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Abstract. This paper investigates how to refine the ground
meteorological observation network to greatly improve the
PM2.5 concentration forecasts by identifying sensitive areas
for targeted observations that are associated with a total of
48 forecasts in eight heavy haze events during the years of
2016–2018 over the Beijing–Tianjin–Hebei (BTH) region.
The conditional nonlinear optimal perturbation (CNOP)
method is adopted to determine the sensitive area of the sur-
face meteorological fields for each forecast, and a total of 48
CNOP-type errors are obtained including wind, temperature,
and water vapor mixing ratio components. It is found that,
although all the sensitive areas tend to locate within and/or
around the BTH region, their specific distributions are depen-
dent on the events and the start times of the forecasts. Based
on these sensitive areas, the current ground meteorological
stations within and around the BTH region are refined to
form a cost-effective observation network, which makes the
relevant PM2.5 forecasts starting from different initial times
for varying events assimilate fewer observations, but over-
all, it achieve the forecasting skill comparable to and even
higher than that obtained by assimilating all ground station
observations. This network sheds light on the idea that some
of the current ground stations within and around the BTH re-
gion are very useless for improving the PM2.5 forecasts in
the BTH region and can be greatly scattered to avoid unnec-
essary work.

1 Introduction

Air pollution has become a serious environmental issue
in many Asian countries in recent decades. The Beijing–
Tianjin–Hebei region (BTH region), being one of the most
prosperous and populated regions in China, has suffered from
successive heavy haze events during the past several decades
(Xiao et al., 2020). Despite large reductions in primary pollu-
tant emissions due to the recent strict pollution control poli-
cies in China, heavy haze events have still occurred in recent
years, even during the COVID-19 lockdown period (Huang
et al., 2021). Particulate matter with an aerodynamic diame-
ter that is smaller than 2.5 (PM2.5) has dominated as one of
the main air pollutants during the haze events. Exposure of a
large population to high PM2.5 will pose a higher health risks
and even a higher death rate (GBD 2017 Risk Factor Collab-
orators, 2018; World Health Organization, 2021). Therefore,
an accurate prediction of the PM2.5 concentration is critical
for providing early warnings to residents and helping gov-
ernments take timely actions.

To accurately predict the PM2.5 concentrations, it is cru-
cial to improve the quality of meteorological conditions and
emissions, since chemical transport models (CTMs) require
their information as input. Although the initial chemical con-
centrations and emission play important roles in air pollution
forecasts, the meteorological conditions still substantially in-
fluence the PM2.5 variations at the regional scale (Liu et
al., 2017; Lou et al., 2019; Chen et al., 2020). In terms of
the effect of meteorological initial conditions, lots of stud-
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ies have shown that small uncertainties in meteorological ini-
tial fields will result in large uncertainties in PM2.5 forecasts
(Gilliam et al., 2015; Bei et al., 2017). Recently, it has been
recognized that a bad meteorological initial condition may
even affect the forecast of the accumulation or dissipation
processes of the PM2.5 event and could result in a false alarm
with respect to heavy haze events (Yang et al., 2022). There-
fore, an accurate meteorological initial condition is also cru-
cial for the regional PM2.5 forecasts, in addition to the initial
chemical concentrations and emission.

Data assimilation has been recognized as being one of the
most effective ways to improve the accuracy of initial con-
ditions (Talagrand, 1997). High-quality meteorological ini-
tial fields could be obtained by assimilating the observa-
tions from an observation network for atmospheric condi-
tions (Snyder, 1996). Among the various meteorological ob-
servation sources, the observations from the ground meteo-
rological stations are often assimilated to predict the mete-
orology fields (Hu et al., 2019; Devers et al., 2020; Yao et
al., 2021). Yang et al. (2022) studied the uncertainties in the
meteorological initial fields with respect to PM2.5 forecasts
and found that the meteorological forecasts in the BTH re-
gion are much more sensitive to the meteorological initial
errors at the ground level with a lead time of 12 h. They em-
phasized that the initial conditions located at the ground level
may play an important role in the meteorological forecasts
over the BTH, which will further affect the regional PM2.5
forecasts, especially for the forecasts with a lead time of 12 h.
In this sense, assimilating the observations from the ground
meteorological stations could make an important contribu-
tion to the improvement in the PM2.5 forecasting skill, espe-
cially in the BTH region.

In the past few years, a high quantity of meteorological
stations have been constructed around the world to study at-
mospheric motions and the weather and climate variabilities.
In China alone, there were more than 2000 stations operated
by the China Meteorological Administration (CMA) in the
year of 2020, and the locations of the stations are gener-
ally selected based on the administrative district and resident
populations (http://data.cma.cn/, last access: 28 June 2023).
Even though a huge number of meteorological stations ex-
ist to provide observations, assimilating more observations
may not necessarily lead to much higher forecast benefits (Li
et al., 2010; Liu et al., 2021). Liu and Rabier (2002) used
a simple 1-D framework and the computation of the anal-
ysis error covariance to show that increasing the observa-
tion density beyond a certain threshold value would yield
little or no improvement in the accuracy of the analysis. In
fact, previous studies have applied both simple and compli-
cated numerical models to argue that additional observations
may not result in a large improvement in the forecasting skill
(Bengtsson and Gustavsson, 1972; Morss et al., 2001; Yang
et al., 2014). Theoretically, in the area of strong sensitivity
to the initial values of the forecasts, assimilating few ob-
servations may result in better forecasting skill; conversely,

slight improvements or even poorer forecasting skill could
be the result, even though a large number of observations is
assimilated in the area of weak sensitivity, due to the addi-
tional errors induced by an imperfect assimilation procedure
or the unsolved scales and processes in the model (Janjić et
al., 2018; Zhang et al., 2019). Thus, even if we have suf-
ficient meteorological observations, which should be used
for the observations and how many observations should be
preferentially assimilated to obtain a higher forecasting skill
is still a key question. For the ground meteorological sta-
tions of concerned here, it is therefore essential to identify
which ones provide the additional observations that domi-
nantly enhance the improvement in the PM2.5 forecast level.
One of the development targets proposed by the China Me-
teorological Administration during the 14th Five-Year Plan
period is to arrange the meteorological observation network
more reasonably and scientifically (https://www.cma.gov.cn/
zfxxgk/gknr/ghjh/202112/t20211208_4295610.html, last ac-
cess: 28 June 2023). The results could provide guidance to
refine the existing ground meteorological observation net-
works and to improve the PM2.5 forecasts in the BTH region
and avoid unnecessary work.

The dominant meteorological stations to be identified, as
mentioned above, would provide the meteorological observa-
tions that will have the largest impact on the PM2.5 forecasts
of the concerned region. This idea belongs to the new obser-
vational strategy of “targeted observation”, which is the idea
that assimilating additional observations at the target time t1
in some key areas (i.e., sensitive areas), compared to doing
it in other areas, may reduce the forecast errors in the con-
cerned area (verification area) at a future time t2 (verifica-
tion time; t1 < t2) to a larger degree. It is obvious that the
meteorological stations located in the sensitive areas would
provide the meteorological observations that dominantly pro-
mote the PM2.5 forecasts of the concerned area (i.e., the ver-
ification area). Some approaches, such as the singular vector
(SV; Palmer et al., 1998), adjoint sensitivities (Langland et
al., 1999), and the ensemble transform Kalman filter (ETKF;
Bishop et al., 2001; Majumdar et al., 2002), have been used
to identify the sensitive areas for targeted observations. How-
ever, these approaches are developed under the assumption
that the initial errors are linearly developed in the nonlin-
ear model, which is not completely true in the real atmo-
sphere (Toth and Kalnay, 1993; Mu and Wang, 2001). In this
study, an advanced fully nonlinear method, conditional non-
linear optimal perturbation (CNOP; Mu et al., 2003), is ap-
plied to find the initial perturbation of the fastest growth in
the nonlinear model and then to determine the meteorologi-
cal sensitive area of the PM2.5 forecasts. It has been verified
that the sensitive area identified by the CNOP shows advan-
tages when compared with the areas identified by traditional
methods through both the theoretical proof and numerical ex-
periments (Qin and Mu, 2011; Chen et al., 2013; Duan et
al., 2018; Feng et al., 2022; Qin et al., 2013). The CNOP
has been adopted to identify the sensitive areas in the studies
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of tropical cyclones, El Niño–Southern Oscillation events,
oceanic mesoscale eddies, and marine environments and has
successfully improved the forecasting skill (see the review
of Duan et al., 2023). Moreover, Yang et al. (2022) applied
the CNOP to determine the sensitive areas for targeted ob-
servation of a heavy haze event of which authorities were not
warned in time by the monitoring center and demonstrated
that assimilating additional observations in such a sensitive
area leads to the successful forecast of the PM2.5 concentra-
tions with much higher skill. Then, in this study, we would
use the CNOP to recognize the dominant ground meteoro-
logical stations applicable for PM2.5 forecasts by investigat-
ing the sensitive areas of eight winter heavy haze events over
the BTH region during the years of 2016–2018, consequently
providing an idea to refine the current ground meteorologi-
cal stations for improving the PM2.5 forecasts in the BTH.
It is noted that, during this period, as encouraged by the
strict pollution control policies issued by the Chinese govern-
ment, great efforts have been made to produce a more accu-
rate high-resolution emission inventory (Zheng et al., 2020),
which is favorable for better simulating the chemical compo-
nents in China and then separating the meteorological uncer-
tainty effects of interest in the present study.

The remainder of the paper is organized as follows. In
Sect. 2, we introduce the model, data, and method. In Sect. 3,
we reproduce the eight heavy haze events that occurred in
the BTH during 2016–2018 and identify the sensitive areas
of the surface meteorological conditions for the PM2.5 fore-
casts with the application of the CNOP method. Then a cost-
effective meteorological observation network is constructed
in Sect. 4, which has been verified to be an approximation of
the whole BTH network of ground meteorological stations
to improve the PM2.5 forecasts. In Sect. 5, we interpret the
reasons why assimilating the cost-effective observations can
lead to an improvement in the PM2.5 forecasting skill that
is comparable to assimilating all ground observations from
the perspectives of thermodynamics and dynamics, and in
Sect. 6, a summary and discussion is provided.

2 Model, data, and method

In this study, we use the Weather Research and Forecasting
Model (WRF) and its adjoint model, and the nested air qual-
ity prediction modeling system (NAQPMS), to identify the
sensitive areas of surface meteorological conditions associ-
ated with the regional PM2.5 forecasts by the application of
the CNOP approach.

2.1 Models

The NAQPMS model is a 3-D regional Eulerian chemical
transport model, which contains emissions, advection/con-
vection, diffusion, dry and wet deposition, and gas/aqueous
chemical modules (Wang et al., 1997, 2006). It has been

widely used in scientific studies and practical forecasts for air
quality in China. The anthropogenic emissions are obtained
from Multi-resolution Emission Inventory model for Climate
and air pollution research (MEIC; http://meicmodel.org/, last
access: 28 June 2023). Since we only focus on the sensitiv-
ity of the meteorological conditions for PM2.5 forecasts in
the present paper, the emission inventory is assumed to be
perfect and is kept the same in all of the simulations. The
modeling domain includes 119×119 grids, with a horizontal
resolution of 30 km and 20 levels in the vertical. The compo-
sition of the PM2.5 matter considered in the model includes
black carbon, organic carbon, secondary inorganic aerosol
(sulfate, nitrate, ammonium), and primary PM2.5 emitted di-
rectly from various sources.

The NAQPMS model is driven by the meteorological
fields generated through the WRF (http://www.wrf-model.
org/, last access: 28 June 2023). The parameterization
schemes adopted in the WRF model include the Lin micro-
physics scheme (Lin et al., 1983), Dudhia shortwave radia-
tion schemes (Dudhia, 1989), rapid radiative transfer model
for global climate models (RRTMG) longwave radiation (Ia-
cono et al., 2008), and Yonsei University planetary bound-
ary layer parameterization scheme (Hong et al., 2006). The
adjoint model of WRF also uses the same parameterization
schemes. Both the WRF model and the adjoint model of
WRF are configured with the same horizontal and vertical
grid structure with the NAQPMS model.

2.2 Data

There are eight typical heavy haze events that occurred in
the BTH region during the wintertime (OND or October–
November–December) in the years of 2016–2018 (Table 1),
and all eight events and their associated forecasts are investi-
gated in the study. The observed surface PM2.5 concentration
datasets of the events are obtained by the national environ-
mental monitoring stations. In total, there are 80 air qual-
ity monitoring stations within the BTH region (see the geo-
graphical distribution for these 80 stations in Fig. 1a). From
these stations, we retrieved the hourly PM2.5 concentration
time series for each of the eight events.

To produce the initial and boundary conditions for
WRF simulation, the fifth generation ECMWF reanalysis
for the global climate and weather (ERA5; https://www.
ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, last
access: 28 June 2023) and National Centers for Environmen-
tal Prediction Global Forecast System (NCEP GFS) histori-
cal archive forecast data (https://rda.ucar.edu/datasets/ds084.
1/, last access: 28 June 2023) are used.

2.3 Conditional nonlinear optimal perturbation
(CNOP)

The CNOP represents the initial perturbation (or initial er-
ror) that results in the largest forecast error in the verification
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Table 1. The root mean square error (RMSE; µgm−3) and correlation coefficient (CC) of the PM2.5 concentrations between the simulations
initialized by the ERA5 Global Forecast System (ERA5/GFS) and the observations in the eight heavy haze events. The simulation of a
smaller RMSE and higher CC is marked in bold. Note that BJT is for Beijing time (UTC+8 h).

Cases Initial time/final time RMSE CC
(BJT, date) (ERA5/GFS) (ERA5/GFS)

1 12:00 on 15 November to 02:00 on 20 November 2016 39.66/44.21 0.86/0.78
2 00:00 on 9 December to 12:00 on 13 December 2016 56.94/82.06 0.57/0.25
3 00:00 on 16 December to 00:00 on 23 December 2016 66.89/72.42 0.91/0.84
4 00:00 on 30 November to 00:00 on 4 December 2017 47.46/51.91 0.64/0.56
5 00:00 on 13 October to 00:00 on 17 October 2018 14.87/27.29 0.86/0.16
6 00:00 on 1 November to 00:00 on 5 November 2018 20.74/53.88 0.86/0.59
7 00:00 on 11 November to 00:00 on 16 November 2018 45.94/61.42 0.83/0.28
8 00:00 on 30 November to 00:00 on 4 December 2018 36.77/85.45 0.81/0.54

Figure 1. The maps of (a) the 80 environmental monitoring stations (black circles) within the BTH region and (b) the 481 national ground
meteorological stations (black dots) within and around the BTH region (34–46◦ N, 110–120◦ E). The black lines represent the boundaries of
provinces in China, and the thick black lines are the coastline. The boundaries of Beijing city, Tianjin city, and Hebei province are the thick
red lines.

area at the verification time and is the most sensitive initial
perturbation. The dynamical equation in the nonlinear model
can be written as Eq. (1).{

∂x
∂t
+F (x)= 0

x|t=0 = x0
, (1)

where t is the time, F is the nonlinear partial differential op-
erator, and x is the state vector with an initial value x0. If we
add an initial perturbation δx0 to the initial state x0, then the
evolution of the two initial states at the prediction time T can
be described as Eq. (2).

x(T )=M(x0) , x(T )+ δx(T )=M(x0+ δx0) , (2)

where M is the nonlinear propagator that propagates the ini-
tial value to the prediction time T . So δx(T ) describes the

evolution of the initial perturbation δx0 of the reference state
x (T ). An initial perturbation is called a CNOP (δx∗0) if, and
only if,

J
(
δx∗0

)
=
[
M(x0+ δx0)−M(x0)

]T
C2
[
M(x0+ δx0)

−M(x0)
]
. (3)

The δxT0 C1δx0 ≤ β is the constraint condition of initial per-
turbation, and β is a positive value. C1 and C2 are coeffi-
cient matrices, which define the format of the initial pertur-
bation and its evolution. Mathematically, the CNOP leads to
the global maximum of the cost function J

(
δx∗0

)
under a cer-

tain constraint.
In our study, since we focused on the uncertainties in the

meteorological initial condition associated with the PM2.5
forecast, following Yang et al. (2022), the state vector x con-
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sists of zonal and meridional wind (U and V , respectively),
temperature (T ), water vapor mixing ratio (Q), and pressure
(P ) components, which are considered to be important me-
teorological fields for PM2.5 forecasts over the BTH region
(see the review paper of Chen et al., 2020). The perturbations
δx0 are superimposed on the ground meteorological field x0
of interest. The amplitude of the initial perturbation and its
evolution is defined by the total energy of the meteorological
state at the ground level of the model domain and the inte-
gral of the total energy from ground to top (i.e., 100 hPa) at
the verification areas (i.e., the BTH region), respectively. The
expression of total energy is shown in Eq. (3) (Ehrendorfer
et al., 1999).

Total energy= U2
+V 2

+
Cp

Tr
T 2
+

L2

CpTr
Q2

+RaTr

(
P

Pr

)2

, (4)

where Cp (= 1005.7 J kg−1 K−1), Ra (=
287.04 J kg−1 K−1), Tr (= 270 K), L (= 2.5105×
106 J kg−1), and Pr (= 1000 hPa) are constant values.

The spectral projected gradient 2 (SPG2) method is used
to solve the optimization problem in Eq. (3). It is noted
that the SPG2 algorithm is generally designed to solve
the minimum value of a nonlinear function (cost func-
tion) with an initial constraint condition, and the gradient
of the cost function with respect to the initial perturba-
tion represents the descending direction in the search for
the minimum cost function. Therefore, in this study, we
have to rewrite the cost function in Eq. (3) as J ′

(
δx∗0

)
=

−[M(x0+ δx0)−M(x0)]TC2 [M(x0+ δx0)−M(x0)], and
the WRF adjoint model is used to compute the gradi-
ent of the cost function. Specially, to calculate the CNOP,
a first-guess initial perturbation, δx(0)0 , is projected into
the constraint condition and superimposed on the ini-
tial state x0 of the WRF model. After a forward in-
tegration of the WRF, the value of the cost function,
i.e., −

[
M
(
x0+ δx

(0)
0

)
−M(x0)

]
, can be obtained. Then,

with the adjoint model of the WRF, the gradient of the cost
function with respect to the initial perturbation, g(δx(0)0 ),
is calculated. Theoretically, the gradient presents the fastest
descending direction of the cost function. However, in re-
alistic numerical experiments, the gradient presents a fast-
descending direction that is not necessarily the fastest, so we
need more iterations. After the iteratively forward and back-
ward integrations of the WRF model governed by the SPG2
algorithm, the initial perturbation is optimized and updated
until the convergence condition is satisfied, where the con-
vergence condition is

∥∥∥P (δx(p)0 − g
(
δx

(p)

0

))
− δx

(p)

0

∥∥∥
2
≤

ε1, and ε1 is an extremely small positive number. P(δx(p)0 )
projects the initial perturbation to the constraint condition.
Finally, the CNOP δx(p)0 can be obtained. The flow chart of

Figure 2. The flow chart of a CNOP calculation.

the CNOP calculation is shown in Fig. 2. For further de-
tails of the SPG2 algorithm, readers can refer to Birgin et
al. (2001).

3 The sensitive areas of surface meteorological field for
the PM2.5 forecasting

In this section, we first simulate the PM2.5 concentration vari-
ability using the WRF initialized by the ERA5 reanalysis
data and NCEP-GFS forecast data separately to show the sen-
sitivities of the PM2.5 forecasts to the meteorological initial
uncertainties. Then we calculated the CNOP-type initial er-
rors in the concerned forecasts and identify their sensitive
areas.

3.1 Sensitivity to meteorological initial uncertainties in
the PM2.5 variability simulations

For each of the eight heavy haze events, after the 10 d spin-
up of WRF-NAQPMS, the ERA5 and the GFS data are sep-
arately used to initialize the WRF model, and then two fore-
casted meteorological fields can be obtained, which force the
NAQPMS to output two kinds of simulations of PM2.5 con-
centrations. Table 1 provides the initial and final times of
the eight event simulations, and Fig. 3 plots the two kinds
of simulations of the PM2.5 concentrations averaged over
the BTH region for each event and the corresponding ob-
servations. We take the event initialized at 00:00 BJT (Bei-
jing time; UTC+8 h) on 30 November 2018 as an exam-
ple to describe the difference between two kinds of simu-
lations of the PM2.5 concentrations (see Fig. 4). Then, for
this event, the ERA5 presents weak southerly winds with a
mean speed of 1.06 m s−1 over the BTH region at the initial
time, while the GFS shows stronger southerly winds with a
speed of 1.91 m s−1. Obviously, the two simulations show a
difference in the initial meteorological fields of this event.
When the final time is reached after 18 h, the simulation ini-
tialized by ERA5 presents a weak northerly wind in the BTH
region and forecasts a PM2.5 concentration of 93.05 µgm−3

on average over the BTH region; however, the simulation ini-
tialized by GFS enhances the southerly wind to 3.56 m s−1,
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and particularly in the southern part of Hebei, the southerly
wind reaches 5.89 m s−1, which transports more PM2.5 from
the south to the BTH region and results in the PM2.5 fore-
casts of 134.71 µg m−3 on average. It is noted that these two
PM2.5 simulations are generated from the same emission in-
ventory and the same initial chemical concentrations, with
the initial PM2.5 concentration focused on the Anhui and
Hubei provinces, which are located to the south of the BTH
region. It is therefore certain that the difference between the
two PM2.5 simulations of this illustrated event is only caused
by the different meteorological initial fields. For other fore-
casts, it is also seen from Fig. 3 that different initial meteo-
rological conditions result in different levels of accuracy in
the PM2.5 simulation in terms of the magnitude, peak time,
and even the variability in the accumulation and dissipation
processes of the heavy haze event.

To quantify the different sensitivities of the two simula-
tions on the initial meteorological conditions, the root mean
square error (RMSE) and correlation coefficients (CCs) be-
tween the simulation and observation of the eight events are
calculated. It is found that, of all eight events, the ERA5 sim-
ulations show smaller RMSEs and higher CCs with respect
to the observations (see Table 1). If we take an average of
the eight events for the whole simulation period (see Table 1
and Fig. 3), then the RMSE of the ERA5 and GFS simula-
tions are 41.16 and 59.83 µgm−3, respectively; the CCs of
the ERA5 and GFS simulations reach 0.79 and 0.50, respec-
tively. Thus, for all heavy haze events considered, the sim-
ulations initialized by ERA5 reanalysis perform better than
the GFS forecast data. In fact, since the ERA5 reanalysis
data were obtained by assimilating all available observations
with a more advanced model by the ECMWF, it has a much
higher quality and is often regarded as an approximation to
the real atmosphere. It is therefore comprehensible that the
ERA5 performs much better in simulating the PM2.5 concen-
trations. This also indicates that the PM2.5 forecasting uncer-
tainties made by the WRF-NAQPMS are highly sensitive to
meteorological initial conditions, and a much accurate me-
teorological initial condition is essential for PM2.5 forecasts.
Although the simulations initialized by ERA5 reanalysis per-
form better than the GFS forecast data, they still depart from
the observations. Therefore, when considering the sensitivity
of the meteorological field accuracy on PM2.5 concentration
simulations, it is necessary to identify the sensitive area of
the meteorological initial field for PM2.5 forecasts and assim-
ilate additional targeted observations, thus pushing the PM2.5
simulation that results from the ERA5 reanalysis closer to the
truth.

3.2 The sensitive areas of meteorological initial fields
for PM2.5 forecasts

From Fig. 3, it is known that when the haze started to de-
velop, it usually took more than 2 d to accumulate and dis-
sipated rapidly in a few hours. For example, for the event

that occurred during the period from 00:00 BJT (Beijing
time; UTC+8 h) on 9 December to 12:00 BJT on 13 Decem-
ber 2016, the haze started to accumulate at approximately
20:00 BJT on 9 December, and it took 55 h to accumulate
a PM2.5 concentration from 45 to 208 µgm−3. This high
PM2.5 concentration was sustained for almost 16 h; then,
from 18:00 BJT on 12 December, the PM2.5 concentration
decreased from 217 to 46 µgm−3 in 18 h. Certainly, the sta-
ble atmospheric boundary layer will lead to the accumulation
of PM2.5, while the dissipation is mostly attributed to strong
winds or wet deposition (Chen et al., 2020). These distinct
mechanisms may indicate that the sensitive areas of the me-
teorological initial field are different for the PM2.5 forecasts
during the accumulation and dissipation processes. Yang et
al. (2022) investigated the vertical energy profiles of the
most sensitive meteorological initial perturbations (i.e., the
CNOP-type error) of the PM2.5 forecasts in one heavy haze
event in the BTH, and they showed that, for the forecasts
during either accumulation or dissipation processes, the large
energy of the CNOP-type errors mainly lies at the low level
of the atmosphere for a lead time of 24 h and at the ground
level for a lead time of 12 h. It is indicated that the uncertain-
ties in the ground meteorological initial conditions may play
a more important role in the PM2.5 forecasts with the lead
time of 12 h. To further assess the role of the ground meteo-
rological initial fields on the PM2.5 forecasts, we calculated
the CNOP-type errors for the eight heavy haze events in this
study, as Yang et al. (2022) did, and found that the PM2.5
forecast uncertainties are indeed much more sensitive to the
accuracy of the initial ground meteorological conditions for
the lead time 12 h (details are omitted here because of simi-
lar thoughts to those found in Yang et al., 2022). This result,
relative to the economic property of the targeted observation
strategy (see Sect. 1), inspires us to investigate the current
ground meteorological stations within and around the BTH
and to see if they can be refined to improve the PM2.5 fore-
casts more cost-effectively in the heavy haze events by ex-
ploring the sensitive areas of the ground meteorological field
forecasting. It is expected that a station network with fewer
stations will be provided, and assimilating these fewer station
observations can lead to the PM2.5 forecasting skill compa-
rable to, and even higher than, that obtained by assimilating
all constructed station observations.

To do so, we consider the forecasts with the fixed lead time
of 12 h but with different start times. For each event, we an-
alyze four cycle forecasts every 12 h from its start time (see
Table 2) over the accumulation process (hereafter AFs) and
two forecasts over the dissipation process (hereafter DFs).
As a result, a total of 32 AFs and 16 DFs was obtained for
the eight events under investigation. To identify the sensitive
areas of the ground meteorological field in each forecast, we
adopt the idea of Lorenz (1965); this means that when the
effect of initial error growth is explored, then an assumption
of a perfect model is done. However, in reality, whatever the
initial field of model may be, even in the case of emission
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Figure 3. Time series of the PM2.5 concentrations averaged over the BTH region of observations (black line) and simulations initialized by
ERA5 (blue line) and GFS (red line) meteorological data during the eight heavy haze events in 2016–2018. These events occurred during the
following times: (a) from 12:00 BJT on 15 November to 02:00 BJT on 20 November 2016, (b) from 00:00 BJT on 9 December to 12:00 BJT
on 13 December 2016, (c) from 00:00 BJT on 16 December to 00:00 BJT on 23 December 2016, (d) from 00:00 BJT on 30 November to
00:00 BJT on 4 December 2017, (e) from 00:00 BJT on 13 October to 00:00 BJT on 17 October 2018, (f) from 00:00 BJT on 1 November
to 00:00 BJT on 5 November 2018, (g) from 00:00 BJT on 11 November to 00:00 BJT on 16 November 2018, and (h) from 00:00 BJT on
30 November to 00:00 BJT on 4 December 2018.

inventories, it certainly consists of uncertainties. So to make
our findings realistic, we have to take the better simulation
initialized by ERA5 as the “truth” run because we cannot ob-
tain relevant observations from the monitoring center for as-
similations and use poorer simulation initialized by the GFS
forecast data as being either the control forecast or the control
run. The differences between them reflect the sensitivities of
the forecast uncertainties in the PM2.5 concentrations on the
accuracy of initial meteorological field. Therefore, when one
computes the CNOP-type initial perturbation that is superim-
posed on the better simulation initialized by ERA5 (i.e., truth
run), then it can be regarded as an approximation of the most
sensitive initial error that disturbs the meteorological forecast
of the BTH region and thus the PM2.5 forecast result. Ac-
cording to this perturbation, we can determine the sensitive
area of the meteorological field (see the next paragraph), and
preferentially assimilating additional observations in the sen-
sitive area of the control forecast will take an updated fore-
cast (hereafter “assimilation run”) approach to the truth run
(see Yang et al., 2022). Such an idea is a kind of observation
system simulation experiment (OSSE; Masutani et al., 2010).
It is conceivable that if the real observations are available,
then assimilating the real observations on the sensitive areas
of the ERA5 simulation will also make the ERA5 simula-
tion much closer to the real truth. In our study, we adopt this

Table 2. Start times of the cycling AFs and DFs for the eight heavy
haze events.

Cases AFs DFs
(BJT, date) (BJT, date)

1 02:00, 16 November 2016 14:00, 18 November 2016
2 14:00, 9 December 2016 02:00, 12 December 2016
3 14:00, 16 December 2016 02:00, 22 December 2016
4 14:00, 30 November 2017 20:00, 2 December 2017
5 14:00, 13 October 2018 20:00, 15 October 2018
6 14:00, 1 November 2018 02:00, 4 November 2018
7 20:00, 11 November 2018 20:00, 14 November 2018
8 02:00, 30 November 2018 20:00, 2 December 2018

idea to determine the sensitive areas. Since the real meteoro-
logical observations are not in the public archive, additional
observations are correspondingly taken from the initial field
of the truth run (i.e., the ERA5 data) and called the simu-
lated observations according to the OSSEs. These simulated
observations include the wind, temperature, and relative hu-
midity variables, and they are all the standard meteorological
variables monitored in the national meteorological stations.
The relevant assimilations are performed by the WRF-3DVar
schemes.
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Figure 4. The surface wind (vector; m s−1) and PM2.5 concentration (shaded; µgm−3) components of the initial states for the simulation of
the event during 30 November and 4 December in 2018 (1) and their evolutions at the lead time 18 h (2), where the initial time is 00:00 BJT
on 30 November 2018 and. Panel (a) is initialized by ERA5, and panel (b) is initialized by the GFS.

Now we determine the sensitive areas of the ground mete-
orological field associated with PM2.5 forecasts in the BTH.
For this purpose, the CNOP-type initial errors which include
the wind, temperature, and water vapor mixing ratio com-
ponents at the ground level are calculated for each of the
48 PM2.5 forecasts in the truth run, with the application of
WRF and its adjoint model by using the SPG2 solver (see
Sect. 2). Then, a total of 48 CNOP-type initial errors are ob-
tained for the 48 forecasts, including 32 AFs and 16 DFs. For
the AFs, the CNOP-type errors are basically concentrated
within the BTH region, although positioning differences ex-
ist among the forecasts. For the DFs, the CNOP-type errors
are mostly located on the northern part of the BTH region,
but the specific structures are dependent on the starting time.
Figure 5 shows two examples of the CNOP-type errors with

the wind and temperature components during AFs and DFs
for the heavy haze event that occurred during 1–5 November
2018, respectively. It can be seen that, for the AFs starting
from 02:00 BJT on 2 November 2018, the CNOP-type error
presents large southerly wind anomalies in the southern part
of the BTH region, particularly in the cities of Anyang and
Liaocheng, and large negative temperature anomalies are al-
most located within the BTH region. For the AFs that started
from 14:00 BJT on 2 November 2018, the large southerly
wind errors are dominant in the city of Jining in the Shan-
dong province, while the negative temperature error concen-
trates in the southern part of Hebei region. As for the two
examples of the CNOP-type errors in the DFs, one is for
the forecast initialized at 02:00 BJT on 4 November 2018
that exhibits large northerly wind and negative temperature
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anomalies in the northern part of the BTH region, covering
the region of Abag Banner, with much larger temperature
anomalies in the southern part of the Shandong province. The
other example is for the forecast at 02:00 BJT on 5 Novem-
ber 2018 that presents northerly winds and negative temper-
ature anomalies over the northern part of the Hebei province.
It is obvious that the CNOP-type errors, though they are all
mainly presented around the BTH region, provide different
areas in which different meteorological variable errors are
concentrated, even for the same forecast. To overcome this
mishap, we evaluate the total moist energy norm (TME; Yang
et al., 2022) of the CNOP-type errors.

TME

=
1
2

(
U ′2+V ′′2+

Cp

Tr
T ′′2+

L2

CpTr
Q′2+RaTr

(
P ′

Pr

)2
)

(5)

The TME considers all of the concerned meteorological vari-
ables in the CNOP-type errors and measures the comprehen-
sive sensitivity of the PM2.5 forecast uncertainties in the ini-
tial meteorological perturbations. Then the PM2.5 forecasts
are more sensitive to the combined effect of all the meteoro-
logical variables’ uncertainties that occurred in the area with
larger values of TME, and these areas are regarded as the sen-
sitive areas (see Yang et al., 2022). Figure 6 shows the spa-
tial distribution of the TME for the four forecasts mentioned
above. It is seen that, for the two AFs, their sensitive areas
(i.e., the areas with larger values of TME) are mostly located
in the BTH region, especially in Beijing city and the southern
part of Hebei province. But for the forecast that started from
02:00 BJT on 2 November in them, the area in the center of
Shandong province is also additionally denoted as a sensi-
tive area. For the two DFs, their sensitive areas, compared
with those of the two AFs, move northward, and the one in
the forecast that initialized at 02:00 BJT on 4 November is
mostly located in the provinces of Inner Mongolia and Liaon-
ing (western part), while the other forecast presents its sen-
sitive area closer to the BTH region, which is mostly located
in the cities of Chengde and Zhangjiakou in Hebei province.

From the sensitive areas above, it is can be seen that, even
for the same event, the specific distributions of the sensi-
tive areas are dependent on the start times of the forecasts.
It is therefore conceivable that the 48 forecasts for the eight
events will exhibit the sensitive areas of the multifarious
structures and locations. In terms of this situation, one natu-
rally asks how a cost-effective observation network that does
the PM2.5 forecasts starting from different initial times for
different events can be made. Relative to the ground meteoro-
logical stations in China that are of interest for this study, the
above question can be refined to ask how one can adapt the
current meteorological stations within and around the BTH
and make them more cost-effective in their application for
the improvement of the PM2.5 forecasts with different start
times for different heavy haze events. This question will be
addressed in the next section.

4 The cost-effective meteorological observation
network applicable for significantly improving the
PM2.5 forecasts

In this section, we will construct a cost-effective meteorolog-
ical observation network based on the sensitive areas identi-
fied by the CNOP-type errors in the 48 forecasts for the eight
heavy haze events. Then, a series of OSSEs (see Sect. 3.2)
are conducted to show the advantage of the additional ob-
servations from this observational network in improving the
PM2.5 forecasting skill, which finally provides a strategy to
refine the current meteorological stations within and around
the BTH.

4.1 An essential observational network that enhances
the PM2.5 forecasting skill greatly

For the 48 CNOP-types errors, we use a quantitative fre-
quency method (see Duan et al., 2018) to identify the spa-
tial grids that are often covered by large values of the TME.
Specifically, for each CNOP-type error, we sort its spatial
grid points in a decreasing order, according to the amplitude
of the TME, and choose the first 3 % of the grid points in
the model domain. Then a total of 424 grid points is ob-
tained, which bears larger TME values than the other grid
points and contributes more to the meteorological forcing er-
rors associated with the relevant PM2.5 forecast (see Yang et
al., 2022).Note that here we select the first 3 % of the grid
points so that the number of sensitive grid points (424) is
close to the number (481) of the current meteorological sta-
tions within and around the BTH (see Fig. 1b), in attempt
to investigate whether the sensitive grid points explain the
current ground stations. Since 32 AFs are considered in the
study, we can obtain 32 grid point sequences from their 32
CNOP-type errors, and in each sequence, there are 424 grid
points. For each grid point, we compute the frequency of
each grid (i, j ) occurring in the 32 sequences by Eq. (8).

Fi,j =
ci,j

N
× 100% , (6)

where ci,j is the number of the grid point (i, j ) occurring
in all sequences, and N denotes the number of all sequences
(here it is 32). We define a threshold of 60 % and select the
grid points with F larger than 60 %, which means that the
grid point (i, j ) exists in most of the sequences. Then a total
of 174 grid points is determined. These 174 grid points are
mostly carrying many large meteorology errors measured by
the TME in the 32 CNOP-type errors for the 32 AFs. Simi-
larly, we also obtain 184 grid points from the 16 CNOP-type
errors in the 16 DFs (Fig. 7a, b). We incorporated the 174
grid points for the AFs and the 184 grid pints for the DFs
into an integrated observation network, as compared with the
current ground meteorological stations that have been con-
structed within and around the BTH region (34–46◦ N, 110–
120◦ E; see Fig. 1b). It is found that the meteorological sta-
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Figure 5. The horizontal distribution of the wind (1) and temperature (2) components of the CNOP-type errors for the AFs that started from
02:00 BJT on 2 November (a) and from 14:00 BJT on 2 November 2018 (b) and for the DFs that started from 02:00 BJT on 4 November (c)
and from 14:00 BJT on 4 November 2018 (d).
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Figure 6. The horizonal distribution of the TME (units in J kg−1) for the AFs starting from (a) 02:00 BJT on 2 November and (b) 14:00 BJT
on 2 November 2018 and for the DFs starting from (c) 02:00 BJT on 4 November and (d) 14:00 BJT on 4 November 2018. The black
rectangle is the verification area (i.e., the BTH region).

tions have been constructed with 99 stations in the area cov-
ered by 174 grid points for the AFs and with 60 stations in
the area covered by 184 grid points for the DFs. Since these
99 stations for AFs and 60 stations for DFs, a total of 127 sta-
tions (32 stations overlap), are all located in the area covered
by the sensitive 174 grid points for AFs and 184 grid pints
for DFs, they could provide additional observations that help
significantly improve the skill of the PM2.5 forecast in the
BTH, as compared with other constructed stations (but not in
the sensitive grids). For this reason, we regard the network
spanned by these 127 stations as an “essential network” (see
Fig. 7c).

Now we investigate how much this essential network can
explain the skill improvement of the PM2.5 forecasts when
assimilating the data acquired from all the current ground
meteorology stations in and around the BTH. As mentioned
in Sect. 3.2, we have to assimilate simulated observations

taken from the ERA5 due to the unavailable real observa-
tions. Together with the simulated observations, we assimi-
late them from the essential stations and those from all the
ground stations within and around the BTH to the control
run generated by the GFS. Then comparisons between the
assimilation runs and the control runs can be made from the
perspective of AEV and AEM in Eqs. (7) and (8) in attempt
to show the role of the assimilated observations in improving
the PM2.5 forecasting skill.

AEV =

(
|PC−PT| − |PA−PT|

|PC−PT|

)
t=T

× 100%, (7)

AEM =
1
T

∑i=T

i=t0

(
|PC−PT| − |PA−PT|

|PC−PT|

)
t=i

× 100%, (8)

where AEV and AEM measure the reduction rate of the errors
in the control forecast at verification times (T ; see Eq. 7)
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Figure 7. The spatial distributions of the 174 sensitive grid points
(red squares) for AFs (a), the 184 sensitive grid points (blue
squares) for DFs (b), and all constructed stations (denoted by black
dots in panels a and b). The contrast between the essential stations
for AFs (red dots) and those for DFs (blue dots) (c) is shown, where
the thick black dots present their overlapping stations. Panel (d)
shows the cost-effective stations’ network, including the essential
stations (blue, red, and black dots) as in panel (c), and the additional
scattered stations (gray dots).

and that during the whole forecast period (from t0 to T ; see
Eq. 8) after the assimilation. The PC, PT, and PA denote the
surface PM2.5 concentration in the control run, truth run, and
assimilation run, respectively. The sign |·|means the absolute
value of the forecast errors averaged over the BTH region.

For the 32 AFs, when assimilating the 99 simulated obser-
vations, the overall improvements are 12.03 % and 13.59 %,
as measured by AEV and AEM, respectively. An average of
57 % of the grids in the BTH area shows positive AEV val-
ues, and 54 % of the grids show positive AEM values; par-
ticularly, the forecast with the largest forecast error among
the 32 AFs presents a reduction rate of the error by 31.34 %
at the forecast time, even with approximately 76 % of the

grid points in the BTH area showing a positive improvement
(see Fig. 8 and Table 3). For the 16 DFs, assimilating the
simulated observations at the 60 essential stations can im-
prove the PM2.5 forecasting skill with the AEV, varying from
4.12 % to 45.53 % (exactly from 0.57 to 15.18 µgm−3), and
the AEM, varying from 0.03 % to 39.24 % (exactly from 0.34
to 7.77 µgm−3). The forecast errors are reduced by an aver-
age of 18.07 % at the forecast times and 18.05 % during the
whole forecast period. It is indicated that, for either AFs or
DFs, their respective essential stations can provide additional
observations that significantly increase the PM2.5 forecasting
skill in the BTH region. Moreover, when the overall improve-
ments are relative to those of 15.48 % and 17.90 % (mea-
sured by AEV and AEM) for AFs and of 23.87 % and 24.76 %
for DFs when assimilating the simulated observations taken
from all the constructed stations within and around the BTH
(a total of 481 stations), they can account for at least 75 % of
the latter, although the former essential stations only cover
at most 20.58 % of the latter ground stations. It is clear that
the essential stations can indeed provide additional observa-
tions that help increase the skill of the PM2.5 forecast in the
BTH more significantly. Therefore, the essential stations are
indeed crucial for the improvement of the PM2.5 forecasts in
the BTH.

4.2 The cost-effective observation network for
significantly improving the PM2.5 forecast in the
BTH

The essential network has been shown to play the dominant
role in the improvement of the PM2.5 forecast in the BTH
when compared with the assimilation of the simulated ob-
servations taken from all constructed stations, but we no-
tice that non-negligible differences still exist between the
improvements achieved by assimilating the essential obser-
vations and those that assimilate all observations. Therefore,
based on the current conditions of all the constructed stations,
we would refine the observations to provide a cost-effective
observation network that almost fully accounts for the total
improvement in the PM2.5 forecasts achieved by assimilating
all the observations but brings fewer observations to the as-
similation. For this purpose, we would base our observations
on the essential stations to further include relatively impor-
tant stations from the remaining constructed ground stations
(a total of 354 stations, which are defined by the exclusion of
the 127 essential stations from the constructed 481 stations).
For the remaining constructed stations, they are all also lo-
cated on the areas covered by the CNOP-type errors for AFs
and DFs but are ruled out of the first 3 % grid points and
therefore have very small errors. That is to say, the remain-
ing stations are not essential for AFs or for DFs, and it is hard
to distinguish whether they are more sensitive to AFs or DFs.
For example, the southwestern part of Shandong province is
covered by some of the remaining stations, but it is not only
located on the area covered by the CNOP-type error in the
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Figure 8. The box plot of the (1) AEV and (2) AEM values when assimilating the essential station observations, the essential observations
plus the scattered station observations with the distances 60, 90, 120, 150, and 180 km, and all constructed station observations for the (a) AFs
and (b) DFs.

Table 3. The mean and maxima of the improvements measured by AEV/AEM for the AFs and DFs when the simulated observations on
different observation networks are assimilated. The largest improvements among AFs or DFs for the refined observation networks are marked
in bold, respectively.

Observation network AFs DFs

Mean (%) Max (%) Mean (%) Max (%)

Essential stations 12.03/13.59 31.34/35.89 18.07/18.05 45.53/39.24
All constructed stations 15.48/17.90 40.47/38.42 23.87/24.76 55.54/46.76
Essential and scattered (60 km) 15.02/17.15 41.12/39.21 23.62/24.18 54.04/47.13
Essential and scattered (90 km) 14.67/17.13 37.99/38.19 21.79/22.41 50.43/45.02
Essential and scattered (120 km) 14.29/16.29 37.97/38.18 21.17/21.79 50.16/43.15
Essential and scattered (150 km) 13.92/15.44 37.56/38.61 20.77/21.21 49.59/43.89
Essential and scattered (180 km) 12.77/15.21 35.62/38.22 20.97/20.87 48.99/42.57

AFs initialized at the 14:00 BJT on 2 November 2018 but
also lies in the area of the CNOP-type error for the DFs start-
ing from the 14:00 BJT on 4 November 2018 (see Fig. 6a, c).
Therefore, to determine the usefulness of the remaining sta-
tions for AFs and DFs, we do not distinguish which one of
them is particularly important for AFs or DFs but use the
comprehensive sensitivity (rTME) defined by Eq. (9) to bal-
ance its role for both AFs and DFs.

rTME= w1
1
n1

∑n1

i=1
TMEi(AF)+w2

1
n2

∑n2

i=1
TMEi(DF) , (9)

where TMEi(AF) and TMEi(DF) represent the TME (see the
Eq. 5) of the AFs and DFs, respectively. n1 and n2 are the

numbers of the AFs and DFs, which are 32 and 16. Since
the number of AFs is twice that of the DFs, we define the
weight coefficients w1 =

1
2 and w2 = 1. Thus, the sensitiv-

ity defined by the rTME could be proportional to the AFs
and DFs, and the grid points with larger rTME are expected
to provide the additional observations that, on the whole,
contribute more to the reduction in the forecast errors for
AFs and DFs. Despite this, the number of grid observations
needed to account for better forecasting skill is also a chal-
lenging problem, especially for those observations located
on the nonsensitive grid points with small CNOP-type er-
rors. As shown by Liu and Rabier (2002), for a dense obser-

https://doi.org/10.5194/gmd-16-3827-2023 Geosci. Model Dev., 16, 3827–3848, 2023



3840 L. Yang et al.: An approach to refining ground stations

vation network with strongly correlated error in the assimi-
lation scheme, increasing the observation density may even
decrease the quality of the analysis states and further decay
the forecasting skill. Particularly for the remaining ground
stations mentioned above, they locate the area covered by
small errors in the CNOP-type error patterns and are there-
fore less sensitive to PM2.5 forecast uncertainties. Then a
worse forecast may come by when the impacts of the error
correlations between the nearby observations overweigh the
sensitivities. Therefore, a decrease in the observation den-
sity for the remaining stations is necessary to avoid impair-
ing the analysis in the assimilation process. In fact, Yang et
al. (2014) suggested that assimilating the observations with
an appropriate observational distance helps one derive more
benefits from the forecasts (see also Li et al., 2010; Zhang
et al., 2019, and Yang et al., 2022). Therefore, when we se-
lect relatively important stations from the remaining stations
by sorting the grid points according to the sensitivity pro-
vided by the rTME, we should simultaneously consider the
effect of the station distances. To achieve this, we attempt to
scatter the remaining stations (354 in total) across distances
of 60, 90, 120, 150, 180 km and select the grid point with
much larger values of rTME, as defined by Eq. (9), to deter-
mine the required stations. Note that if the distance between
the scattered stations is set to be smaller than 60 km, then
all of the remaining stations will be included, which is in-
consistent with the aim of refining the system. We take the
scatter distance of 60 km as an example to show how to se-
lect the required stations. Because the real station locations
do not match the grid points in the model, we take the rTME
value of their closest grid point as an approximation of their
sensitivities. Therefore, for the remaining constructed ground
stations, the station whose closest grid point has the largest
rTME is taken as the first selected ground station; then, we
exclude the stations no further than 60 km away from the first
selected station and determine the station with the largest
rTME among the rest of the stations as being the second
selected station. After the second station is determined, we
further exclude the stations no further than 60 km away from
the second station and selected the third station, according to
the rTME of its closest grid point; the other stations are sim-
ilarly determined. Finally, a new observation network can be
constructed by the combination of the essential stations and
the scattered stations (see Fig. 7d).

The simulated observations (i.e., the ERA5 data) taken
from the new observation networks are assimilated to the
control run to show the improvements achieved by assimilat-
ing the additional observations, where it is noted that since
the essential stations responsible for DFs alone are not sen-
sitive to the AFs, these stations are also scattered with cor-
responding distances, according to the rTME when imple-
menting the AFs. The same procedures are also carried out
for the DFs. Specifically, on the basis of the essential sta-
tions, if the scattered stations are included with a distance
of 60 km, then the performance of the PM2.5 forecasts for

32 AFs and 16 DFs is totally improved from 12.03 % to
15.02 % and from 18.07 % to 23.62 %, as measured by AEV.
Meanwhile, the AEM increases from 13.59 % to 17.15 % and
from 18.05 % to 24.18 %, as averaged by all the AFs and
DFs, respectively (see Fig. 8 and Table 3). If a compari-
son is made between the essential stations and the additional
scattered stations, then it is found that the latter contributes
an improvement of 2.99 % and 3.56 % to the PM2.5 fore-
casts measured by the AEV and AEM averaged for all the
AFs and an improvement of 5.55 % and 6.13 % for all DFs,
which, from another perspective, emphasizes the dominant
role of the essential stations in improving the PM2.5 fore-
casts. For the scattered stations with other distances above,
we also do similar experiments and make comparisons with
those scattered by the distance of 60 km, eventually show-
ing that the stations scattered by 60 km perform the best in
terms of enhancing the PM2.5 forecasting skill for either AFs
or DFs. However, we also find that there are not big differ-
ences among the skill scores achieved by them. For example,
when the additional stations are scattered from 60 to 90 km
(correspondingly, the station number is further decreased by
83), the overall improvements of the AFs are only reduced
by 0.35 %, as measured by AEV, and 0.02 %, as measured
by AEM, while for the DFs, when the additional stations are
scattered further than 90 km, it is even difficult to differen-
tiate the effects between the 120 to 180 km distances. These
imply that a saturation of the error reduction may exist in the
given framework. In fact, Morss et al. (2001) demonstrated
that the analysis errors are often small in a certain density
of the observation network, so that adding more observations
only resulted in small benefits, which may explain the satu-
ration of the error reduction in the PM2.5 forecasts here.

Now we take the observation network constructed by the
combination of essential stations and the scattered stations
with a distance of 60 km as the newly refined observation
network (see Fig. 7d) and compare it with all of the con-
structed ground stations by performing the assimilation runs.
We find that the resultant improvements (15.02 % for AFs
and 23.62 % for DFs; see above paragraph), by assimilating
the newly refined station observations, can account for 97 %
and 99 % of the improvements (15.48 % for AFs and 23.87 %
for DFs) achieved by assimilating all of the constructed sta-
tion observations for the AFs and DFs, respectively. Partic-
ularly, among the individual forecasts, 9 of the 32 AFs and
5 of the 16 DFs even show a much better forecasting skill
at the forecast times in the assimilation of the newly refined
observations than in that of all the constructed ground obser-
vations. It is demonstrated that assimilating the simulated ob-
servations on the refined network can result in comparative,
sometimes even higher, improvements in the PM2.5 forecast-
ing skill, as compared with assimilating all the ground sta-
tion observations within and around the BTH. Furthermore,
we note that the number of the newly refined stations is at
least 180 less than that of the constructed stations. All of
these points indicate that, under the condition of the current
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ground meteorological stations, the above newly refined sta-
tions may form a cost-effective observation network that al-
most accounts for the total improvement in the PM2.5 fore-
casts achieved by assimilating all the ground observations.
The cost-effective observation network may provide guid-
ance to optimize the current ground meteorological stations;
at least, it suggests a much more cost-effective assimilation
strategy to increase the accuracy of the meteorological fore-
casts for the significant improvement of the PM2.5 forecasts
in the BTH.

5 Interpretations

In this section, we interpret why assimilating the cost-
effective station observations results in comparative im-
provements and sometimes even higher improvements in
PM2.5 forecasts than assimilating all the constructed station
observations. It is known that the variation in the PM2.5
concentrations is dependent on both the thermodynamical
and dynamic meteorological conditions. It goes without say-
ing that the stable thermodynamical conditions, such as low
planetary boundary layer height, are favorable for the accu-
mulation of the PM2.5 concentrations (Miao et al., 2015);
furthermore, a high relative humidity (RH) will also pro-
mote the processes, such as heterogeneous chemistry and
gas–particle partitioning, which are all favorable for the for-
mation of the PM2.5. For the dynamic conditions in the BTH
region, increased wind speed may conversely influence the
PM2.5 forecasts. For instance, a dominant northerly wind will
blow away the PM2.5 in the downtown areas of the BTH re-
gion, while southerly wind will bring more PM2.5 from the
southern cities to the BTH region (Zhao et al., 2009). So the
accuracy of both the thermodynamical and dynamic meteo-
rological conditions is essential for the PM2.5 forecasts in the
BTH region (see the review paper of Chen et al., 2020).

For all the AFs and DFs concerned in the study, we com-
pare their meteorological conditions before and after the as-
similations of the cost-effective station observations and all
the constructed station observations, respectively. We find
that the assimilation, as expected, adjusts the thermodynami-
cal and dynamic meteorological conditions at the initial state
in the control run and forecasts the meteorological condi-
tion closer to the truth run, which further improve the PM2.5
forecasting skill. In particular, we found that the improve-
ments for the AFs are basically associated with the more ac-
curate thermodynamical conditions in the assimilation runs,
while for the DFs, the improved forecasting skill is mostly
attributed to the corrections of both the dynamical and ther-
modynamical conditions. Furthermore, the assimilations of
the cost-effective station observations and all the constructed
station observations correct the meteorological conditions
for the PM2.5 forecasts in a similar way, which thus causes
a comparative skill of the PM2.5 forecasts between them.
Specifically, we select two forecasts (i.e., the AFs initialized

at 14:00 BJT on 2 November 2018 and the DFs initialized at
02:00 BJT on 15 November 2018) which possess large fore-
cast errors in the control runs as examples to present the de-
tailed interpretations.

For the AFs, the PM2.5 concentrations in the truth run
increase from 101.54 µgm−3 at 14:00 BJT on 2 November
to 143.01 µgm−3 at 02:00 BJT on 3 November, averaged
over the BTH and indicating an accumulation process of the
PM2.5. The control run is also able to present the accumu-
lation process but with an underestimation of 129.92 µgm−3

at the forecast time of 02:00 BJT on 3 November (Fig. 9a).
The differences between them are mainly attributed to the
thermodynamical condition, since there are fewer differences
in the wind components (see Fig. 10a). Therefore, we are
mainly concerned with the thermodynamical condition to ex-
plain the AFs. Compared with the truth run, the control run
has presented a less stable condition, with an overestimation
of 45.84 m in the boundary layer height and an underesti-
mation of 16.67 % in the RH averaged over the BTH region
at the forecast time; these findings are not beneficial for the
accumulation and formation of PM2.5, so an underestimation
of the PM2.5 concentration comes about. When the simulated
observations from all the constructed meteorological stations
are assimilated, the boundary layer height has decreased and
the RH has increased over the central and southern part of
the BTH region at the initial time. The improved thermody-
namic condition further modifies the meteorological condi-
tion at the forecast time, including a decrease of 21.56 m for
the boundary layer height and an increase of 8.02 % for the
RH averaged over the BTH region, both of which contribute
to an increase in the PM2.5 concentrations from 129.92 to
138.85 µgm−3 averaged over the BTH region and thus an
improvement in the PM2.5 forecasting skill (see Fig. 11). By
comparison, the assimilation of the cost-effective station ob-
servations will modify the meteorological conditions in the
same way, with a decrease of 20.95 m in boundary layer and
an increase of 7.57 % in RH that finally results in an aver-
age PM2.5 of 138.60 µgm−3 at the forecast time, with only
0.25 µgm−3 lower than the forecast with the assimilation of
all constructed station observations. Hence, the cost-effective
network can approximate all constructed stations and pro-
vide additional observations of an equivalent efficiency for
all observations in order to improve the PM2.5 forecasts in
the BTH. Moreover, we also implement the PM2.5 forecasts
with longer lead times for the eight heavy haze events by us-
ing the meteorological analysis field updated by assimilating
the cost-effective observations. And we demonstrate that, al-
though the cost-effective network is developed according to
the sensitivity of the meteorological forecasts with the lead
time of 12 h, its resultant meteorological analysis fields still
have positive effects on improving the AFs with longer lead
times. For example, in the AFs quoted in this section, assim-
ilating the cost-effective station observations can reduce the
forecast errors by 32.05 % and 7.81 % at the forecast time,
with a lead time of 18 and 24 h, respectively; furthermore,
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these improvements are also approaching those achieved by
the assimilation of all constructed station observations (see
Figs. 9a and 11).

For the DFs, the mechanism is different from the AFs,
where both thermodynamical and dynamical conditions have
critical impacts on the PM2.5 variation. The PM2.5 concen-
trations in the truth run decreased from 120.50 µgm−3 on
15 November at 02:00 BJT to 57.19 µgm−3 on 15 November
at 14:00 BJT in the BTH region. The dissipation is caused by
the northerly wind in the northwestern part of the BTH re-
gion at the initial time, and then the northerly wind increased
gradually with the speed of 4.92 m s−1 at the forecast time
over the BTH region, which blew away the PM2.5 concen-
trations in the BTH. Conversely, the control run presents a
southerly wind in the northern part of the BTH region and
an easterly wind in the Inner Mongolia Province, which go
against the truth run (Fig. 10b) and result in an overestima-
tion of the PM2.5 with a concentration of 105.50 µgm−3 at
the forecast time (Fig. 9b). Besides the dynamical reasons,
the control run also presents higher relative humidity biases
over the BTH region, which also contributes to the overesti-
mation of PM2.5 concentrations. When the simulated obser-
vations from all the constructed stations are assimilated to the
initial state, the northwesterly wind increases in the northern
part of the BTH region at the initial time, and at the forecast
time the northerly wind over the BTH region has increased
to 2.73 m s−1. Meanwhile, the assimilation also results in a
decrease in the RH from 76.28 % to 73.67 %. It is obvious
that the increased northerly wind and decreased RH are ben-
eficial for the dissipation of the PM2.5, and these led to the
PM2.5 concentration’s decrease from 105.50 to 83.35 µgm−3

in the BTH region at the forecast time, resulting in an im-
provement of 45.85 % in the PM2.5 forecasting skill. When
the simulated observations from the cost-effective station ob-
servations are assimilated, the meteorological conditions are
modified in the same way, except for the stronger northerly
wind of 2.77 m s−1 over the BTH at the forecast time. The
stronger northerly wind blows more pollution in the BTH re-
gion to the downwind region so that the mean PM2.5 concen-
trations over the BTH region decreases to 82.53 µgm−3 and
shows an improvement of 47.55 % in the PM2.5 forecasting
skill at the forecast time, which is 1.7 % higher than the im-
provement found when all the constructed station observa-
tions are assimilated. Therefore, though fewer observations
in the cost-effective network are assimilated, they result in a
higher forecasting skill by reducing larger forecast errors in
the northerly wind. Furthermore, similar to the AFs, with the
meteorological analysis fields obtained by the cost-effect ob-
servation network, the comparative improvements of the DFs
can be achieved at much longer times. Specifically in this
forecast, the improvements can reach 34.16 % and 29.36 %
at the lead times of 18 and 24 h, as measured by AEV, re-
spectively, which is almost the same as the improvements in
the assimilation of all constructed station observations (see
Figs. 9b and 12).

So far, we have verified numerically the validity of the
cost-effective ground meteorological stations’ network in im-
proving the PM2.5 forecasts of the BTH more economically
by assimilating fewer observations. Also, we have interpreted
this validity in terms of the perspective of dynamics and ther-
modynamics. It is therefore expected that the cost-effective
network can provide a guidance to refine the current ground
stations from the viewpoint of the PM2.5 concentration fore-
casts in the BTH.

6 Summary and discussions

The PM2.5 forecasts of the BTH region are sensitive to the
meteorological initial condition, and in this study, we investi-
gate the role of the ground meteorological stations within and
around the BTH, finally proposing a strategy to refine them,
which is inspired by the fact that a high density of observa-
tions is not necessary for higher forecast benefits. Specifi-
cally, a total of 32 AFs and 16 DFs obtained from all eight
heavy haze events in the BTH region in the winter season
during the years of 2016–2018 was investigated using the
WRF-NAQPMS model, and their fastest growth initial errors
(i.e., the CNOP-type errors) are calculated to identify their
respective sensitive areas in the ground meteorological fields;
based on these sensitive areas, a frequency method suggested
by Duan et al. (2018) is used to recognize the sensitive grid
points applicable for the forecasts of the PM2.5 concentra-
tions with different start times, which provides help to refine
the current ground meteorological stations (a total of 481 sta-
tions) within and around the BTH and form the newly refined
stations’ network (a total of 287 stations, which is 194 less
than that of the former) for the PM2.5 forecasts in the BTH.

Numerically, a series of OSSEs is conducted to verify the
effectiveness of the newly refined 287 station observations
in terms of improving the PM2.5 forecasts in the BTH. They
demonstrate that, when the additional simulated observations
(i.e., the ERA5 data) from these refined stations are assimi-
lated to the control run initialized by the GFS data, the overall
PM2.5 forecasting skill increases to 15.02 % and 23.62 % at
the forecast time of AFs and DFs, which have accounted for
97 % and 99 % of the improvements when the simulated ob-
servations from all the 481 ground stations are assimilated.
For some individual forecasts, assimilating the simulated ob-
servations even results in better forecasting skill for PM2.5.
Physically, we interpret why assimilating fewer observations
from the refined stations can have an improvement in the
PM2.5 forecasting skill that is comparative to, or even higher
than, that of an assimilation of all of the ground station obser-
vations. In fact, assimilating fewer observations has equiva-
lent capabilities in terms of correcting the atmospheric sta-
bility for the AFs and modifying the dynamical and thermo-
dynamical conditions for the DFs when compared with as-
similating all of the ground observations, which makes the
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Figure 9. Time series of the PM2.5 concentrations averaged over the BTH region of the truth run, the control run, and the assimilation run
inherited from the cost-effective observations and all the constructed observations for the AFs initialized at 14:00 BJT on 2 November 2018,
with a lead time of 24 h (a), and the DFs starting from 02:00 BJT on 15 November 2018, with a lead time of 24 h (b).

Figure 10. The differences in the wind (vector; m s−1) and PM2.5 concentration (shaded; µgm−3) between the truth run and control run
(control run minus truth run) for (a) the AFs at the forecast time of 02:00 BJT on 3 November 2018 and (b) the DFs at the forecast time of
14:00 BJT on 15 November 2018.

control run closer to the truth and results in a comparative
improvement in the PM2.5 forecasting skill.

It is clear that assimilating fewer sensitive observations
can lead to better PM2.5 forecasting skill, which indicates
that it is not necessarily the use of more densely scattered me-
teorological observation stations but rather that a few sensi-
tive stations can greatly improve the PM2.5 forecasting skill.
It implies that 58 % (the 279 refined stations for the AFs) of
the current station observations accounting for the 97 % of
the improvements at the forecast time for AFs and 50 % (the
241 refined stations for the DFs) of the current station ob-
servations contribute to the 99 % of the improvements at the

forecast time for DFs. In combining the AFs and DFs, there
are a total of 287 stations (about 60 % of the current stations)
that remain to make highly efficient contribution to the PM2.5
forecasts in the BTH region. It is therefore indicated that the
newly refined network may play a role in the cost-effective
ground meteorological stations in terms of greatly improving
the PM2.5 forecast in the BTH. Although the present study
is associated with hindcasts of PM2.5, it is still difficult to
obtain the meteorological observations from the monitoring
center; therefore, we can only assimilate the simulated ob-
servations (i.e., the ERA5 data) to the control run to show
the effectiveness of the cost-effective observation network.
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Figure 11. The differences in the boundary layer height (contour line; m; blue line means reduction and red line means increase) and
the PM2.5 concentrations (shaded; µgm−3) between the assimilation run inherited from the cost-effective observations and constructed
observations and the control run for the AFs that started from 14:00 BJT on 2 November 2018 and with lead times of 12 and 24 h.

The effectiveness is verified by examining whether a fore-
cast (i.e., the simulation initialized by GFS) after assimilating
the observations from the cost-effective station network will
be much closer to the good simulation (i.e., the simulation
initialized by ERA5). If the cost-effective station network is
useful along this thinking, it can be inferred that assimilating
the real observations from the cost-effective stations to the
meteorological initial field in the control forecast would im-
prove the meteorological field forecasting and then the PM2.5
forecasting greatly against the observations. This may sug-
gest that 287 refined stations in the study should maintain
their operations and that other stations around the BTH can
be greatly scattered to avoid unnecessary work. Relative to
the objective of scientifically arranging the observation net-
work proposed by the China Meteorological Administration
during the 14th Five-Year Plan period, our study could pro-

vide scientific guidance for optimizing the ground meteoro-
logical station network with the respect to improving the air
quality forecasts.

In this study, we focus on the effect of surface meteoro-
logical uncertainties in the PM2.5 forecast in the BTH and
suggest that the current constructed ground stations can be
refined to a cost-effective station network. In fact, these cost-
effective stations, as demonstrated in Sect. 4, are made up of
the constructed stations that appear in the area covered by the
174/184 sensitive grid points for AFs/DFs revealed by the
CNOP-type errors and the scatted stations which have also
been constructed but do not appear in the area covered by
the sensitive grids. It is therefore conceivable that the cost-
effective network in this study could be further optimized by
moving the stations not located in the area covered by the
sensitive grids to the area with higher sensitivities (i.e., the
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Figure 12. The differences in the ground wind (vector; m s−1) and PM2.5 concentrations (shaded; µgm−3) between the assimilation run
(inherited from the cost-effective observations and all constructed station observations) and the control run for the DFs that started from
02:00 BJT on 15 November 2018 and with lead times of 12 and 24 h.

area covered by the 174/184 sensitive grid points). In the
present study, we studied the meteorological initial uncer-
tainties in the wind, temperature, and water vapor variables,
which are conventional meteorological variables monitored
at the national meteorological stations. Apart from these, the
boundary layer height is a key meteorological variable for
PM2.5 forecasts. Since the boundary layer simulation is more
influenced by the parameterization in the WRF model (Chen
et al., 2017; Mohan and Gupta, 2018) for studying the role
of the boundary layer uncertainties in yielding the PM2.5
forecast uncertainties, an extension of the CNOP method,
CNOP-parametric perturbation (CNOP-P; Mu et al., 2010)
or the nonlinear forcing singular vector (NFSV; Duan and
Zhou, 2013), can be used. It is expected that future studies
could address the boundary layer uncertainties using the ex-
tensions of CNOP method, and these uncertainties may pro-
vide guidance to optimize its relevant observation network.
Besides the meteorological observations, pollutant observa-
tions are also quite important for the air quality forecasts
(Luo et al., 2022). Therefore, optimizing the environmen-
tal monitoring stations and obtaining more useful pollutant
observations are also very important for the significant im-
provements in air quality forecasting, which may further re-

duce the gap between the forecasts and observations in the
air quality studies. Though previous studies have attempted
to identify the sensitive areas for the targeted observations
of chemical constituents using singular vector or adjoint sen-
sitivity methods (Daescu and Carmichael, 2003; Goris and
Elbern, 2015), they used a linear approach and did not suf-
ficiently consider the nonlinear effect of initial value sensi-
tivity, so that implementing the observations on these sensi-
tive areas may not lead to the largest improvements (Wang et
al., 2011). The application of CNOP for determining the sen-
sitive areas may overcome these limitations. It is therefore
expected that the optimization of environmental monitoring
stations can be studied in depth, and more useful conclusions
will be achieved to greatly improve the forecasts of air qual-
ity in the future.

Code and data availability. Version 3.6.1 of the WRF and its ad-
joint model are used in this study, and both are available from
https://doi.org/10.5065/D68S4MVH (Skamarock et al., 2008). The
exact version of the model to produce the results used in this paper
is available on Zenodo (https://doi.org/10.5281/zenodo.7627369,
Yang and Duan, 2023a). The analyzed data used in this paper
are available on Zenodo (https://doi.org/10.5281/zenodo.7627556,
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Yang and Duan, 2023b). Hourly surface PM2.5 data are ob-
tained from http://www.cnemc.cn/en/ (China National Envi-
ronmental Monitoring Center (CNEMC), 2022). The ERA5
reanalysis product is available at https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era5 (Hersbach et al., 2017;
login required). The NCEP GFS product is available at
https://doi.org/10.5065/D65D8PWK (NCEP, 2015).
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