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Abstract The El Nifio and Southern Oscillation (ENSO) is the primary source of predictability for seasonal climate prediction.
To improve the ENSO prediction skill, we established a multi-model ensemble (MME) prediction system, which consists of 5
dynamical coupled models with various complexities, parameterizations, resolutions, initializations and ensemble strategies, to
account for the uncertainties as sufficiently as possible. Our results demonstrated the superiority of the MME over individual
models, with dramatically reduced the root mean square error and improved the anomaly correlation skill, which can compete
with, or even exceed the skill of the North American Multi-Model Ensemble. In addition, the MME suffered less from the spring
predictability barrier and offered more reliable probabilistic prediction. The real-time MME prediction adequately captured the
latest successive La Nifia events and the secondary cooling trend six months ahead. Our MME prediction has, since April 2022,
forecasted the possible occurrence of a third-year La Nifia event. Overall, our MME prediction system offers better skill for both
deterministic and probabilistic ENSO prediction than all participating models. These improvements are probably due to the
complementary contributions of multiple models to provide additive predictive information, as well as the large ensemble size
that covers a more reasonable uncertainty distribution.
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Introduction pronounced large scale air-sea coupling phenomenon that

originates in the tropical Pacific approximately every

The El Nifio and Southern Oscillation (ENSO) is the most 2-7 years. The thermal forcing associated with ENSO on the

atmosphere circulation is of central importance for driving
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global climate variability. Thus, ENSO has been recognized
as a primary source for global climate predictability on
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seasonal to interannual timescales (McPhaden et al., 2006).
The ability to sufficiently predict the warm and cold episodes
of upcoming ENSO events in advance is vital for regional
short-range climate prediction, which is matters for the ef-
fective precautions of climate disasters and mitigation of the
potential risk to life and property those disasters may pose.
Inspired by the pioneering work of Cane et al. (1986), the
prediction of ENSO has made tremendous progress with
generations of efforts. The real-time predictions of ENSO are
routinely issued in a number of operational climate centers
and research groups around the world, with statistical and
dynamical models that vary in complexity (Barnston et al.,
2012, Tang et al., 2018; Ren et al., 2019). The skillful pre-
diction of ENSO can be made 6—12 months in advance.
However, the prediction of ENSO still involves substantial
challenge, which is mainly limited by the uncertainties that
originate from the initial conditions, the diversity of ENSO
states and the imperfect representation of the physical pro-
cesses of ENSO in models (Tang et al., 2018; Ren et al.,
2019). For example, almost all current statistical and dy-
namical models missed the latest strongest 2015-2016 El
Nifio event at 12 months in advance. Although the predic-
tions initialized in summer 2015 essentially announced the
following evolution of sea surface temperature (SST), the
predicted intensity of this event diverged considerably across
the models. Therefore, the improvement of ENSO prediction
is a timeless focus from both a scientific perspective and
social aspect.

One of the effective strategies for tackling the uncertainties
related to ENSO prediction is the multi-model ensemble
(MME) approach, which combines a suite of predictions
with different initial conditions based on various models to
better sample future trajectories. Each of these models in-
volves somewhat different resolutions, parameterization
schemes, physical processes and initial states, and has in-
dividual strengths and weaknesses. The theme of the MME
method is to take into account the combined effect from the
uncertainties in the initial condition and model formulation.
Model diversity can contribute complementary predictive
information by cancelling out a portion of the model errors
after averaging within the MME method (Hagedorn et al.,
2005; Tippett and Barnston, 2008; DelSole et al., 2014).
Moreover, the increased ensemble size in MME is beneficial
to sample forecast probability distribution and reduce the
systematic “misfires” associated with any one particular
model, which allows for a better quantification of forecast
uncertainty. Therefore, the MME approach has been de-
monstrated to be superior to a single model ensemble, and
more valuable for decision makers to manage risks asso-
ciated with ENSO events (Wang et al., 2009; Becker et al.,
2014; Min et al., 2014). MME seasonal prediction systems
have been widely developed at major operational centers and
research institutions, such as: the European Centre for
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Medium-Range Weather Forecasts (ECMWF) (Palmer et al.,
2004), the Asia-Pacific Economic Cooperation Climate
Center (APCC) (Jeong et al., 2012), the International Re-
search Institute for Climate and Society (IRI) (Barnston et
al., 2012) and the National Climate Center (NCC) of the
China Meteorological Administration (CMA) (Ren et al.,
2019). Since early 2012, the IRI has issued the real-time
ENSO prediction plume each month with 17 dynamical
models and 7 statistical models (https://iri.columbia.edu/our-
expertise/climate/forecasts/enso/current/?enso-sst_table).
Recently, the NCC/CMA established the China multi-model
ensemble prediction system version 1.0 (CMMEv1.0) to
provide monthly real-time MME ENSO prediction with 13
dynamical models, 4 statistical models and 3 hybrid dyna-
mical- statistical models (http://ncclcs.ncc-cma.net/Website/
?ChannellD=254). The above two have been critical refer-
ences for international or national operational ENSO out-
looks.

The MME ENSO prediction is tentative in China (Ren et
al., 2019). Inspired by those pioneering works, we developed
another MME ENSO prediction system with 5 dynamical
models ranging from intermediate coupled models (ICMs) to
fully coupled general circulation model (CGCM). This MME
system involves the implementation of a new model (Song et
al., 2018), new ensemble forecast methods (Liu et al., 2019;
Liu et al., 2022), new parameter scheme (Zhang and Gao,
2016; Gao et al., 2022) or new data assimilation approach
(Duan and Zhou, 2013; Tao and Duan, 2019; Gao et al.,
2020; Duan et al., 2022; Song et al., 2022). Moreover, a long-
term retrospective forecast over the past 137 years (1881—
2017) was conducted to evaluate the ENSO forecast skill and
useful forecast data were obtained. Additionally, the real-
time monthly prediction has been routinely issued starting in
October 2020. In this study, we will introduce the current
progress of this MME prediction system and its ENSO
forecasts.

2. Model and methodology

2.1 The MME system

This MME system consists of three regional ICMs for tro-
pical Pacific region, one regional ICM for the tropics and one
CGCM. M1 is the extension of the Lamont-Doherty Earth
Observation (LDEO 5) model (Chen et al., 2004). We have
updated its data assimilation process from the nudging
scheme to Ensemble Kalman Filter (EnKF) method, and also
established an ensemble prediction system based on the
stochastic optimal (SO) perturbation approach to sample the
uncertainties associated with atmospheric processes (Tang et
al., 2018; Liu et al., 2019; Gao et al., 2020). M2 was de-
veloped by Zhang et al. (2003), and has been used for routine
ENSO prediction and collected in IRl ENSO prediction
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plume since 2003. After optimizing the model parameters in
terms of ENSO simulations and retrospective predictions,
this model was used at the Institute of Oceanology, Chinese
Academy of Sciences (IOCAS) and named the IOCAS ICM,
which has been routinely used to predict the SST evolution in
the tropical Pacific with success since August 2015 (Zhang
and Gao, 2016; Zhang et al., 2022). To take the combined
effect from model errors with various sources into con-
sideration, M3 embedded a model tendency perturbation into
M2 to neutralize the prediction errors caused by both the
initial and model errors by using a new data assimilation
approach of nonlinear forcing singular vector (NFSV-DA)
(Duan and Zhou, 2013; Tao and Duan, 2019; Duan et al.,
2022). This model can distinguish the two types of El Nifio
two-season in advance (Tao et al., 2020). M4 promoted the
physical framework of the Zebiak-Cane model to the entire
global tropics. To improve the model performance and ac-
curacy for SST variability in the entire tropical oceans and
the inter-basin connections, some improvements were added
to this model, including the surface wind bias correction
process and surface heat flux parameterization scheme (Song
et al., 2018). M5 is the widely used CGCM, CESM 1.2,
which is the operational model in the National Marine En-
vironmental Forecasting Center (NMEFC) of China (Li et
al., 2015). We have proposed an improved nudging scheme
for the prediction system of NMEFC by increasing the
nudging weight at the subsurface and adding wind compo-
nents assimilation. This new scheme can effectively improve
the simulation and prediction performance for ENSO (Song
et al., 2022). In addition, a cost-efficient ensemble con-
struction strategy generated from the climatically relevant
singular vector method is introduced to establish an en-
semble prediction system for M5, which significantly im-
proves the prediction performance compared with the single
prediction (Liu et al., 2022). More detailed information on
each model is summarized in Table 1. In brief, this MME
system includes diverse models that vary in their complexity

Table 1 Information of the participating models in MME prediction system *
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levels, horizontal and vertical resolutions, physical para-
meterizations, data assimilation processes, initialized data-
sets and ensemble construction strategies, which accounts for
the uncertainties as comprehensively as possible.

The individual model retrospective forecast was initiated
on January lst, April 1st, July Ist and October 1st each
calendar year from 1881 to 2017, with a lead up to
12 months. To remove the mean bias of each model, the
individual model anomalies are derived by subtracting its
own hindcast seasonal climatology. In this study, we em-
ployed the commonly used “equal weight” approach to
construct MME by assigning the same weight to each model.
Compared with the models that only provide a single hind-
cast, the M1 and M5 have their own ensemble outputs.
Therefore, the corresponding ensemble mean is employed to
form the MME.

2.2 Methodology

To evaluate the deterministic prediction skill, we employ the
anomaly correlation coefficient (ACC) and the root mean
square error (RMSE), which are defined as:

ST/ 0¥ x50
ACC(1) = N"ZI —— = (D
Jz{x,f -7 ) szﬂt) %)
i=1 i=1
N _
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where xl-f ‘(t) and x,°(¢) are the MME mean prediction and the
corresponding observation of interest variable for the i th
initial condition at the 7th lead month, respectively. x/ and x°
denote the model climatology and observational climatology,
respectively. N indicates the total number of hindcasts
(137 years x 4 months=548).

We also employ the Brier skill score (BSS; Wilks, 2011) to

Model Complexity Region Data assimilate Ensemble strategies
EnKF
Ml Intermediate complexity Tropical pacific ocean A: ERA-20C UV EnKF+SOs
O: Kaplan SST
. . . . Linear interpolation
M2 Intermediate complexity Tropical pacific ocean O: Kaplan SST /
M3 Intermediate complexit Tropical pacific ocean Nudging /
prextty pieatp O: ERSST V5
. . . Nudging
M4 Intermediate complexity Tropic O: Kaplan SST /
Nudging
. _ + _ :
M5 CGCM Global A: ERA-20C + ERA-Interim UV CSVs

O: SODA+GODAS
sea temperature

a) A: Atmosphere; O: Ocean; SO: Stochastic optimal (Kleeman and Moore, 1997); CSV: Climatically relevant singular vector (Kleeman et al., 2003)
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measure the probabilistic skill. The BSS assesses the Brier
score (BS) relative to the reference climatological forecast,
which measures the mean squared error between the forecast
probability and observed frequency as:

BS=L S n, 5,0,
]\'[:1 m\"*m m

M
> n,@,-5)+a(1-5), (3)
m=1
_ ., BS
BSS=1- o, @)

where x and o are the forecast probability and corresponding
observed frequency of an event, respectively. The terms x,,
and ¢, are the mean of all x and the relevant observed out-
comes falling in the mth bin, and #,, is the number of pre-
dictions occurring in this bin. N denotes the total number of
predictions (initial conditions). M is the number of prob-
abilistic bins from 0.1 to 1.0 by 0.1 intervals. 0 is the ob-
served climatological probability represented by the mean of
0,
As BS¢ = 0(1—0), BSS indicates the improvement of
the probabilistic forecast relative to the climatological fore-
cast. A positive value of BSS means skillful probabilistic
forecast, whereas a negative value indicates that the forecast
is inferior to the climatological forecast.

We employ the Nifio3.4 index to represent the ENSO
variation , which is defined by the averaged SST anomalies
in the central and eastern Pacific Ocean (5°S—5°N, 170°E—
120°W). Following previous studies (Yang et al., 2016,
2018; Liu et al., 2019; Yang et al., 2021), we split each
category into terciles to ensure that the three types of events
have an equal climatological frequency of 1/3. The below
normal events (lower 1/3 tercile), neutral events (middle 1/3
tercile), and above normal events (upper 1/3 tercile) are
defined by the climatic probability density distributions of
the observed Nifio 3.4 indexes from 1881 to 2017. For the
model reforecasts, the “one-month-lead forecast” means the
monthly forecast initiated in the first day of the current
month itself. For example, the monthly mean forecast of the
January is defined as one-month-lead for the forecast in-
itiated from 1st January. The validation data for the SST were
extracted from the Kaplan SST version 2 datasets (Kaplan et
al., 1998), which is the commonly assimilated SST data for
participating models in MME prediction system.

3. Performance of ENSO in the MME

3.1 Improvement of deterministic prediction in the
MME

The predicted ensemble means of the Nifio3.4 index (blue
line) and the corresponding observations (red line) are pre-
sented in Figure 1. The MME prediction generally predicted
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most ENSO events over the past 137 years ahead of one year,
especially for prominent warm and cold events. At 6-month
lead time, the hindcasts are consistent with the observations
quite well, with an ACC of 0.83. By 12-month lead time,
there is a certain degradation in the agreement between the
observations and the hindcasts, with an ACC of 0.59. The
observed El Nifio and La Nifia events can also be relatively
well reflected, but there is a tendency to underestimate their
amplitudes with respect to the observations as the lead time
increases. Figure 2 presents the ACC and RMSE between the
predicted Nifio3.4 index in the MME (red line) and in-
dividual models (colord lines) and the corresponding ob-
servations. In general, the ACC and the RMSE of the MME
prediction exhibit substantial superiority to its contributing
models for all lead times, and high prediction skill corre-
sponds to large ACC and small RMSE values. MME pre-
diction can generate skillful forecasts (ACC>0.5) 12 months
in advance. During the common period (1982-2010), which
covers most current ENSO hindcasts of CGCMs in the North
American Multi-model Ensemble (NAMM, Kirtman et al.,
2014), the MME prediction still provides higher ACC and
RMSE skill with respect to all participating models (Figure
3). The ACC skills of the MME predictions are 0.95, 0.87
and 0.76 at 3, 6, and 9 month leads, respectively. This out-
performs, or is at least comparable with, the performance of
the MME of NAMM, which has ACCs are 0.91, 0.83 and 0.7
at 3, 6, and 9 month leads, respectively (Barnston et al.,
2019). In brief, the performance of our MME prediction
supports the superiority of the multimodel approach, which
has a beneficial impact on cancelling model errors contained
in individual models and highlighting complementary nature
of the models’ contributions. Our MME system performs
competitively with, or even exceeds the NAMM in terms of
ENSO prediction. This encouraging result boosts us con-
fidence in applying this MME system to real-time ENSO
predications.

3.2 Improvement of the spring predictability barrier
(SPB) in the MME

As is commonly acknowledged, there is a pronounced sea-
sonal variation in ENSO prediction skill, which is referred to
as SPB (Webster and Yang, 1992). The SPB feature is
common to all participating models within MME system to
varying degrees (Figure 4). The prediction skills exhibit a
marked decline when the forecasts traversing the boreal
spring. The forecasts initiated in July and October tend to
have a slower decline in skill than the cases that starred in
January and April. Even so, the MME predictions verify
better than other models when compared against observa-
tions and features a relatively gentle decline of ACC across
the northern spring. The lead months for the effective pre-
dictions (ACC>0.5) are significantly longer in the MME
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Figure 1 Time series of the MME forecasted Nifio 3.4 index at a six month lead (a) and twelve month lead (b) against the corresponding observations. The
red and blue lines are the observations and ensemble mean, respectively. The gray shading represents the prediction spread.

prediction than all participating models. This indicates that,
unlike any individual model, the MME prediction is only
weakly impacted by SPB, which is owing to the MME al-
gorithm is a useful tool for the reduction of the model errors
contained in individual models, and also contributes addi-
tional forecast signals (Palmer et al., 2004; Hagedorn et al.,
2005; DelSole et al., 2014). Therefore, MME is also a po-
tential tool to improve model performance in terms of alle-
viating SPB.

3.3 Improvement of probability prediction in MME

In this MME system, the hindcasts of M1 and M5 are gen-
erated by their own ensemble system, with 100 and 20
members, respectively Hence, we can also evaluate the
performance of the MME (with 123 members) in probabil-
istic predictions compared with the single model ensembles.
Figure 5 presents the BSS of the MME (red line), M1 (green
line) and M5 (blue line) predictions. The full MME forecasts

systematically improve the BSS of the participating models
at every lead times for all three categories of ENSO events.
The skillful probabilistic skill (BSS>0) of the MME is
11 months ahead of neutral events, which is a substantial
improvement compared with the performance of individual
model ensembles. The superior performance of the MME
prediction is essential in terms of both the resolution (Figure
6) and reliability (Figure 7), and the major contribution is due
to the decreased reliability component. These two compo-
nents give insight into different aspects of forecast perfor-
mance. The reliability indicates the difference between a
forecast probability for an event and the observed frequency
of that event. The resolution measures the ability of the
forecast system to assign probabilities different from the
climatological probability. The above improvements may be
due to the enlarged ensemble size offered by the MME
method can express a more reasonable sampling of forecast
uncertainties, which contains the observation more often and
provides a more reliable probabilistic prediction. We have
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Figure 2 ACC (a) and RMSE (b) of the forecasted Nifio 3.4 indexes

compared with the observations from 1881 to 2017. The red and other

colored lines indicate the MME prediction and the individual models, re-

spectively.

also checked the relative operating characteristic (ROC;
Mason and Graham 1999) skill, which is another widely used
probabilistic measure (Dewitt, 2005; Chen and Cane, 2008;
Zheng et al., 2009) and essentially reacting the similar
characteristics of resolution term of BSS (Yang et al., 2021).
Compared with any one particular model, the MME also
exhibits the highest ROC skill at each lead times for all three
categories of ENSO events (not shown). This further in-
dicates that the skillful MME probabilistic prediction will
exert additional potential economic value than the single
model ensembles.

3.4 Performance of the real-time prediction in MME

Based on our MME system, routine real-time ENSO pre-
dictions are issued each month from October 2020, which
can be found at https://soed.sio.org.cn/emsodm.html. The
real-time predictions generally predicted the evolution of the
observed SST in the tropical central and eastern Pacific
Ocean during the last year or more. The latest two successive
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Figure 3 ACC (a) and RMSE (b) of the forecasted Nifio 3.4 indexes
compared with the observations from 1982 to 2010. The red and other
colored lines indicate the MME prediction and the individual models, re-
spectively.

La Nifa events were adequately depicted by the MME pre-
dictions (Figure 8). The secondary cooling trend was rea-
sonably captured when the prediction was initiated in June
2021. The MME prediction system has forecast the emer-
gence of an upcoming three-year cooling since it was in-
itiated in April 2022, which would be the first three-year La
Niiia event since 2001. Our MME predictions were also well
consistent with the IRl MME prediction plume over the past
year or more. However, it should be noted that some un-
certainties remain due to the influence of the SPB. Compared
to the observations, the predictions targeted across the spring
verify were worse than predictions from other times of the
year. Even so, the MME prediction performs better than any
participating models across spring.

4. Conclusion and discussion

The large amplitude SST variability associated with warm
and cold ENSO episodes can exert persistent thermal forcing
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Figure 4 ACC of the forecasted Nifio 3.4 index compared with the observations for different start months of individual models ((a)—(e)) and MME (f).

on atmospheric circulation, which provides the primary
scientific basis for seasonal predictions. Therefore, the
ability to accurately represent and predict ENSO behavior is
of particular interest. A successful prediction for the up-
coming ENSO event has foreseeable enormous economic
and social value in grappling with climate disasters. There
are several potential sources of uncertainties arising from the
initial conditions, model configuration or chaotic behavior of
the air-sea coupled dynamic system accounting for the loss
of ENSO predictability. The MME approach is an effective
tool to improve forecast quality for ENSO prediction
(Barnston et al., 2012; Kirtman et al., 2014; Barnston et al.,
2019). The collection of multiple models allows for a better

sampling of the probability distribution and forecast un-
certainties, which has the potential to combine the benefits
relative to all participating members, reduce errors and
quantify forecast uncertainties. This study introduces a re-
cently developed MME prediction system for ENSO, which
uses multiple-model configurations of up to five coupled
dynamic models for various representations of physical
processes, numerical schemes, resolutions, ensemble con-
struction strategies and the use of observations to construct
initial conditions with different data assimilation methods.
This combination of ensembles from different models aims
to take into consideration uncertainties arising from various
sources as comprehensively as possible. Long-term retro-
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spective forecast has been conducted and verified from both
deterministic and probabilistic perspectives. Our results, as
expected, provide evidence of the superiority offered by the
MME predictions:

(1) MME predictions appear to drastically improve the
ACC skill and reduce the RMSE with respect to all partici-
pating models. Our MME prediction skill can compete with,
or even exceed the NAMM in terms of ENSO prediction.

(2) Compared with the individual models, the MME pre-
diction performance was better in the SPB, with a relatively
gentle decrease in ACC during the boreal spring and sig-
nificantly longer effective prediction lead time.

(3) MME prediction can offer a more reliable probabilistic
prediction, with considerable improvement in the reliability
and resolution components, especially for the reliability

term.

(4) The MME prediction adequately declared the latest two
successive La Nifia events and reasonably captured the
secondary cooling trend six months in advance. It has also
predicted the coming of a third-year cooling since April
2022.

Overall, our MME ENSO prediction outperforms all par-
ticipating models and issues more skillful deterministic and
probabilistic predictions. These marked improvements are
due either to the complementary nature of multiple models’
contributions to provide additive predictive information or a
larger ensemble size expressing a more reliable distribution
of uncertainties. Therefore, the MME approach is an effec-
tive and pragmatic strategy for operational ENSO prediction,
which can offer potential economic and scientific value to
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Figure 8 The real-time MME forecasted Nifio 3.4 indexes during the past months. The black and other colored lines indicate the observations and the MME

prediction initiated since October 2020, respectively.

decision makers and end users. However, this MME pre-
diction system is still in its initial stage, and many efforts
should be devoted to its further improvement. Two possible
options will be taken into consideration to reduce the forecast
errors. On the one hand, advanced empirical postprocessing
techniques will be introduced to correct the prediction errors.
On the other hand, sophisticated linear or nonlinear combi-
nation schemes based on super-ensemble idea (Krishnamurti
et al., 1999, 2016) will be employed to assign optimal and
objective weights to participating models according to their
historical performance. The MME prediction of ENSO is a
nascent but urgent issue in China. By pursuing unremitting
efforts, we anticipate that our MME prediction system can
issue timely and accurate ENSO predictions and sufficiently
satisfy the demands of operational climate prediction and
meet the needs of disaster prevention and mitigation.
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M7 HZRGR R, AR SRR TS
B ZHEAESTUR ARG E . PHREEE . ke
PF R bR P SR IR R 2R DA S Tt 4 2R

2 HARAITE
21 ZESERATERAS
AR 2 AL S TR RGBS =R
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S X S SRR R SR A, — M RGEIX
W AR R I SRR AR DL R — AN A BRER A
AL A —M1)RZALDEO 5K (Chen%, 2004)
fRFERE b, ¥ IR A A Nudging [RIE T R B o EE &k
JRZ P8I (EnKF) /7 &, A H BE LI L3N 75 1% (Sto-
chastic optimal, f#FXSO, KleemanfIMoore, 1997)/% &
KA FE I A E PERTENSOTR 45 5 1052 m, ¥ 5
1 B — TR % J U AR & Tk (Tang 5%, 2018; Liu
4, 2019; Gao%¥, 2020). #3X —(M2)7&Zhang55(2003)
RRERT, 20034 DLk — B 5 H1T & SEiTENSO T,
TR, I8 I ENSOREAUAN [l 4 56 A5 202 40
AT, 1A A R B i 0 9T (Institute
of Oceanology, Chinese Academy of Sciences, (&
TIOCAS)HT i, % AIOCAS ICM. %5z M2015
SR8 H I i s W1 R A By K P I R 1) T 2 R
(ZhangM1Gao, 2016; Zhang%%, 2022). FF = (M3)21E
M2 FER b, R A E e il A 57 ) X — 3 A S ahe
[FA 792, IR Bl R B A FE BT aR iR 2=
A5 3R 22 5 il &5 SR I 821 (Duan Al Zhou, 2013; Tao
FDuan, 2019; DuanZ, 2022). %R GEM IR AT N2
FIFIAS [ 2R R ENSO(Tao%:, 2020). Y (M4)2 %
22 WL 1Y) Zebiak-Canet: 7 (Cane%s, 1986) 1) HEAEZE M
VAR R BB G Xk, B R 2 R 21T 1
DA i 3% Fd B 2 B S o, B TR AN S i
5L 7% 2RI 738 160 AH ELAE P ASE A0 ) M B M (Song 55,
2018). B F(M5)ZCESM 1.2, A H #3218 FH i
HER R G, o H AT E SR B TR 0 il
PO A (AR5, 2015). RATEL B K Z W
Nudging [Fl44 Z % UL KA I KRS [F A A B il T
E RGBT O R T &, s T IR
W, $Em T ENSORIBLAITINGE ). RIS e F)
FHAABEAR IS ) 75 57 7] 5 /775 (Climatically relevant sin-
gular vector, fiiARCSV, KleemanZ%, 2003) M54 il £
AVIEREN, SR BETA L, X REEE A BRI
ENSOFiIMF: 15 (Livk%, 2022). H iR RS Bk
LR, Bk, X — 28 G Tk & ol id R H
THEARRRREE. nE. MHESHEW TR, %
BHAA T BIaa A TRk DL S S A PRl A R 1) %2
AN, AT AT BE A TH b RS S RN s P TR A
EipEAn

MISSI4EF20174E, MIBIMSMEEIHIH. 44

1H. 7HTHAT0OH 1 H# 7B K124 H B R
5. N T R R G w2, B R SO
GG R AR R 2 B B RS, & B E &
WEFEHT2HEAES. B TMIAMSH & LG4
AR RS, HATS B EA PR RIEAT 28
LEA.

22 K
RS A A e PR TR B T 2R S A % R 2 (anom-
aly correlation coefficient, fEJFRACC)HILE) HARIRZ

(root mean square error, & FRRMSE)XK ¥ &

Nro o — _
Y5 0=X 0] -7 )
ACC(t) = —= = = (1
(0= x(0)]

Ji{x,f 07 0] 3

i=1

N —
RMSE(t) = J e - @) )
i=1

o,/ () Fx ()9 R S — A8 B 55 i M Uh 2%
PEFR B S8 A F 1 2 458 N~ 240 1 Fo0I0 R0 R )
W25 5. T A4y AR B KA I3, Noms
[l R R KB, B3 74E < 47K /4E=5481K.

ME 2 TR B35 (1) VA 2R H Brier £ 75 1F 43 (Brier
skill score, fA#RBSS, Wilks 2011), HiFAE 1 AHx T2
H/S A% 5 Brieri- 43 (Brier score, [FXBS), B[ &
M43 A7 AR AR = 2 [6) (¥ 351 77 iR 22

1 M

BS=3% ) n,(x,,—0,)
m=1
1 Y P
¥ 2 @, =0 +5(1-2), 3)
m=1
BS
BSS=1-pe=—0, 4)

Forr, X073 Tl 3R 7 JE— S A T 00 Rk 2 AN A A
MFEIR N0 12 1.0 H I KE 0.1 HE =2 X (a1 4 H
%, Mo TR N m A BEZR X (8] /4 BTG TRAR AN B (1
S I SEME, 2 T5 NAZ DX TR TR AN 5. N2eoR Tl
B oK, MBIME, RO B SRS .
BE DL T BS oy = 0(1-0), KILBSSERAN TS
(GEAS T, A2 TR I SRR RE ), BSS A IE 1t B A 2R T
DG 2%, BSS 947 1t B R 25 TN AS < 2 T
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F1 ZHALATNAL HEHAEBNEY

FE A A HR X 5k Rk E ELEMNA IR
EnKF
Ml WSS R N S K. ERA-20C UV EnKF+SOs
7 Kaplan SST
e o &ty
Per: JUFH BF Hh SZY
M2 GIES R i AT N S #57%: Kaplan SST /
P - TR Nudging
Ju EE Fh 3
M3 TR Pl KT #F7: ERSST V5 SST /
M4 s 43 R o o udging /
W7 Kaplan SST
Nudging
KS: ERA-20C + ERA-Interim
M5 AR A AFR Uv CSVs

W SODA+GODAS
sea temperature

a) SO: B L3077 (Kleemanf1Moore, 1997); CSV: S A5AH < B 77 5 1] 8 77 ¥ (Kleeman&, 2003)

FATR HNifio 3. 4T BERMEENSO& F. ¥ 5iAT
o g AR A 1) E S5 AT ARIE AT — B (Yang 4,
2016, 2018; LiuZs, 2019; Yang%, 2021), HI 4371 HL 1881
F201 74 AW I Nifio3. 498 BUSAE S 2 A 1R
. E=Er R ORI b B AN H R
i e SORSERT— A BTk, [Blkas FovAh FH 3
FRPBLIN B ket ade P A = R A6 A %2 % IJKaplan SST V2
a5 (KaplanZk, 1998).

3 ZEAEETHHR RS HENSOR KB

3.1 B A TR A E T iROK

BN Z AR A P INGfRo  3.4F6 Bl (1 £8)
T ROULIN (L1 4%) IS (8] /5 4. AR S, R 25
13748, Z RS TR RS R0 32 57— 4 B K
ZHENSOF M, HZERERA . BRFM. (A6
A ARER A, BgS RSN EARYI S, AR
A LLAE0.83. FEFEHT 12 H BRI A, R UL A AN
T 2 6] () — B — e R AR L, (HA SR R 5D
REIR30.59. 1% F G ] LA S 4 bl 42 20000 o 3=
BT /R JE VB FNRL e GR A, (H B TR AT A 1
Jm, XFFENSOZE AR50 B 1 Pl A A i . B2k
RHREZ R ES T H(L L) & MR k) T
TFINifio 3.4 %05 5 RL I 2 18] (A0 5% R Born¥) J7
WiRZE. BARMNE, LRMHKRREBOE R TIRIRZE,
Z A AR B TN 38 R 00 HH B B (AL %, B T i
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K RECS EARM T RIR 2Z. ZRGREBHERT 124
A 45 A SIMENSOTRIN 25 SR (M 58 /£ £0>0.5). 7EIL3E
% 1 3QAE A 6 6 1IE I BE(1982~2010, KirtmanZs,
2014), ZZ B G TSR BAT AT f — /M
JR A SR R AR 5 R BRI T AR R ZE BT (13), AT
3. 6FI9AN H TN AH O &R HBL T 4 il RE 65 0L #
0.95. 0.87f10.76, XFFFHEHZM TALE L ALEAE T
MK 3 6F194 H Tl i1 4H 5% 2 %0531 90.91
0.83#10.7, Barnston%, 2019). &1 & 2z, LA b BRI
& FAEI T 2 RE A T AR, EdiX—T
RS [ AT ARS8 B AR, BRI R — A 23R 2 06 73
gk Rz, FEENSOTN /7 H, FATM 2 HEES
g ReT LAt R 2R T 2 mAES. X—4%
N SR I 46 AR 0 7 FRA T I 3 T ENSOSE R 7
TS .

3.2 ZRUERA TR BT PR AT

AR 0, ENSOTINATLE B B (2= 1548 4k, FRZ
NHFETRERS” (WebsterflYang, 1992). A LA H
EFAMZ ARG H, B FRE L
K B2 EE(K4), BT ER, Mg
HFREMN TR EMHE T, JFH57HM10H
EHRAHEE, 1A R4 IR ERZ TR, B
fEanth, ZHES MR TR — MR,
TR B I BT T e, 2HRAESFHNE
RTINS G (R 9% R %0>0.5) B B 4F TAF A — /M KL
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(a)
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25
1.5
0.5

-0.5 4N

354 T T T 1 T T

1881 1886 1891 1896 1901 1906 1911 1916 1921 1926 1931 1936 1941 1946

2.5
-3.5

. 1
1952 1957 1

962 1967 1972 1977 1982 1987 1992 1997 2002 2007 2012 2017
FH

B 2EAESRGERFCAN R @FRHET124H (b) N BINifio 3.478 BRI & i 18] 7 51
LT LA 2 7 BRI AT 25 2R, R A MR 56 6 TR i S

DL s SRR 2R XA FIRe 8 B B H 95« F 2=
fRBERG R0, $E S PR AR X — s R A
m T a2 G, ASERE R )R ZAH B
H, 8D T ELGR ZE N TR 5 R R, St T RSN
FIA] T (E 5 (Palmer®%, 2004; Hagedorn%s, 2005; Del-
Sole%¥, 2014). Ht, ZHALEL R NEHTTHRE
57, $2m T ENSO/K -4 2 LA

3.3 SRR A PR R TROK T

fEZZBAES RS T, MIMMSHIA % H 4%
AR ARG, 2 EE 100 F20MEA . BRI
Tt m] DAPEAl 2 4 U & BT 123 R & s A LE

T U A TR MR T 7 THI ) gt A o 1 S 43 i) e
T ZRRES (L) MI(GZ)FIMS (I Z2) Tl
Nifio3. 44850 1IBSSTE4. Al LUE H, 2 UL & Tk il
T EFTE PR K R A BRSO
BSS#5 1. [AIR}, 2444 AT DA AT LA H 32 b i
FA H A RO R TR 45 B (BSS>0), S AFfi] — /> B —
LA TIRAH P, 32— S5 1 et T SR AN
O3 ¥R RN R TI AP RAFIE. TS ROR A  TR
TN 5 1Z A A2 2 (A 2 5. I &
R TR RAAF T SESTIREE ). ZHEAES
AT L[] B et M 3 T 1) 23 9 (B 6) A aT SE M (17),
Hr s R BRI S 7RI e . B
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BXRAH

WIORIRE

0.0

1 2 3 4 5 6 7 8 9 10 11 12
FURE&

Bl 2 1881~ 20174E 8 A S A E A RS T BINifio3.438
£05 0 R VLB B AE 5% 2R B (a)FI 38 H AR IR 2 (b)
MALREBELHES TFHNER, BOKNARSMER LR

BHEERATE2HEAESYT KT HES AR
[, A BT 58 A 3 b 20 i TR (0 AN 58 VA AT, AT $
BETE AT SR AOMER TR 45 3. B LR PN R BR, ROCTE S
(MasonflGraham, 1999)H & — 4 v2 £ FH K%
TR £ B F5 bR (Dewitt, 2005; ChenflCane, 2008;
Zheng#%, 2009), HAFTE X 5BSSIr#E /10— 2
(Yang%, 2021). ZHAXEGERA L B PEELFR
ROCH; 15 [ FE7E fT A Bk & R 28 T4 — A~ 5
— B S TR (B R BoR). X —B R0, 28
GRS IR A MR TR &5 R, B LAl
— AR S SR AT E

3.4 Z MR A TR A S TR
REFX—2HERESRG, FRATN20205E10H #2

1240

BRAH

BWIOIRIRE

FUREK

B3 1982~20104E 8] 1A & M ALE A R L HIM BINifio3.438
£ 5 35 RV AE B AE % R () F1 38 FARIRZE (b)
ML HAF L BAES THNG R, BEOBAF S AR

FE SR BRI ER e R 5T I TR M B ) - [
ZEE R SR = M 38 ) R AT SE I FTENSO T 45 R
(https:/soed.sio.org.cn/emsodm.html), FZ I E KifFiE
B TR O A E AR LA R ENSOL ), $i
PRI W, AEE 25— AE 2T R B, SIS Tt v At
T 7 7RTE T AR TR AR 2R S T
AER O 1 T I 2 P AF 1 B Je R AR (1&18). M
202146 H AR, ZAAR & TAS E #l 2 2 /R
ARSI — IR 5, M20224F4 AT, £
B AR 5 TOOI H T35 1 R 380K 1) = R AR 42 1R AT R
P, IX R HEA201H 20 DUR K 5 — RS = AR R B i
FE IeAh, ZEAES TG Rt 5id X —FEZIRI
AT HITI S5 R ORFE— 8. (H T <F =R ERS
SO, N EE SRANAFAE — B A ENE, BHEZER
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man4%, 2014; BarnstonZ, 2019). Hr] 7843 K IEFrE A4
AR L T8 7, B8 L 20 e T AR A, AR

&b H.
Hb@*fe

PRI BT A ENE. AN T AT
KIRIENSOZ AL S T RS, ZRFE TSR
MAAFRYEERE. SRR PR, £E0anE

1241



S —PENSOZ AL AR RGN A

MME

MME

0.80 0.80 0.80
M1 M1 M1
0.60 M5 0.60 0.60 M5
¢ 040 @ 0.40 @ 040
o m m
0.20 0.20 0.20
0.001 -~~~ - NG 0.00 0.00 1 -~~~
(@) (b) )
-0.20 20 0.20
1 2 3 4 5 6 7 8 9 10 1112 1 2 3 4 5 6 7 8 9 10 1112 12 3 4 5 6 7 8 9 10 1112
TR K TR K FURIK
B 5 AZEFa@. FESEHD). BEECBHIMIFIMSAR £ E4E AT NMME R BSS ¥4 R 7 1 B 18] B 256
e\ E e\ M E e\ M E
0.80 | 0.80 | 0.80 |
—M5 —Ms M5
0.60 0.60 0.60
§ 0.40 § 0.40 §0.4o
R R R
0.20 0.20 0.20
@) (b) | (©
0.00 00 0.00
12 3 4 5 6 7 8 9 10 11 12 12 3 45 6 7 8 9 10 1112 12 3 4 5 6 7 8 9 10 1112
FRI K FURITK FURITK
B 6 “EMH@. HHEAD). BEAQNMIFIMSPLR 28 4E A FMMME B 438 14 FEF IR B8] B 281
0.30 0.30 0.30
e MIME (a) (b) s MIME mn MIME (©
0.25 M1 0.25 M1 0.25 M1
M5 M5 M5
0.20 0.20 0.20
H H H
® 0.15 ® 0.15 i 0.15
5} &) &
0.10 0.10 0.10
0.05 ﬁ/\—/\;—\//\ﬁ 0.05 /_\___ o.osM
0.00 ——— 0.00 0.00
12 3 4 5 6 7 8 9 10 1112 12 3 4 5 6 7 8 9 10 1112 12 3 4 5 6 7 8 9 10 1112
TR K TR K RRF K
B 7 AEHFa@. FESEHD). BEHCBHIMIFIMS AR 28 4E A MME ) 7T 5 24 74 B 751 1) B 1R B 2R 1
BT R TRAR T v CA AN [E) 00 5 ) 1 2 0 8 A A TG B ES, FA Rl iy K A5 DL 2 42 .

X KRG TR 5 AT R84 5 R85 PR YR Y
AN S PR TR 4 R T REE B, AR T
W IR, I AL 1A E R TR AR 5 S )
By, a5 RRY], ZHEAES TN RA MRS, =
BARLE:

(1) AHEEFARAT— A B, 22 AU & T AT
DA SRR i Ok R B, PRARIY T R iR 22, FLENSOFH
P RT RALE R B 2 T A6 5% 2 A & T,
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