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Abstract: The accuracy of different types of El Niño-Southern Oscillation (ENSO) predictions is
sensitive to initial errors in different key areas of the Pacific Ocean. To improve the accuracy of the
forecast, assimilation techniques can be utilized to eliminate these initial errors. However, limited
studies have measured the extent to which assimilating ocean temperature data from different key
regions in the Pacific Ocean can enhance two types of ENSO predictions. In previous research, three
critical regions were identified as having initial errors in ocean temperature most interfering with two
types of El Niño predictions, namely the North Pacific for Victoria Mode-like initial errors, the South
Pacific for South Pacific Meridional Mode-like initial errors, and the subsurface layer of the western
equatorial Pacific. Based on these initial error patterns, we quantified the effect of assimilating ocean
temperature observation datasets in these three key regions using the particle filter method. The result
indicates that ocean temperature initial accuracy in the tropical western area near the thermocline
region is important for improving the prediction skill of CP-El Niño compared with the other two
sensitive areas. However, three key areas are all important for EP-El Niño predictions. The most
critical area varies among different models. Assimilating observations from the north and south
Pacific proves to be the most effective for improving both types of El Niño predictions compared to
the other two areas’ choices. This suggests that the initial accuracy of ocean temperature in these two
regions is less dependent on each other for enhancing El Niño predictions. Additionally, assimilating
observations from all three sensitive areas has the best results. In conclusion, to enhance the accuracy
of two types of El Niño predictions, we need to ensure the initial accuracy of ocean temperature in
both tropical and extratropical regions simultaneously.

Keywords: ENSO; ENSO prediction; predictability; target observation; particle filter

1. Introduction

The El Niño-Southern Oscillation (ENSO) is the primary cause of the most intense sea
surface temperature (SST) variation in the tropical Pacific on the interannual time scale.
It results in alternating warm (El Niño) and cold (La Niña) phases, having a profound
impact on tropical weather as well as global climate [1–7]. Traditionally, the warming SST
anomalies in El Niño events are mainly located in the eastern Pacific. However, a new
flavor of El Niño with its maximum SSTA in the central Pacific has become more common
since the 1990s [8,9]. Based on the locations of the maximum SSTA, the new type of El Niño
is named CP-El Niño, while the conventional type is named EP-El Niño [10,11].
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Although the self-sustaining nature of the tropical Pacific ocean-atmosphere system
is conducive to better ENSO predictions up to one or two years in advance [12], ENSO
diversity is certainly a crucial factor that hampered the accuracy of the ENSO prediction.
Barnston et al. [13] implied that even though the models have been improved all the time,
the El Niño prediction skill has decreased since the 2000s, with a large possibility of being
influenced by the frequent occurrence of CP-El Niño. Moreover, distinguishing the type
of El Niño when making El Niño predictions is also a huge challenge. Owing to the
inability of the models to simulate the new flavor of El Niño, there is considerable room for
enhancing the accuracy of classical dynamical models in forecasting the various types of
El Niño occurrences [14–17]. For example, the useful prediction of CP-El Niño by using
a multi-model ensemble system or advanced operational dynamical models can only be
accurate up to one month in advance [14,18].

Observations are essential for comprehending the ENSO mechanism, refining models,
and reducing initial errors in model prediction. To improve the prediction of ENSO, it is
important to address the issue of initial errors in the ENSO prediction field, as suggested by
Lorenz [19]. This falls under the first type of predictability problem. It is widely recognized
that precise initial conditions play a pivotal role in predicting ENSO events [20–22]. In
addition, the initial errors that have the most notable influence on ENSO prediction tend
to present particular patterns. These special initial errors gradually evolve over time and
ultimately lead to inaccurate predictions of ENSO-related SSTA [23–29]. This pertains to
the idea of target observation, which refers to effectively improving predictions by ensuring
the initial accuracy of variables in specific “key areas” or “sensitive areas” [30].

Extensive research has been conducted to investigate the sensitive area where the
initial condition has the biggest impact on ENSO prediction. Specifically, employing the
conditional nonlinear optimal perturbation (CNOP) method and the Zebiak-Cane model,
Mu, Xu and Duan [23] demonstrated that certain initial errors exhibiting specific spatial
patterns can result in substantial ENSO prediction errors, while others have negligible
effect. Duan, Liu, Zhu and Mu [28] uncovered that initial errors with a zonal dipolar
pattern of SSTA in the central and eastern equatorial Pacific can experience significant
amplification during spring, commonly known as the spring predictability barrier (PB),
causing pronounced uncertainties in ENSO predictions. Zhang, Duan and Zhi [25] inves-
tigated the initial errors in complex models by analyzing datasets from three Coupled
Model Intercomparison Project (CMIP5) models. They discovered that the initial errors that
lead to significant errors in predicting El Niño are similar in these three coupled general
circulation models (GCMs). These errors display a dipole pattern along the thermocline in
the equatorial Pacific. However, the above research only dealt with EP-El Niño predictions.

To take a step further, Hou, Duan and Zhi [27] delved deeper into El Niño predictabil-
ity by examining the ocean temperature initial conditions for two types of El Niño and
expanding their research to cover the entire Pacific Ocean. They utilized data from six
CMIP5 models and a data analysis method for predictability dynamics to identify the initial
error in Pacific Ocean temperature that causes the largest seasonal PB for both types of El
Niño predictions. According to their research, initial errors over the extratropical Pacific
are important for predicting both EP- and CP-El Niño. They also inferred that the initial
errors covering the Victoria Mode (VM) area in the North Pacific are strongly related to
the SSTA in the central tropical Pacific, while those covering the South Pacific Meridional
Mode (SPMM) area and those located along the thermocline in the tropical Pacific are
more likely to affect the eastern equatorial Pacific. These parts of the initial errors can
evolve, interfere with each other, and finally undermine the El Niño predictions. Moreover,
Hou et al. [31] designed a particle filter-based target observation method and quantified
the relative significance of surface temperature accuracy in the entire Pacific Ocean for
improving two types of El Niño predictions. However, their method only allows for the
assimilation of one single sea surface temperature observation at a time. As a result, it was
unfeasible to examine the joint effect of the initial error in various regions of the Pacific, as
discussed by Hou et al. (2019).
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As previously mentioned, reducing the initial errors in different parts of the Pacific
Ocean is crucial for enhancing the accuracy of two types of El Niño forecasts. However,
to our knowledge, the research quantifying the joint effect of the initial error in different
regions of the Pacific Ocean by using assimilation methods is limited. Given the circum-
stances, it is crucial to address the following significant concerns to further explore the
predictability dynamics of two types of El Niño events and thus help improve the predic-
tion skills of ENSO. Can observations in different sensitive areas increase the accuracy of El
Niño predictions? Furthermore, if so, how far can the El Niño prediction be improved by
assimilating multiple observations from different sensitive areas? What is the difference
between the results of the two types of El Niño predictions? These findings could shed
light on enhancements in model development and operational ENSO predictions.

2. Materials and Methods

To maintain consistency with the work by Hou, Duan and Zhi [27], we have utilized
the pi-control runs of the CMIP5 climate models. We have meticulously selected six models
that accurately capture the main characteristics of two types of El Niño events and provide
a reasonable depiction of ENSO diversity, as evaluated in studies by Kim and Yu [32],
Bellenger et al. [33], and Hou and Tang [34]. The affiliations and related configurations
can be found in Table 1. Our primary focus is on the initial error of ocean temperature
in the Pacific, so we have obtained monthly sea surface temperature (SST) and ocean
subsurface temperature (at depths of 5–155 m) from the output datasets of these six coupled
models. Different models have varying resolutions and integration times. To simplify
calculations, we opt to only use the first 500 years of integration in every model. After
that, we interpolate the variables onto identical grids with a resolution of 2.5◦ × 2.5◦ by
utilizing the bilinear interpolation method. All anomalies are calculated by first removing
the monthly climatology mean.

Table 1. List of models from CMIP5 analyzed in this study. All the datasets are available online at
https://esgf-node.llnl.gov/search/cmip5/ (accessed on 15 December 2022).

Model Institute/Country
Resolution (Lon × Lat, Vertical)

Atmosphere Ocean

CCSM4 NCAR/USA 288 × 192, L26 320 × 384, L60
CESM1-BGC NSF-DOE-NCAR/USA 288 × 192, L26 320 × 384, L60
CMCC-CMS CMCC/Italy 192 × 96, L95 182 × 149, L31
CNRM-CM5 CNRM-CERFACS/France 256 × 128, L31 362 × 292, L42
GFDL-CM3 NOAA GFDL/USA 144 × 90, L24 360 × 200, L50
GISS-E2-R NASA GISS/USA 144 × 90, L24 288 × 180, L32

Typically, assimilation experiments require real observational data. However, the
pi-control model outputs do not directly correspond to real observations. Therefore, we
opt to use the idea of OSSE (observing system simulation experiment), which involves
fabricating observations using model data. We divided the 500-year model integration
into 500 one-year intervals and selected a typical EP- or CP-El Niño year from January to
December as the truth run. To identify the EP- and CP-El Niño events, we employ the
method developed by Kug et al. [35]. This method involves calculating the SSTA over the
Niño3 and Niño4 areas. An El Niño event is confirmed to have occurred when at least
one of the two SSTAs exceeds 0.5 ◦C during the boreal winter (November, December, and
January of the following year). When the SSTA in the Niño3 region is higher than in the
Niño4 region, it is classified as an EP-El Niño. Conversely, when the SSTA in the Niño4
region is greater than in the Niño3 region, it is classified as a CP-El Niño. Once the truth run
is selected, a normal-distributed observation error is added to create the “observation”. In
addition, each one-year period, derived by breaking down the 500-year integration, can be
regarded as a “prediction” for the “observation” with a 12-month lead time. 500 one-year
segments forming a prediction ensemble for these specific EP- or CP-El Niño events.

https://esgf-node.llnl.gov/search/cmip5/
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To assimilate observation into our prediction ensemble, we utilize the Particle Filter
(PF) method, referring to Kramer and Dijkstra [36], Hou, Tang, Duan and Shen [31], and
Jiang et al. [37]. The core of this assimilation method is to adjust the weights of each
ensemble member based on observational data. Therefore, this assimilation method is
useful for both real assimilation systems using dynamical models and offline assimilation
experiments where fabricated observations and predictions are used, as we demonstrated
above. The mathematical expression for this method is presented below. The prediction
ensemble provides a Monte Carlo sample, which can be expressed in the following manner:

pN(Xk) = ∑N
i=1 wi

kδ
(

Xk −Xi
k

)
(1)

The symbol δ(·) represent the delta function, which has a value of zero everywhere
except at the zero point. Furthermore, the integral over the entire domain of the function
is equal to 1. The probability density function (PDF) of the state vector, represented by
Xk, is depicted as several “particles”, i.e., ensemble members, Xi

k (i = 1, 2, . . . , N). wi
k is

the weight of each particle. Initially (k = 0), the value of wi
0 for each particle is the same

and equals to 1/N. Afterwards, the weights are updated following the Bayes theory using
sequential importance sampling (SIS) based on discrete observations, denoted as yk, at
the time t = tk. After assimilation, the posterior conditional PDF of the new ensemble is
expressed as follows:

pN(Xk|Yk) =
p(Yk

∣∣∣Xi
k)pN(Xk|Yk−1)

p(Yk)
(2)

Utilizing Equations (1) and (2), the weight at tk can be obtained, which is

wi
k =

p(Yk

∣∣∣Xi
k)

p(Yk)
wi

k−1 (3)

In Equation (3), p(Yk

∣∣∣Xi
k) is the PDF of the observations Yk given the model state Xi

k.
The PDF of the observation, denoted by p(Yk), is a normalization factor that guarantees
the weight sum equals one. Furthermore, p(Yk

∣∣∣Xi
k) is directly connected to the probability

distribution of observation error. Assuming that the observation error follows a multivariate
normal distribution with a covariance matrix of Σ, then

wi
k ∼ exp[−1

2

(
Yk − H

(
Xi

k

))T
Σ−1

(
Yk − H

(
Xi

k

))
] (4)

The observation operator, denoted by H(·), can be computed by selecting the corre-
sponding model equivalents from the state vector. Therefore, the weight wi

k updates when
assimilating observational data at one grid, according to Equation (4). Considering that our
goal is to assimilate observation data from m grid points at once. To accomplish this, the
weight wi

k changes as follows:

wi
k ∼ exp[−1

2 ∑m
j=1

(
Yk − H

(
Xi

k

))T
Σ−1

(
Yk − H

(
Xi

k

))
]

= ∏m
j=1 exp[−1

2

(
Yk − H

(
Xi

k

))T
Σ−1

(
Yk − H

(
Xi

k

))
] for j = 1, 2, . . . m. (5)

However, once observations at t = tk are assimilated, the weight may end up being
concentrated on only a few particles, resulting in what is known as particle degeneracy.
An ensemble that is highly degenerate and only has a few particles with large weights
cannot accurately predict Niño3 or Niño4 SSTA. To prevent degeneracy, a straightforward
solution is to perform resampling. In our research, performing resampling involves copying
particles with high weight and discarding those with low weight. Moreover, choosing
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the appropriate magnitude of the error covariance is another important factor in avoiding
degeneracy. After conducting experiments, we set the observation error to 0.7 δT , where δT
represents the variance of ocean temperature.

Another question is how to choose specific assimilation grid points. Hou et al. (2019)
identified four ocean temperature initial error patterns that can cause seasonal PB and
significantly impact the accuracy of El Niño predictions. They demonstrated that there
are two distinct types of initial errors that result in significant summer PB in CP-El Niño
predictions: CP-type-1 and CP-type-2 errors. Similarly, there are two initial error patterns
that cause large spring PB in EP-El Niño predictions, referred to as EP-type-1 and EP-type-2
errors. The CP-type-1 errors and EP-type-1 errors are similar, both containing three parts of
aggregated errors that result in larger negative prediction errors for El Niño predictions in
boreal winter. Two of the aggregated error parts are negative, located in the lower levels
of the western equatorial Pacific and the upper levels of the southeastern Pacific. The
other is a positive initial error center located in the upper levels of the North Pacific. The
CP-type-2 errors are mainly found in the VM area of the North Pacific. EP-type-2 errors
have a similar spatial structure as EP-type-1 errors but with opposite signs. Based on their
research, the sensitive areas or target areas for better prediction of two types of El Niño are
the lower layers of the western equatorial Pacific (10◦ S–10◦ N, 130◦ E–150◦ W, 105–155 m),
the upper levels of the northern Pacific (20◦ N–65◦ N, 170◦ E–100◦ W, 0–95 m), and the
southeastern Pacific (40◦ S–20◦ S, 150◦ W–90◦ W, 0–60 m). Then the specific assimilation
points in different areas can be chosen based on error values in different models and initial
error patterns. Specifically, to choose the target observation grids for CP-and EP-El Niño
prediction in the western equatorial Pacific, the first 10 grid points with the smallest CP-
type-1 and EP-type-1 initial error values in the western Pacific subsurface section in each
model are selected as the assimilation points, respectively. The assimilation points in the
southern Pacific are chosen in the same way. The points for assimilation in the northern
Pacific are chosen based on the ranking of CP-type-2 and EP-type-2 initial errors using the
same method. The final assimilation grid points for each model and each El Niño type are
shown in Figure 1.
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Figure 1. Grids used to do assimilation experiments for EP-El Niño events (a1–f1) and CP-El Niño
events (a2–f2) in (a) CCSM4, (b) CESM1-BGC, (c) CMCC-CMS, (d) CNRM-CM5, (e) GFDL-CM3,
(f) GISS-E2-R.

The assimilation experiments are conducted in the following steps: For consistency
with Hou et al. (2019), 13 typical EP(CP)-El Niño events from each model are selected
and denoted as 13 one-year “observations” after adding observation errors to them from
January to December. From January to March, the ocean temperature at various target areas’
assimilation points is assimilated by using the PF method. As introduced previously, the
PF assimilation method basically changes the weights of the ensemble members. Therefore,
the predicted ensemble members for April to December can be derived by using the new
weights. In this way, predictions with lead times of 1–9 months are obtained. Afterward,
the new assimilated ensembles are evaluated by being compared to the original ensemble.
In addition, assimilation experiments by assimilating observations in multiple areas at
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once are conducted to explore the synergistic effect of different target areas on El Niño
predictions. The experiment groups are specifically described in Table 2.

Table 2. Description of the assimilation experiments based on the particle filter.

Experiment Description

TP Assimilate 10 grids in the western subsurface tropical Pacific sensitive area.
NP Assimilate 10 grids in the North Pacific sensitive area.
SP Assimilate 10 grids in the South Pacific sensitive area.

TP + NP Assimilate 20 grids in both western subsurface tropical Pacific and North
Pacific sensitive areas.

TP + SP Assimilate 20 grids in both western subsurface tropical Pacific and South
Pacific sensitive areas.

SP + NP Assimilate 20 grids in both South Pacific and North Pacific sensitive areas.
TP + NP + SP Assimilate 30 grids in three sensitive areas in the Pacific.

The assimilation experiments in this study are designed with two intentions: first, to
verify that the El Niño prediction can be improved by assimilating observation data in the
target areas; and second, to further investigate the joint effect of assimilating observation
data in multiple areas on the El Niño prediction.

3. Results
3.1. Effect of Different Sensitive Areas on CP-El Niño Predictions

As previously illustrated, the original CP-El Niño prediction ensemble was composed
by selecting all 500 one-year periods. The new ensemble is derived by assimilating obser-
vation data in different sensitive areas and then assessing it from different aspects. The
aim is to explore to what extent the CP-El Niño prediction can improve by assimilating
observations from different sensitive areas.

To evaluate if the assimilated ensembles can predict El Niño-like SSTA patterns during
boreal winter, we start by assessing the tropical SSTA spatial patterns in December for
all prediction cases. Figure 2 displays the spatial pattern of SSTA in the Tropical Pacific
for different CP-El Niño observations (a1–a13) and predictions (b–h) obtained from the
CCSM4 model. Rows b–h correspond to the results of the six assimilation experiments
described in Table 2. In addition, the anomaly correlation coefficient (ACC) is calculated
through a comparison of the spatial SSTA between the prediction and observation. The
larger the ACC, the better the prediction. The origin ensemble, consisting of 500 one-
year ensemble members, can only provide a climatology prediction. In this case, the
prediction skill of the new ensemble improves after assimilation if its spatial ACC turns
positive. When analyzing the results of assimilating ocean temperature data from only one
sensitive area (Figure 2b–d), it is discovered that assimilating observation data from the
western tropical Pacific subsurface has the greatest impact on improving the prediction
accuracy for the CCSM4 model. 11 out of 13 predictions can predict an El Niño-like SSTA
pattern. Assimilation of observational data from the South Pacific and North Pacific can
also improve prediction skills in more than half of all cases. Each group’s average ACC
is calculated, and the highest result is found in the tropical Pacific, while the lowest is
in the North Pacific. Therefore, the accuracy of the ocean temperature in the western
subsurface of the tropical Pacific is more important to El Niño predictions compared to the
South and North Pacific in terms of improving the spatial SST pattern in December. When
observation data from multiple sensitive areas is assimilated, the new ensemble improves
more significantly than when only one sensitive area is assimilated. For the CCSM4 model,
assimilating ocean temperature from all three sensitive areas can greatly improve the CP-El
Niño prediction skills. The best result of assimilating observations from two sensitive areas
is that of the tropical Pacific and the southeastern Pacific.
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Figure 2. The observation field of the SSTA (units:◦C) in December consisted of 13 observations of CP-
El Niño events (a1–a13) and the predictions (b–h) aiming at these 13 CP-El Niño events. (b–h) rows
are spatial SSTA fields of the ensemble mean predictions after assimilating different sensitive areas
described in Table 2. Different columns correspond to different CP-El Niño events. The number
with the word “acc =” above each plot represents the spatial correlation coefficients between the
observation and prediction ensemble mean. This result is obtained from the CCSM4 model.

However, it was found that the results are dependent on different models. To show the
prediction skills of all models, the Taylor diagram is used. As shown in Figure 3, most of
the assimilated prediction cases fall on the right half of the semicircle, indicating that most
of the predictions for December have significantly improved their forecasting ability for the
SSTA spatial structure in the tropical Pacific, with a lead time of 9 months in all models. By
comparing the distances between different solid color points and the “REF” point, it can be
found that the effect of assimilating three sensitive areas is better than that of assimilating
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two sensitive areas and even better than that of assimilating a single sensitive area. In
addition, the average outcomes of all the model cases are calculated to make comparisons
between the results of different assimilation experiments more effective. We first calculate
the ACC and root mean square error (RMSE) for each prediction based on the SSTA pattern
in the tropical Pacific in December. Then we compare the results of the predictions before
and after assimilation to calculate the ACC improvement and the RMSE decrease for each
assimilation case. The prediction before assimilation is a climatology prediction. The ratio
of the RMSE decrease is obtained by dividing the decrease of the RMSE after assimilation
by the RMSE before assimilation. We then conduct average calculations for all model cases
to get average results for different assimilation experiment groups. The higher the ACC
improvement and RMSE decrease ratios, the greater the improvement in our predictions. It
is shown in Table 3 that assimilating multiple areas has better results than assimilating only
one sensitive area. Assimilation of all three sensitive areas has the best results, reducing
the RMSE by 38.841%. In addition, by comparing the results of assimilating data from
two sensitive areas, the results of each model are different. It is worth noting that when
assimilating only the North Pacific Ocean data, the prediction skills of most models are not
significantly improved. However, when assimilating data from the North Pacific and one
of the other two targeted areas, the prediction skill can be significantly improved.
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Figure 3. Taylor diagram of the prediction results of SSTA spatial pattern in the tropical Pacific in
December for 13 CP-El Niño events in different assimilation experimental groups for (a) CCSM4,
(b) CESM1-BGC, (c) CMCC-CMS, (d) CNRM-CM5, (e) GFDL-CM3, and (f) GISS-E2-R. Different
colors of dots in the figure represent different assimilation test groups. Hollow dots represent the
results of different CP-El Niño prediction cases, and solid dots indicate the average of 13 CP-El
Niño predictions.
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Table 3. The average ACC improvement (units: 1) and the average ratio of the RMSE decrease
(units: %) for different assimilation experiments. ACC and RMSE are calculated based on CP-El Niño
observation and prediction of the SSTA pattern in the tropical Pacific (20◦ S–20◦ N, 120◦ E–70◦ W)
in December.

Experiment Groups
TP SP NP TP + SP TP + NP SP + NP TP + SP + NP

Model Average

ACC 0.435 0.328 0.125 0.534 0.528 0.553 0.745
RMSE 10.279 6.02 2.315 19.58 16.38 18.484 38.841

When evaluating the ENSO predictions, it is also important to assess the prediction
skill of the Niño indexes. The flavor of the El Niño events is distinguished using the Niño3
and Niño4 indexes. Therefore, the Niño3 and Niño4 indexes in December are evaluated in
all prediction cases. We count the number of ensembles that can predict an El Niño event
and correctly identify its type. Here, we use loose criteria. An El Niño event is confirmed to
have occurred when at least one of the two Niño indexes exceeds 0.5 ◦C in December. If the
Niño3 index is greater than the Niño4 index, it is classified as an EP-El Niño. Otherwise,
it is classified as a CP-El Niño. The result indicates that even though the tropical SSTA
pattern becomes more accurate with the assimilation of ocean temperature observations
from one or two specific areas, the ensembles still fail to make accurate predictions of the
Niño index. Ensembles that assimilate data from only one sensitive area are not accurate
in predicting the intensity of warming SSTA in both Niño3 and Niño4 areas, thus failing
to predict the occurrence of El Niño events. As for the results of assimilating data from
two sensitive areas, the ensemble group of TP + SP can predict 11 El Niño events out of
all 78 cases; the ensemble group of TP + NP predicts 9 events; and the ensemble group of
SP + NP predicts 5 events. Although these ensembles can detect the occurrence of El Niño,
they struggle to accurately distinguish the type of El Niño. While 30 out of 78 ensembles
predict El Niño events and 16 ensembles predict CP-El Niño events when assimilating data
from all three targeted areas.

3.2. Effect of Different Sensitive Areas on EP-El Niño Predictions

The spatial pattern of the SSTA in the tropical area during December from the EP-El
Niño assimilation experiments is evaluated (Figure 4), similar to the evaluation of CP-El
Niño assimilation experiments. From CCSM, the improvement of the EP-El Niño spatial
pattern is the most significant in the TP + SP + NP experiment group. When only assimilat-
ing one targeted area using CCSM4, the case of assimilating the observation in the tropical
Pacific and the observation in the north Pacific can better simulate the intensity of SSTA
warming in the tropical Pacific, while the SSTA warming predicted by assimilating the
observation in the south Pacific alone is weak. Specifically, 11 out of 13 predictions for De-
cember in the SP experiment group can predict a warm phase in the tropical central-eastern
Pacific. Furthermore, there are 8 and 10 in the TP and NP experiment groups, individually.
When the observation in multiple sensitive areas is assimilated, the predicted intensity
of SSTA warming in the tropical Pacific is closer to the observation than that of a single
sensitive area. Moreover, compared with assimilating single or two sensitive area target
observations, assimilating three sensitive area target observations has the best effect on
improving prediction skills.
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Figure 4. As in Figure 2, but for the results of the EP-El Niño ensembles. (a) row contains the spatial
SSTA fields of the observations of 13 EP-El Niño events. (b–h) rows are spatial SSTA fields of the
ensemble mean predictions after assimilating different sensitive areas described in Table 2. Different
columns correspond to different EP-El Niño events.

However, when evaluating the different results of the experiments in different models,
the rank of the improvement of the EP-El Niño prediction in different experiment groups is
different, as shown in the Taylor diagram (Figure 5). Specifically, the NP experiment group
provides the most accurate EP-El Niño prediction in the CCSM4 and CESM1-BGC models.
For the CMCC-CMS and CNRM-CM5 models, the TP experiment group yields the best
prediction, while the SP experiment group produces the best results for the GFDL-CM3
and GISS-E2-R models. Comparing the results of the CP-El Niño assimilation experiment,
some models are more sensitive to the initial states of the North Pacific and the South
Pacific. Especially, the prediction of CP-El Niño events is not obviously improved by
assimilating the target observation in the sensitive area of the North Pacific alone, but
the prediction of EP-El Niño is improved in four models (CCSM4, CESM1-BGC, CMCC-
CMS, and GFDL-CM3). In addition, though the results are to some extent case- and
model-dependent, the prediction skills for the SSTA pattern in December of most cases
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are improved after assimilation. Based on the average result of the ACC improvement
and RMSE decrease ratio, it is evident that the initial accuracy of the south and north
sensitive areas plays a more significant role in predicting EP-El Niño compared to CP-El
Niño. Therefore, it indicates that the accuracy of the initial ocean temperature state in both
extra-tropical and tropical areas is crucial for EP-El Niño prediction.
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CM5, (e) GFDL-CM3, and (f) GISS-E2-R.

The prediction skill of the Niño index is also evaluated. Assimilating all three sensitive
areas, 49 out of 78 ensembles can predict the occurrence of El Niño events, and most of
them can predict the right type of El Niño. Compared with the results from the CP-El
Niño experiment, it seems that models have the tendency to predict an EP-El Niño rather
than a CP-El Niño even though the initial errors are removed. Furthermore, all experiment
groups can provide more El Niño predictions than the experiment groups of CP-El Niño. It
indicates that model development is still essential in order to predict the right type of El
Niño events, especially for CP-El Niño events.

4. Implications for El Niño Predictions

The previous sections evaluated the prediction skills of different assimilation cases.
In both EP- and CP-El Niño prediction cases, assimilating observations in all sensitive
areas led to the most accurate El Niño predictions among all the cases, with a lead time
of 9 months. In addition, assimilating observations from two target areas provides more
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accurate predictions compared to only assimilating observations from one target area.
However, differences can also be found between the results of the two types of El Niño
prediction cases by comparing Table 3 to Table 4.

Table 4. As in Table 3, but for the result of the EP-El Niño predictions.

Experiment Groups
TP SP NP TP + SP TP + NP SP + NP TP + SP + NP

Model Average

ACC 0.375 0.439 0.405 0.561 0.633 0.688 0.838
RMSE 7.104 6.283 5.877 15.573 17.709 24.033 39.645

Based on the results of assimilating observations only from one sensitive area, the
tropical western lower layers of the Pacific Ocean have a greater impact on the accuracy
of CP-El Niño predictions than the other two sensitive areas. However, all three sensitive
areas are crucial for predicting EP-El Niño. The initial accuracy of the South Pacific is more
crucial for improving ACC in EP-El Niño prediction cases, while that of the tropical western
Pacific is more important for decreasing RMSE. According to the results of assimilating
observations from two sensitive areas, assimilating observations from the South Pacific and
North Pacific can provide more accurate spatial SSTA patterns, as the ACC improvement
is the largest for both CP- and EP-El Niño cases. It implies that the influence of these
two areas is more independent of each other on the improvement of El Niño predictions.
Therefore, reducing the initial error in these two areas in the spring can provide additional
insights for predicting the two types of El Niño in December. By contrast, the state of the
western tropical Pacific ocean temperature may be more related to that of the South Pacific
or the North Pacific. In terms of assimilating observations from all sensitive areas, the
improvement in EP-El Niño predictions is larger than that in CP-El Niño predictions. It
indicates that these current advanced models are more effective in predicting EP-El Niño
than CP-El Niño, even with assimilation. This can be attributed to the worse simulations
for CP-El Niño events in these models.

Therefore, the initial ocean temperature accuracy in the tropical western lower layers
near the thermocline is crucial for CP-El Niño predictions, in terms of both intensity
and structure, and for EP-El Niño predictions, in terms of intensity. The initial ocean
temperature accuracy in the south and north key areas is important for the prediction of
the spatial pattern of SSTA in EP-El Niño predictions. Though Hou et al. (2019) indicate
that the initial error in the North Pacific is a key factor that harms the prediction of
CP-El Niño events, the prediction skill of CP-El Niño is not effectively enhanced by only
assimilating the observations from the North Pacific Ocean. However, by assimilating
data from the North Pacific and one of the other two key areas, the accuracy of CP-El
Niño prediction can be greatly enhanced. This is consistent with Hou, Tang, Duan and
Shen [31] and Fan et al. [38], who demonstrated that the tropical Pacific Ocean is always
very important for the formation and prediction of El Niños, while the North Pacific
can help to adjust the spatial SST patterns. For the South Pacific, it is important both
for CP- and EP-El Niño predictions. And when it is assimilated with the North Pacific
simultaneously, the prediction of El Niño can be effectively enhanced. It implies that the
two areas of the extratropical Pacific can affect El Niño predictions in different ways with
less interdependence.

5. Conclusions

This study expands on research conducted by Hou et al. (2019) that identified sensitive
areas for two types of El Niño predictions through a data analysis method. It is indicated
by Hou et al. (2019) that the lower layer of the western equatorial Pacific, the south Pacific
covering the SPMM area, and the north Pacific covering the VM area are all important to
improve two types of El Niño predictions. However, Hou et al. (2019) did not explore to
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what extent the predictions of the El Niño events improve by assimilating observation data
from these three areas.

In this paper, we assimilated ocean temperature from different sensitive areas for
ENSO predictions to explore to what extent the El Niño predictions can be improved by
assimilating data from these areas and which sensitive area can most effectively improve El
Niño predictions. The assimilation experiments are conducted using the PF method and
ocean temperature data from CMIP5 pi-control outputs.

The results of CP-El Niño predictions indicate that the lower layer of the western
tropical Pacific is the most sensitive area, and the south Pacific covering SPMM is the
second sensitive area to improve CP-El Niño events. Moreover, if the ensemble sample is
diverse enough, assimilating two sensitive areas gets better predictions than assimilating
only one sensitive area. Furthermore, assimilating all three sensitive areas offers the best
result. As for the results of EP-El Niño predictions, all three sensitive areas are crucial.
The south and north Pacific ocean temperature states are important for the prediction of
tropical spatial SSTA patterns, and the tropical western Pacific ocean temperature states are
important for RMSE decreasing predictions. Moreover, assimilating observations from the
south and north Pacific is the most helpful for improving ACC in both EP- and CP-El Niño
predictions compared with assimilating observations from the other two areas’ choices. It
indicates that the impact of the initial ocean temperature accuracy in the SPMM-like region
and the VM-like region is less interdependent in enhancing El Niño predictions.

In this paper, we utilize the simple PF assimilation method. The assimilation process
by using offline model data is kind of similar to analog data assimilation [39,40], which
is both efficient and time-saving. However, as demonstrated in many studies, the big
drawback of this method is that it cannot be used in high-dimensional situations due
to particle degeneration [41–43]. In this study, we only assimilate data from no more
than 30 points simultaneously. Therefore, it is still a huge challenge to improve the PF
assimilation method. Furthermore, the study can only focus on the initial error. Whereas
in the real-time predictions, the model errors also have a large influence on the ENSO
predictions. Therefore, further experiments should be carried out in a coupled model
where other better assimilation methods can be used. The question of how much the
accuracy of prediction can be enhanced by assimilation data from sensitive areas when
including model error needs to be addressed.
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