging scheme.

Now we construct the equation to forecast the future 
NFSV-type tendency perturbations of the Zebiak–Cane 
model when it is integrated for predictions with relevant 
analysis field as initial value.Fig. 1   Schematic diagram illustrating the prediction period, together 

with its NFSV-DA windows, and the strategy of the composite 
NFSV-tendency perturbations. The 12 blue shaded boxes in each 
row cover one prediction period of 12 months, and each month is 
an NFSV-DA window, corresponding to 12 members of the NFSV-
tendency perturbations of one year lead time. The vertical axis marks 
the start months of the predictions at a one-year lead time. The red 
shaded boxes on the last row represent the 600 NFSV-tendency per-
turbations during 1961.1–2010.12, which were obtained by taking the 
mean of the NFSV members whose assimilation windows overlap for 
different initial months

Table 1   Two types of El Niño years

Events The year when the event peaks

EP El Niño 1969, 1972, 1976, 1982, 1986, 1993, 1997, 2006, 2015
CP El Niño 1963, 1965, 1968, 1977, 1987, 1991, 1994, 2002, 

2004, 2009, 2018
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These 600 NFSV-type tendency perturbations calcu-
lated for the period from 1961.1 to 2010.12 (see Fig. 1) 
are trained with the analysis SSTA to generate a lead-lag 
relationship between the SSTA and the NFSV-type ten-
dency perturbation through the SVD method. Specifically, 
a covariance matrix of analysis SSTA and NFSV-type ten-
dency perturbations is constructed as in Eq. (7).

(7)Cl(i, j) =
1

N − 1

tN∑

t=t1

SSTA(t, i, j) ⋅ NFSV(t + l, i, j),

 where (i, j) represent the spatial grids, l represents the lagged 
months of the NFSV-type tendency perturbation relative to 
the SSTA, and N is the length of the training period. Using 
the constructed covariance matrix C , according to the SVD 
technique, the relationship between the NFSV-type tendency 
perturbation and the SSTA can be easily derived as having 
the form of Eq. (8).

(8)NFSVpre_l = Fl(SSTA),

Fig. 2   Horizontal distribution 
of the NFSV-type tendency 
perturbations of each of EP and 
CP El Nino events during their 
mature phase
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 where F describes the relationship between the SSTA and 
the NFSV-type tendency perturbation, and NFSVpre_l is the 
estimated NFSV-type tendency perturbation of the l lagged 
month.

By experiments, we assign the lagged month l = 1 in 
Eq. (8) for a much higher prediction skill of ENSO. Then, 
the estimate of the NFSV-type perturbation used to offset 

the prediction error can be monthly updated according to 
the analysis SSTA generated by the corrected model at the 
beginning of the month.

As argued in the introduction, if the training period for 
determining the relationship between the SSTA and the 
NFSV-type tendency perturbation is long enough that multi-
decade information is included, the SVD only extracts the 

Fig. 3   Time-dependent section 
along the equator of the analysis 
SSTA (unit: °C) predicted by 
the Zebiak–Cane model with 
the coupling nudging scheme 
and the NFSV-type tendency 
perturbations (unit: °C day−1)
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statistically significant components of the relationships for 
different years and decades, while other relationships that 
exist in a few decades and may be useful for predicting one 
lead state from a backward state on these decades could be 
filtered out. To illustrate this point, we plot in Fig. 4 the cor-
relation coefficient (CC) between the analysis SSTA and the 

NFSV-type tendency perturbations in January for different 
decades. This shows that the distribution of the CC changed 
between decades. For example, over the area of 180° north-
ern equator, the CCs are positive during 1961–1971 and 
2001–2010 but negative during the other three decades. 
Then, the relationship between the SSTA and the NFSV-type 

Fig. 4   The correlation coeffi-
cient between the SSTA and the 
NFSV-type tendency perturba-
tions for the month of January 
during the periods 1961–1970, 
1971–1980, 1981–1990, 
1991–2000, and 2001–2010. 
The dotted area is the region 
that passes the significance test 
with a 95% confidence level
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tendency perturbations during 1961–1970 may help to infer 
the NFSV-type tendency perturbation during 2001–2010; 
however, it could be filtered when the SVD was performed 
for the entire training period since it is not statistically sig-
nificant for different decades. It is therefore implied that to 
further improve the ENSO forecasting skill, one should con-
sider this filtered information when using Eq. (8) to deduce 
the future NFSV-type tendency perturbation. Since such a 
relationship does not hold for all prediction periods, there 
may exist uncertainties in ENSO forecasting when using 
this relationship to generate the NFSV-type tendency per-
turbation for a given prediction period. To estimate and 
even reduce the effect of such uncertainties, we propose the 
ENSO forecasting strategy of EnNFSV-DA. The EnNFSV-
DA strategy would first provide the lead-lag relationships 
between the SSTA and NFSV-type tendency perturbations 
indicated by Eq. (8) on different decades and then perform 
an ensemble to the ENSO forecasting results corrected by 
the estimates of the NFSV-type tendency perturbations 
derived from these relationships, eventually output a pre-
diction result for ENSO provided by the ensemble mean. As 
for the specific EnNFSV-DA system for the Zebiak–Cane, it 
refers to as in Sect. 4.

4 � The performance of EnNFSV‑DA for ENSO 
forecasting

We regard 1961–2010 as the whole training period and 
2011–2020 as a testing period to examine the ENSO fore-
casting skills of the EnNFSV-DA. The lead-lag relationships 
of the NFSV-type tendency perturbations to the model SSTA 
are constructed through 14 sub-training periods from the 
whole training period. These periods include five periods 
of 1961–1970, 1971–1980, 1981–1990, 1991–2000 and 
2001–2010, each with a duration of 10 years; four periods 
of 1961–1980, 1971–1990, 1981–2000 and 1991–2010, each 
with a duration of 20 years; three periods of 1961–1990, 
1971–2000 and 1981–2010, each with a duration of 30 years; 
and two periods of 1961–2000 and 1971–2010, each with a 
duration of 40 years. All these 14 periods ensure effective 
statistics for the SVD approach. The 14 lead-lag relation-
ships yield 14 estimates for the NFSV-type tendency per-
turbations for a given prediction, which, together with that 
deduced by the whole training period, compose 15 estimates 
to the NFSV-type tendency perturbation for a given pre-
diction period for ENSO. With these estimated NFSV-type 
tendency perturbations, we integrate the Zebiak–Cane model 
initialized by the coupled initialization scheme to forecast 
the ENSO and then 15 perturbed forecasting members are 
obtained. Finally, an ensemble mean is made to these fore-
casting members to provide a deterministic forecasting result 
for ENSO. Thus far, the EnNFSV-DA for ENSO forecasting 

has been finalized in the Zebiak–Cane model. Note that the 
perturbed forecasting member using the led-lag relationship 
derived from the whole training period is as that of Tao and 
Duan (2019), and referred to as TD hereafter for conveni-
ence; and the forecast made by the Zebiak–Cane model ini-
tialized by the coupled initialization scheme [see section 2 
and Chen et al. (2004)] is referred as control forecast. Then 
the role of the EnNFSV-DA in improving ENSO forecasting 
skill is evaluated by comparing with the forecasts made by 
the NFSV-DA (i.e., TD) and the control forecasts. The fore-
casting skill for ENSO is evaluated in terms of the temporal 
variability of the Niño3.4 index (i.e., the SSTA averaged for 
the Nino3.4 region), the spatial variability of tropical SSTA 
and its associated ENSO diversity. The influence on the SPB 
that occurred in ENSO forecasting of the EnNFSV-DA is 
also examined.

4.1 � The forecasting skill of SSTA

The forecasting skill of the Niño3.4 index associated with 
ENSO events is evaluated using the root mean square error 
(RMSE; see Appendix) and the anomaly correlation coef-
ficient (ACC; see Appendix).

Figure  5 plots the ACC and RMSE of the predicted 
Niño3.4 index during the training and testing periods. Note 
that a prediction is thought of as a skillful one if the ACC 
between the predicted Niño3.4 index and the observations 
are larger than 0.6 (Barnston et al. 2012; Kirtman and Zebiak 
1997; Murphy and Epstein 1989). Figure 5 indicates that the 
TD prolongs the skillful lead time of the control forecast 
from 5 to 9 months, while the EnNFSV-DA consistently 
lasts up to 11 months in the training period. Such improve-
ment appears to be much better during the testing period. 
Specifically, TD increases the skillful lead time from 4 to 
11 months; moreover, the EnNFSV-DA promotes the lead 
time further to more than 12 months. In terms of the RMSE, 
regardless of the training or testing period, both TD and 
EnNFSV-DA achieve an RMSE less than 1.0 at a lead time 
of 12 months, with the latter having a much smaller RMSE, 
while the control forecast at a lead time of 6 or 7 months 
increases to an RMSE near 1.2. It is clear that TD improves 
the forecasting skill of the control forecast, and EnNFSV-DA 
further increases it to a much higher level in terms of the 
predictions of Niño3.4 index, which may illustrate that the 
EnNFSV-DA extracts useful signals from different decades 
associated with the SSTA predictions and further reduces 
their uncertainties in the estimate of future SSTA through 
an ensemble.

The improvements of the EnNFSV-DA can also be 
reflected from the predictions of the spatial variability of 
the tropical SSTA during the training and testing periods. 
Figure 6 gives the spatial distribution of the ACC between 
the predicted SSTA and the observed SSTA at lead times of 



Addressing the ENSO forecast uncertainties caused by “spring predictability barrier” and El Nino diversity...

1 3

3, 6, 9, and 12 months for the training and testing periods. 
It is shown that both periods present predictions generated 
by the TD with a higher ACC than the control forecasts for 
any lead time; even the EnNFSV-DA overtakes these two 
kinds of predictions, far exceeding the control forecast and 
achieving a much high forecasting skill. For simplicity, only 
the details from the testing period will be described. Mark-
edly, when the lead time reaches 6 months, the ACC in the 
control forecast rapidly decreases to a value slightly larger 
than 0.6 only in a very small region located in the southeast-
ern tropical Pacific Ocean. However, the TD, when the lead 
time is larger than 9 months, even reaches to 12 months, 
still presents an ACC larger than 0.6 in many more regions; 
further, the EnNFSV-DA provides the regions of the ACC 
larger than 0.6 that are far more than those of the TD at 
any lead time; even if the lead time is 12 months, the ACC 
values are still larger than 0.7 in the northeastern tropical 
Pacific Ocean.

For the RMSE, we plot in Fig. 7 the noise-to signal—
(NS) ratio of the SSTA predictions, which is calculated by 
taking the ratio of the RMSE of the predicted SSTA to the 
observed SSTA (see Appendix). A value less than 1.0 of 
the NS indicates a skillful prediction of the SSTA. By com-
paring the EnNFSV-DA with the TD and control forecasts, 
it is found that the EnNFSV-DA presents more regions of 

NS values less than 1.0 than the TD and control forecasts. 
Specifically, the NS values in the control forecast are less 
than 1.0 only in a small region in the southeastern tropical 
Pacific Ocean at a lead time of 6 months. Although a region 
with a NS of less than 1.0 for the TD can reach a lead time 
of 9 months, it is still in a very small area. However, the 
EnNFSV-DA presents such regions that not only reach the 
lead time of 9 months but also cover a much broader area 
(see Fig. 7). Therefore, we show that the EnNFSV-DA also 
performs much better than the TD and control forecasts for 
the predictions of the spatial variability of the SSTA associ-
ated with ENSO.

It is obvious that for the predictions of temporal-spatial 
variabilities of the SSTA associated with ENSO events, a 
unified conclusion was obtained, as both EnNFSV-DA and 
NFSV-DA significantly improved the forecasting skill of the 
control forecast; in particular, EnNFSV-DA provides the best 
performance in promoting the forecasts of the SSTA associ-
ated with ENSO events to a higher level.

4.2 � The skill of El Niño diversity forecast

Section 4.1 has demonstrated that the EnNFSV-DA has the 
best performance in the forecasts of the spatial variability 
of the tropical SSTA compared with the TD and the control 

Fig. 5   The ACC and RMSE of 
predicted Niño3.4 index for the 
training period (1961–2010) on 
the left column and the testing 
period (2011–2020) on the right 
column. The red line represents 
the forecast generated by the 
EnNFSV-DA, the blue line 
represents the TD, the black 
solid line represents the control 
forecast, and the dotted line 
represents the persistence (color 
figure online)
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forecast; thus, the question arises of whether the EnNFSV-
DA has the ability to identify the types of El Niño events. In 
this section, we investigate the capacity of the EnNFSV-DA 
in distinguishing the El Niño types.

A composite is made to the tropical SSTA pattern dur-
ing the mature phases of EP and CP El Niño events. The 
capacities of the EnNFSV-DA that identifies the two types 
of events in predictions are investigated.

It is known that the Zebiak–Cane model only has the 
ability to simulate typical EP El Niño events even if the 
advanced four-dimension variational data assimilation 
(4DVar) was adopted to initialize it (Duan et al. 2014), 
and therefore, the control forecasts cannot reproduce CP El 
Niño events [Fig. 8; see also Duan et al. (2014)]. However, 
from Fig. 8, we can see that the TD recognizes the domi-
nant warm signal in the tropical central Pacific at a lead 
time 4 of months, while the EnNFSV-DA tends to present 
a warm center departing from the east but approaching 
the tropical central Pacific until a lead time of 8 months. 
Moreover, the spatial CC of the mature phase SSTA 

between predictions and observations is much higher in 
the EnNFSV-DA than in the TD, with the former 0.8394 
but the latter 0.9 at a lead time of 8 months.

For the EP El Niño events, the control forecasts can 
identify them up to a lead time of 12 months; however, it 
is the TD, especially the EnNFSV-DA that are much better 
at reproducing the EP El Niño events with much higher 
ACC (see Fig. 9).

From the above, it is shown that the EnNFSV-DA can 
identify a warm center approaching the tropical central 
Pacific up to 8 months in advance and be much better at 
reproducing the EP El Niño events at a lead time of 12 
months. This indicates that the types of El Niño events 
can be distinguished at least 8 months in advance by the 
EnNFSV-DA, which is far beyond the lead times of 1–4 
months demonstrated by Jeong et al. (2012). It is implied 
that the EnNFSV-DA grasps more signals on distinguish-
ing types of El Niño by considering an ensemble of the 
linkages between SSTA and the NFSV-type tendency 
perturbations in different decades. This shows that the 

Fig. 8   The composition of mature phases (i.e., the NDJ) SSTA of all 
typical CP El Niño events during 1961–2020 for the control forecast 
(left), the TD (middle) and the ensemble mean (here is the median) 
of the EnNFSV-DA (right) forecasts at lead times of 4, 5, 6, 7, 8, and 
9 months. The bottom is the composition of the observed SSTA for 

the mature phase of the typical CP El Niño events. The gray points 
in the figure are the areas that passed the significance test with a 95% 
confidence level. The CC values for each picture are the correlation 
coefficient of the mature phase SSTA pattern between the prediction 
and the observation
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EnNFSV-DA has more potential than the TD for predict-
ing which type of El Niño will occur.

The key of the EnNFSV-DA being able to iden-
tify El Nino types in predictions lies in that it helps the 
Zebiak–Cane model predict the CP-El Nino events 8 months 
in advance. Then how is the Zebiak–Cane model physically 
corrected by the EnNFSV-DA to output the CP-El Nino 
events? Figure 10 plots the evolution of the NFSV-type ten-
dency perturbations, SSTA, wind stress anomaly, thermo-
cline depth in both the control forecast and the EnNFSV-DA 
and their differences, respectively. From Fig. 10, we can see 
that the SSTA in the control forecast has a significantly cold 
bias with respect to the observation in the equatorial central 
Pacific during the mature phase; correspondingly, the com-
posite of the 15 NFSV-type tendency perturbations provided 
by the EnNFSV-DA tend to have a large scale zonal see-
saw structure with positive SSTA tendency in the equatorial 
western and central Pacific and negative SSTA tendency in 
the equatorial eastern Pacific during the whole lead time 8 
months. Physically, when these perturbations are superim-
posed to SSTA tendency of the Zebiak–Cane model, they 
would force the SSTA tendency to warm/cool the SST in the 
equatorial western and central Pacific/the equatorial eastern 

Pacific. As a result, the central Pacific SSTA predicted by 
the EnNFSV-DA would increase against the control fore-
cast while the eastern Pacific SSTA would decrease (see 
Fig. 10b3), resulting in a stronger warm signal occurring 
in the central Pacific. The NFSV-type tendency perturba-
tions of the see-saw structure, when they are superimposed 
to the SSTA tendency, also tend to force an anomalous wind 
convergence in the central Pacific and an anomalous wind 
divergence in the eastern Pacific. These anomalous winds 
would not only help persist the central Pacific warmer SST 
center but also lead to the deepening of thermocline depth 
in the central Pacific, which, in turn, is helpful for the SST 
warming there. Therefore, the relevant tropical sea-air cou-
pling processes during CP El Nino events are corrected by 
using the EnNFSV-DA, ultimately improving the prediction 
skills of CP El Nino events.

4.3 � The EnNFSV‑DA promotes ENSO forecasting 
bestriding the SPB phenomenon

The SPB phenomenon, as mentioned in the introduction, is 
an essential feature of ENSO forecasting and often results 
from the combined effect of initial and model errors. The 

Fig. 9   Similar to Fig. 8 but for EP events at 2-, 4-, 6-, 8-, 10-, and 12-month lead times
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EnNFSV-DA, also introduced, plays a role in offsetting the 
prediction errors caused by both initial and model errors. 
That is, whatever errors are contained in ENSO forecasting, 
the EnNFSV-DA would neutralize their effects on predic-
tion uncertainties. To confirm this argument, we plot the 
forecasting skill of the Niño3.4 index in Fig. 11, which was 
measured by the ACC as a function of the start and lead 
times of the predictions. It is shown that the ACC between 
the control forecasts and the observations drops rapidly, 
when the predictions span the boreal spring and the begin-
ning of summer (i.e., April–May–June; AMJ), especially 
during the testing period 2010–2020, which is illustrated 
by the dense contours of the ACC during the AMJ season. 
However, the ACC achieved by the TD and the EnNFSV-
DA present much higher values; in particular, their contours 
distribute much more sparsely across the AMJ and indicate a 
much weak SPB occurring in the predictions made by both 
TD and EnNFSV-DA. Particularly, it can be easily seen that 
the EnNFSV-DA, compared with the TD and especially 
the control forecast, further extends the skillful ACC to 
a much longer lead time. It is therefore clear that NFSV-
DA (i.e., the TD) reduces the impact of SPB by offsetting 
prediction errors caused by initial and model errors; then 
the EnNFSV-DA further estimates the uncertainties of the 
NFSV-DA and successfully significantly reduces the effect 
of the SPB, finally promoting the forecasting skill for ENSO 
events measured by the ACC to a much higher level.

The ACC measures the likelihood of two states while 
the prediction error often investigates how far apart the two 
states are from each other. From the above, it is known that 
the EnNFSV-DA enhances the likelihood between the pre-
diction of the SSTA influenced by the SPB and the observa-
tions. Then, whether it also corrects the bias of prediction 
from the observation needs to be determined. To address 
this issue, we plot in Fig. 12 the seasonal growth rate (see 
Appendix) of the prediction errors for the lead time of 12 
months with the start months January, April, July, and Octo-
ber, respectively.

It is demonstrated that the largest growth rates of the 
prediction errors occur during AMJ and/or JAS (i.e., 
July–August–September) in the control forecasts, while 
the TD often reduces these growth rates. More importantly, 
the EnNFSV-DA does not present a large growth rate of 

prediction errors during AMJ and JAS and eases the sea-
sonal fluctuation of the seasonal growth rates especially with 
much smaller growth rates of prediction errors than the TD 
at almost all seasons, which obviously weak the SPB phe-
nomenon. Therefore, the EnNFSV-DA significantly reduces 
the effect of the SPB on ENSO event forecasting.

5 � Conclusion and discussion

The NFSV-DA approach proposed by Duan et al. (2022) 
solves a tendency perturbation that can offset the prediction 
errors caused by both initial and model errors In ENSO pre-
dictions, this kind of tendency perturbations are originally 
derived by a lead-lag relationship between the initial analysis 
SSTA and the NFSV-type tendency perturbation that results 
in model forecasts closest to the observations during the 
training period. In the present study, the NFSV-DA is further 
extended to the EnNFSV-DA by considering the contribu-
tions of the SSTA signals of different decades (located in the 
training period). With the application of the EnNFSV-DA to 
the Zebiak–Cane model, a group of perturbed forecasts for 
the SSTA associated with ENSO events are obtained; then 
an ensemble mean of these forecasts is performed to reduce 
the uncertainties of the contributions of decadal SSTA sig-
nals to future SSTA predictions.

It is shown that the ensemble mean, as expected, has a 
much higher forecasting skill than the forecast provided by 
the NFSV-DA. Specifically, when we consider the period of 
1961–2010 as the whole training period and the period of 
2011–2020 as the testing period, the EnNFSV-DA derives 
15 perturbed forecasts from the lead-lag relationships estab-
lished over five decades and 10 groups of multiple decades. 
By investigation, it is found that the ensemble mean of these 
perturbed forecasts promotes the lead time of skillful fore-
casts for the Niño3.4 index to more than 12 months from 5 
months in the control forecast; furthermore, this ensemble 
mean generated by the EnNFSV-DA is shown to have the 
ability to recognize which type of El Niño will occur at least 
8 months in advance. Additionally, the SPB phenomenon 
that severely limits the ENSO forecasting skill is obviously 
weaken by the EnNFSV-DA with an obviously slow decline 
in the ACC between the forecasts and observations and a 
significantly reduced error growth rates during the boreal 
spring. The EnNFSV-DA also performs much better than 
the NFSV-DA; in particular, the former further reduces the 
effect of the SPB and prolongs the skillful lead time for the 
Niño3.4 index to more than 12 months from 9 months in the 
latter’; furthermore, the former provides tropical SSTA pat-
terns that are more similar to the observed ones for the two 
types of El Niño events. All these results indicate that useful 
precursory signals can be extracted from different decades 
by the EnNFSV-DA and then regarded as the indicators of 

Fig. 10   The composite for the CP El Nino in the present study. a1 
The observed SSTA, a2 the differences of SSTA between control 
forecast and observation, a3 the NFSV-type tendency perturba-
tions provided by EnNFSV-DA; and the evolution of the b SSTA 
and c wind stress anomaly and d thermocline depth anomaly in con-
trol forecast (1), EnNFSV-DA (2) and the differences (3) between 
EnNFSV-DA and control forecast. The forecasts are initialized at 
April (0) and have a 8-month lead time. The dashed lines mark the 
mature phase period of the El Nino. The gray points indicate the 
region that passed the significance test with a 95% confidence level

◂
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future SSTA predictions, finally promoting it to have a much 
higher forecasting skill. As far as what are these precursory 
signals, it would be further investigated. In fact, Yu and Kim 
(2011) and Hou et al. (2019) showed that the North Pacific 
variability dominates the development of the CP-El Niño 

and provides the precursory signal of the CP-El Nino. How-
ever, the Zebiak–Cane model only reproduces the tropical 
Pacific and does not include the extratropical forcing effect; 
now the ensemble of the NFSV-type tendency perturbations 
provided by the EnNFSV-DA may estimate much correctly 

Fig. 11   ACC of predicted Niño3.4 index as a function of start and lead times for the control forecast, TD, and EnNFSV-DA during the training 
period of 1961–2010 and the testing period of 2011–2020

Fig. 12   Seasonal growth rate of prediction errors for the start months 
January, April, July, and October in the control forecast (blue bar), 
the TD (yellow bar) and the EnNFSV-DA (red bar) during the train-

ing period of 1961–2010 and the testing period of 2011–2020. The 
horizontal axis denotes the seasons and the vertical axis is the error 
growth rate
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the Zebiak–Cane model bias originating from the absence 
of the extratropical forcing effect, then improving the skill 
of ENSO prediction. In any case, the EnNFSV-DA has the 
potential to become a promising approach for improving 
ENSO forecasting skill.

Presently, the EnNFSV-DA has been applied to ENSO 
forecasting. Although the Zebiak–Cane model adopted 
here is an intermediate model for ENSO, its results have 
encouraged us to apply the EnNFSV-DA to more realistic 
climate models for ENSO forecasting studies. It is expected 
that the EnNFSV-DA can extend its applications to other 
high-impact climate event forecasting. In addition, the SVD 
approach is used to extract the connection between the initial 
analysis SSTA and the NFSV-tendency perturbation. How-
ever, the SVD only addresses the linear mapping relationship 
and may omit the effect of nonlinearity on the connection. 
It is known that deep learning can resolve the nonlinear 
connection between two states; furthermore, its applica-
tion is now ever-growing for numerical weather forecast-
ing and climate prediction. Then, whether the deep learning 
approach can be used to diagnose the relationship between 
the analysis SSTA and NFSV-tendency perturbations and 
how well it works in improving ENSO forecasting skill 
should be explored in the future. Finally, it is noticed that 
the EnNFSV-DA is involved with neutralizing the prediction 
errors caused by both initial and model errors, which is dis-
tinct from the data assimilation (such as the four-dimension 
variational data assimilation) for only dealing with the initial 
error effect and is therefore much time-consuming. Then a 
much efficient algorithm for solving the EnNFSV-DA should 
be studied and its broad applications to numerical weather 
and climate predictions are expected.

Appendix

(1)	 Anomaly correlation coefficient (ACC)

The anomaly correlation coefficient (ACC) is used to 
test the deterministic prediction skills and is the correlation 
coefficient between the forecast anomaly and the observed 
anomaly. ACC is defined as Eq. (9).

where Oi is the observed anomaly, xi is the forecast anom-
aly, and Ōi and x̄i are the time averages of the observation 
and forecast, respectively. M is the total length of time. The 
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larger the ACC is, the higher the forecasting skill. It is gener-
ally considered that when ACC > 0.6, the forecast is skillful.

(B)	 Root mean square error (RMSE)

The root mean square error is also used to test determin-
istic forecasting skills, and it gives the average magnitude 
of the error in forecasts that deviate from observations. The 
RMSE is defined as Eq. (10):

 where M is the number of forecast results, that is, the total 
time length, xi is the result of the ith forecast time, and Oi is 
the observation value of the ith forecast time. The smaller 
the RMSE is, the smaller the forecast error, and the more 
accurate the forecast.

(C)	 Noise-to signal-ratio (NS)

The noise-to signal- (NS) ratio in the present study 
measures ratio of the RMSE of the forecasted SSTA to the 
observed SSTA, it is defined as Eq. (11)

where the RMSE, M, and Oi are all as in Root mean square 
error (RMSE).

(D)	 Seasonal growth rate

The seasonal growth rate of prediction errors is expressed 
as the slope k of the time-dependent prediction error E(t) , 
which is defined as Eq. (12)

where t is the lead time. For the predicted SSTA in the 
present study, the approximation k ≈ E(t0+�t)−E(t0)

�t
 is adopted, 

where �t is 1 month.
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