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Abstract
Tropical cyclone (TC) track forecasting has been considerably improved in
recent decades, while TC intensity forecasting remain challenging. In this study,
orthogonal nonlinear forcing singular vectors (O-NFSVs) for emulating the
impact of model uncertainties are used to conduct TC ensemble forecasting
experiments with the Weather Research and Forecasting (WRF) model, with
a focus on improving TC intensity forecasting skill. The O-NFSVs approach is
compared with the traditional stochastic kinetic-energy backscatter (SKEB) and
stochastically perturbed parametrization tendency (SPPT) schemes. The results
demonstrate that the O-NFSVs ensembles generally provide a better represen-
tation of the model uncertainties affecting TC intensification, with much better
deterministic and probabilistic skills. These results also extend to the ability to
forecast TC track, although the perturbations have not been optimized for that
specific purpose. The O-NFSVs are therefore appropriate perturbation structures
for describing the uncertainties of the TC intensity and track forecasting and are
also favourable for recognizing the rapid intensification process.
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1 INTRODUCTION

Tropical cyclones (TCs) are one type of high-impact
weather event that often bring strong wind, heavy rain
and storm surges, causing severe natural hazards and
threatening the safety of people’s lives and property. It is
therefore important to forecast TCs to mitigate potential
disasters. Over the past few decades, TC track forecasting
has been significantly improved due to more observations
and more advanced models, but TC intensity forecasting
still remains a challenge. DeMaria et al. (2014) demon-
strated that the improvement in TC intensity forecasting
skill was only approximately one-third to one-half of that

of TC track forecasting skill at lead times from 24 to 72 hr.
Furthermore, the forecasts can hardly capture the rapid
intensification (RI) of TCs. Hence, a current important
challenge is to improve the TC intensity forecasting skill.

Forecast errors are caused by initial errors and model
errors (Lorenz, 1969, 1982; Toth and Vannitsem, 2002;
Vannitsem and Toth, 2002; Kalnay, 2003; Nicolis, 2004;
Nicolis et al., 2009). Emanuel and Zhang (2016) demon-
strated that TC intensity forecasting errors are dominated
by initial errors during the first few days. Puri et al. (2001)
showed that the initial perturbations generated by the sin-
gular vectors (SVs) often provide significant spread in the
ensemble forecasts for TC tracks but are smaller than the
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stochastic physics perturbations in forecasting TC central
pressure. Zhang et al. (2014) found that both TC track and
intensity ensemble forecasts can be improved by imple-
menting a stochastic convective trigger scheme in the Hur-
ricane Weather Research and Forecast (HWRF) model.
All these studies suggest that model errors also play an
important role in TC forecasting.

There are many different sources of model errors.
These can be roughly classified into four types: (a) inaccu-
racy of physical parametrizations and physical parameters,
(b) numerical approximations, (c) insufficient model res-
olutions, and (d) missing physical and dynamic processes
(Toth and Vannitsem, 2002; Nicolis et al., 2009). Each
type of model error may contribute to the uncertainties in
TC intensity forecasting. Miglietta et al. (2015) found that
different selections of physical parametrization schemes
have a strong influence on uncertainties in TC intensity
forecasting. Torn (2016) also showed that the uncertain-
ties occurring in the drag coefficient and enthalpy coeffi-
cient model parameters, which are related to the air–sea
interaction effect, markedly affect the TC structure and
intensity. Davis (2018) and Qin et al. (2020) demonstrated
that relatively coarse grid spacing may seriously underesti-
mate hurricane wind speed. Obviously, different sources of
model errors represent different impacts on TC intensities.
Furthermore, these effects are interactive in the forecast-
ing of TCs. It is therefore difficult to identify every source
of model error, and an integrated approach to the problem
is desired.

Duan and Zhou (2013) proposed a nonlinear forcing
singular vector (NFSV) approach that addresses the com-
bined effects of different sources of model errors. Qin
et al. (2020) demonstrated that uncertainties in TC inten-
sity are more sensitive to the model errors emulated by
NFSV-tendency perturbations when TC intensity fore-
casts are performed at a lead time of 24 hr, and once the
NFSV-type model errors are removed by an assimilation
method, the TC intensity forecasting skills are significantly
improved. Yao et al. (2021) also found that the NFSV-type
tendency errors of the sea-surface temperature (SST) along
the TC track are more likely to lead to large errors in
forecasts of TC intensity, especially during the rapid inten-
sification (RI) period. These studies demonstrate that the
model errors featured by the NFSV-tendency perturba-
tions have a strong impact on forecasts, which suggests
that the NFSV is an appropriate method for represent-
ing model uncertainties (Qin et al., 2020; Xu et al., 2022a,
2022b).

Ensemble forecasts are very popular approaches to
provide estimations of forecasting uncertainty, which is
an essential component of any numerical weather or cli-
mate prediction (Duan and Huo, 2016; Buizza, 2019; Duan
et al., 2022). Regarding TCs, there are studies based on

ensemble forecasts, illustrating how ensemble forecasts
can improve TC track forecasting (Zhang and Krishna-
murti, 1997; Hamill et al., 2011; Yamaguchi et al., 2012;
Bhatia and Nolan, 2015; Torn, 2016). These studies paid
attention to the estimation of initial uncertainties and their
impacts. However, for TC intensity, it is inappropriate to
build ensemble forecasts based on initial perturbations
only (Krishnamurti et al., 2005; Rogers et al., 2006; Hamill
et al., 2011). As model errors have a considerable influ-
ence on TC intensity forecasting, a thorough exploration
of ensemble forecasting skill in the presence of model
uncertainties is crucial.

To emulate model uncertainties, stochastic physics
schemes were developed [see the reviews of Demaeyer
and Vannitsem (2018) and Buizza (2019)]. Among the
methods proposed, two are widely used: (a) the stochas-
tic kinetic-energy backscatter scheme (SKEB: Shutts, 2005;
Berner et al., 2009) and (b) the stochastically per-
turbed parametrization tendencies scheme (SPPT: Palmer
et al., 2009; Berner et al., 2015). Reynolds et al. (2011)
demonstrated that SKEB increases the ensemble spread
of TC track ensemble forecasting but does not reduce the
root-mean-square error (RMSE) within the US Navy global
atmospheric ensemble forecast system. Judt et al. (2016)
showed that if a convection-permitting model is used, the
large-scale SKEB has a strong influence on the uncer-
tainty of TC intensity. Puri et al. (2001) demonstrated that
SPPT leads to a smaller spread in the TC tracks but to
a much larger spread in the central pressures within the
ensemble prediction system (EPS) of the ECMWF. Lang
et al. (2012) investigated the impact of SPPT and SKEB on
TC track and central pressure and showed that the per-
turbations of SKEB often have much larger amplitudes in
the TC outer region, while those of SPPT are more concen-
trated on the TC core and at upper levels. These studies
illustrate that stochastic physics schemes may represent
model uncertainties to a certain extent. However, the usual
underdispersion of ensembles remains a key issue within
current ensemble forecasting systems (Novak et al., 2008;
Romine et al., 2014; Torn, 2016; Melhauser et al., 2017).

Ensemble forecasts require a group of growing-type
perturbations to ensure that the ensemble members sub-
stantially deviate from the control forecast and encompass
the true value (Molteni et al., 1996; Toth and Kalnay, 1993,
1997). As mentioned earlier, the NFSV is a tendency per-
turbation that causes the largest deviation from the ref-
erence state and may be an appropriate method for rep-
resenting model uncertainties. Qin et al. (2020) showed
that the TC intensity errors in control forecasts can be
largely reduced by superimposing NFSV-tendency per-
turbations. This suggests that the NFSV-tendency per-
turbation can be considered a good candidate for model
perturbation in ensemble forecasts. A natural question
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is therefore to ask how to perform NFSV-tendency per-
turbations to generate ensemble forecasts which mimic
the impact of model errors on TC intensity forecasts.
Duan et al. (2022) developed a novel ensemble forecast-
ing method, that is, the C-NFSVs, which generate a group
of mutually independent and rapidly growing combined
modes of initial and model tendency perturbations. The
usefulness of the C-NFSVs for building an ensemble fore-
cast has been demonstrated in the Lorenz-96 model, sug-
gesting that the C-NFSVs method is able to provide a
higher ensemble forecasting skill (Duan et al., 2022). One
particular group of modes among the C-NFSVs family is
the set of orthogonal NFSVs (O-NFSVs), a generalization
of the NFSV-tendency perturbation proposed in Duan and
Zhou (2013). In the present study, we examine the use-
fulness of O-NFSVs in describing the model uncertainties
associated with TC intensity forecasting using the Weather
Research and Forecasting model (WRF) and we explore
whether O-NFSVs may improve the ensemble forecast
skill.

The rest of the article is organized as follows. Section 2
introduces the O-NFSVs approach. Section 3 gives a brief
description of the WRF model and an overview of the
TC cases adopted in the present study. In Section 4, the
experimental strategy is described. Section 5 demonstrates
the performances of the O-NFSVs in producing appro-
priate ensemble forecasts for TC intensity and track in
the WRF at coarse and high resolutions, respectively. In
Section 6, a test of the O-NFSVs in a convection-permitting
WRF is provided. Finally, conclusions are drawn
in Section 7.

2 THE O-NFSVS APPROACH FOR
MEASURING THE MODEL ERROR
EFFECT

Suppose a state vector U; then, its evolution equations can
be described as in Equation (1):

{
𝜕U
𝜕t
= F(U(x, t))

U |t=0 = U0,
, (1)

where U0 is the initial state and (x, t) ∈ Ω × [0,T], with
Ω belonging to an n-dimensional Euclidean space Rn, F
being a nonlinear operator, and t being the time. Assum-
ing that Equation (1) and its initial state are known exactly,
then the solution of Equation (1) at a future time T is given
by

U(x,T) = MT (U0) , (2)

where MT is the nonlinear propagator of Equation (1).

In realistic forecast systems, forecasts are generally
contaminated by both initial errors and model errors. If we
use u0 and f (x, t) to represent the initial and model errors,
the forecast model can be written as

{
𝜕(U+u)
𝜕t

= F(U(x, t)) + f (x, t)
U + u |t=0 = U0 + u0.

, (3)

In this case, we use MT(f ) to denote the propagator of
Equation (3) from the initial time t = 0 to the future time
t = T, and the forecast error (denoted by uT) is written as

uT = MT(f ) (U0 + u0) −MT (U0) , (4)

where MT (U0) is as in Equation (2) and is not contami-
nated by any errors, while MT(f ) (U0 + u0) is the forecast
influenced by both initial error u0 and model error (or ten-
dency error) f . If the initial fields are further assumed to
be perfect (i.e. u0 = 0), the forecast error is only caused by
the model error f . Then, Equation (4) is rewritten as

uT = MT(f ) (U0) −MT (U0) . (5)

Using Equation (5) and assuming a time-constant f , Duan
and Zhou (2013) defined the NFSV, which is interpreted as
the time-independent tendency perturbation that causes
the largest departure from the given reference state during
the forecast period T (Barkmeijer et al., 2003; Duan and
Zhou, 2013). Based on the NFSV, the O-NFSVs are can be
defined through the maximization problem Equation (6)
below and represent a group of mutually independent ten-
dency perturbations that cause the largest departure from
the reference state MT (U0) in orthogonal subspaces (Duan
et al., 2022).

J
(

f ∗
𝑗

)
= max

f
𝑗
∈Ω

𝑗

‖‖‖MT
(

f𝑗
)
(U0) −MT(0) (U0)

‖‖‖b
(6)

where J is a cost function that measures the maximum
departure from the reference state MT (U0) by the norm|| ⋅ ||b and f𝑗 ∈ Ω𝑗 is the constraint condition that limits the
amplitude of the tendency perturbations f𝑗 :

Ω𝑗 =
⎧⎪⎨⎪⎩

{
f𝑗 ∈ ℜn| ‖‖f𝑗‖‖a ≤ 𝛿

}
, 𝑗 = 1{

f𝑗 ∈ ℜn| ‖‖f𝑗‖‖a ≤ 𝛿, f𝑗⊥Ωk, k = 1, … , 𝑗 − 1
}
,

𝑗 > 1
(7)

where the norm || ⋅ ||a defines the amplitude of ten-
dency perturbations with the parameter 𝛿 constant, and
⊥ represents the orthogonality of spaces. Finally, f ∗

𝑗
(j= 1,

2, 3, … ) provides the O-NFSVs of the 1st NFSV, 2nd
NFSV, 3rd NFSV, … , and the corresponding values of the
cost function are ranked as J

(
f ∗1
)
> J

(
f ∗2
)
> J

(
f ∗3
)
> · · · >
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J
(

f ∗n
)
. Obviously, when 𝑗 = 1, Equation (6) provides the

NFSV.
In the present study, we use the O-NFSVs to repre-

sent model uncertainties that influence TC forecasts and
we conduct ensemble forecasting experiments. The Spec-
tral Projected Gradient 2 solver (SPG2: Birgin et al., 2000)
is used to solve the optimization problem Equation (6).
The SPG2 solves a minimum-value problem, while the
O-NFSVs are obtained through maximum-value prob-
lems. Therefore, when we use SPG2 to estimate the
O-NFSVs, we reverse the maximum-value problem J

(
f ∗
𝑗

)
to a minimum-value problem −J

(
f ∗
𝑗

)
to search for the

O-NFSVs along the descending direction of the gradient of
the cost function with respect to the tendency perturba-
tions. More details on the use of that solver can be found in
Birgin et al. (2000) and Appendix A of Duan et al. (2022).

3 THE WRF MODEL AND TC
CASES

The Weather Research and Forecasting model version
3.9.1 (WRFV3.9.1) is used in the present study, with
three different model resolutions. The coarse-resolution
model is set up on a single domain with a horizontal
resolution of 54 km, which contains 120× 90 grid points.
The high-resolution model is built on 3 two-way nested
domains with horizontal grid spacings of 54, 18 and
6 km, which contain 120× 90, 61× 61 and 97× 97 grid
points, respectively, and the latter two domains move
with the TC centre. The convection-permitting resolution
model is built on 4 two-way nested domains with hori-
zontal grid spacings of 54, 18, 6 and 2 km, which con-
tain 120× 90, 61× 61, 97× 97 and 202× 202 grid points,
respectively, and the latter three domains move with the
TC centre. After several tests and according to the liter-
ature, 31 vertical levels with the top level up to 20 hPa
are adopted. The physical parametrization schemes used
in the model include the Lin microphysics scheme (Lin
et al., 1983), the Rapid Radiative Transfer Model (RRTM),
the long-wave radiation scheme (Mlawer et al., 1997), the
Dudhia short-wave radiation scheme (Dudhia, 1989), the
Yonsei University (YSU) planetary boundary-layer scheme
(Hong et al., 2006), and the Kain–Frisch cumulus scheme
(Kain, 2004). Note that the Kain–Frisch cumulus scheme
is not used in the domains with 6 and 2 km resolutions.

Note that when calculating the O-NFSVs, the
WRFV3.9.1 adjoint model is used to calculate the relevant
gradient (see Section 2). However, only simplified phys-
ical parametrization schemes (lscond scheme, surfdrag
scheme and ducu scheme) are available for the adjoint
model. Therefore, we must use WRF and its simplified

adjoint to solve the O-NFSVs and conduct ensemble fore-
casting experiments. Such configurations of WRF and its
adjoint have been widely used in studies of data assimi-
lation or ensemble forecasting (Xiao et al., 2008; Zhang
et al., 2013). In the integration of the WRF model, the
initial and boundary conditions are provided by the oper-
ational Global Forecast System (GFS) forecast data with a
resolution of 1× 1◦. To evaluate the ensemble forecasting
skill for TCs, the best track data from the China Meteoro-
logical Administration (CMA) are used, and six TC cases
occurring from 2017 to 2020 are selected. These cases all
formed in the western North Pacific and underwent a
process of intensification or even RI before landing over
China. Table 1 shows detailed information on the six
TC cases and the start and final times of their respective
forecasting periods, including the whole RI process.

4 EXPERIMENTAL STRATEGY

To compute the O-NFSVs that represent the model
uncertainties for TC intensity forecasting, we follow the
approach proposed in Qin et al. (2020) by considering the
departure of the sea-level pressure (SLP) from the con-
trol forecast as the basis of the cost function and utilize
the moisture and potential temperature that are directly
related to TC intensity as components of the tendency
perturbation. The optimization problem in Equation (6)
can then be rewritten as follows.

J
(

f ∗
𝑗

)
= max

E
𝑗
∈Ω

𝑗

{[
SLPT

(
u0f𝑗

)
− SLPT(u0, 0)

]2
}
, (8)

where

Ω𝑗 =

{{
f𝑗 ∈ ℜn|E𝑗 ≤ 𝛿} , 𝑗 = 1{
f𝑗 ∈ ℜn|E𝑗 ≤ 𝛿, f𝑗⊥Ωk, k = 1, … , 𝑗 − 1

}
, 𝑗 > 1

(9)
and

E𝑗 =
1
D ∫ ∫D𝜎

[(
g

N𝜃

)2

𝜃
′2
𝑗
+ L2

CpTr
qv′2

𝑗

]
dDd𝜎. (10)

Here, SLPT (u0, 0) and SLPT
(

u0, f𝑗
)

represent the control
forecast of the SLP of the TC centre and its perturbed fore-
cast generated by the tendency perturbation f𝑗 at the lead
time T, and E𝑗 is the energy norm for measuring tendency
perturbations f𝑗 with 𝛿 being a positive number that con-
strains the amplitude of the tendency perturbations. In
Equation (10), 𝜃′

𝑗
and qv′

𝑗
are the potential temperature

and moisture perturbations, D and 𝜎 are the horizontal
domain and the vertical level, and the constants L = 2.51 ×
106 J ⋅ kg−1, Cp = 1005.7 J ⋅ kg−1, Tr = 270 K and N is the
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T A B L E 1 Information and forecast periods of six TC cases.

Name No.
Start time
(hr: UTC)

End time
(hr: UTC)

Peak intensity
(hPa; m⋅s−1)

Hato 201713 0000 21 Aug 0600 23 Aug 935; 52

Maria 201808 0000 05 Jul 0000 09 Jul 925; 58

Lekima 201909 1200 05 Aug 1600 05 Aug 915; 62

Ling 201913 1200 03 Sep 1200 06 Sep 930; 55

Hagupit 202004 0000 02 Aug 0400 04 Aug 965; 42

Haishen 202010 0000 02 Sep 0000 06 Sep 920; 60

Note: The numbers (No.) (year + ordinal no. that year) and intensities (the minimum sea-level pressure and maximum 10 m wind speed) are from the
Best-Track data of China Meteorological Administration (CMA).

Brunt–Vaisala frequency. Note that perturbing the wind
field directly could often induce a collapse of the forecasts.
This type of perturbation therefore will not be considered
in the present work.

The WRF model with different resolutions of 54, 6 and
2 km, as stated in Section 3, is used to conduct ensem-
ble forecasting experiments for predicting TC intensities,
and the ensemble members are generated by superim-
posing the O-NFSVs [see Equations (8)–(10)] on the con-
trol forecasts. For convenience, we refer to these experi-
ments as EX-54 km, EX-6 km and EX-2 km, respectively.
In view of the massive computational costs of ensemble
forecasts, we follow the traditional way to calculate the
model perturbations. That is, the O-NFSVs are calculated
and superimposed on the whole domain for EX-54 km,
while for EX-6 km and EX-2 km, the O-NFSVs are cal-
culated over the parent domain and superimposed on
the inner nested domains by interpolation in an attempt
to keep the tendency perturbations dynamically consis-
tent between the inner and parent domains. Certainly,
the 54 km resolution is coarse for TC intensity fore-
casts; however, some operational ensemble forecasting
systems with model resolutions of 10–100 km, such as the
European Centre for Medium-Range Weather Forecasts
ECMWF-EPS and the National Centers for Environmen-
tal Prediction NCEP-GEFS, provide real-time TC ensem-
ble forecasting not only for TC tracks but also for TC
intensities at model resolutions of 18 and 34 km, respec-
tively (Yamaguchi et al., 2009; Magnusson et al., 2019; Ono
et al., 2021; Zhou, 2022). Therefore, in line with these oper-
ational forecasts, we also provide the results of the 54 km
resolution on TC forecasts in the present work despite this
too coarse resolution.

The skill of the ensemble forecasts generated by the
O-NFSVs depends on the tendency perturbation ampli-
tude [indicated by the constraint radii 𝛿; see Equations (8)
and (9)] and the number of ensemble members. When
we calculate the O-NFSVs, we find that the values of

the cost function for O-NFSVs reach near saturation at
the 26th NFSV. This indicates that the NFSVs, whose
orders are larger than 26, exhibit almost the same sen-
sitivity as the 26th NFSV and do not help increase the
ensemble spread when they are superimposed on the
control forecast. Therefore, a total of 26 O-NFSVs are
computed that are superimposed on the control forecast
with positive/negative signs, leading to 52 perturbed fore-
casts. Once a positive/negative pair of NFSV perturba-
tions is superimposed on the control forecast, it could
lead to either a low pressure or a high pressure depend-
ing on their O-NFSVs signs. As the ensemble members
of a high-pressure structure are not physically relevant
for TCs, we only select those that have a low-pressure
structure. From the 52 perturbation forecasts generated
by the 26 positive/negative perturbation pairs, a total of
26 perturbed forecasts remain, which, together with the
control forecast, are composed of 27 ensemble forecasting
members.

The tendency perturbation amplitudes [i.e. 𝛿 in
Equations (8) and (9)] are fixed according to the mean
tendency of the WRF using the control forecasts of the
six TCs. Specifically, the WRF model is integrated to gen-
erate the control forecasts. The tendency of the potential
temperature and moisture components (which are respec-
tively denoted by FT and FQ) are then calculated as F =
Ut+Δt−Ut

Δt
for each TC, where Ut is the state variable (i.e.

potential temperature or moisture) at time t and Δt is
the time step. We take the mean of the tendency F for
six TCs and determine the amplitude interval [0.1F, 0.2F]
of the tendency perturbations to guarantee the stability
of model integration, where F is the mean of the ten-
dency F for the six TCs. Then, the tendency perturba-
tion energy [measured by 𝛿 in Equation (8)] is optimized
in the range of 1 × 10−9 to 7 × 10−9 J ⋅ kg−1 ⋅ s−1. In this
range, the skill of ensemble forecasting generated by the
O-NFSVs with four different amplitudes of 𝛿 = 1 × 10−9,
3 × 10−9, 5 × 10−9 and 7 × 10−9J ⋅ kg−1 ⋅ s−1 are compared
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T A B L E 2 Parameter values of SKEB and SPPT for EX-54 km, EX-6 km and EX-2 km.

Parameter EX-54 km EX-6 km EX-2 km

SKEB tot_backscat_psi 1E-5

tot_backscat_t 1E-6

Decorrelation time 6 hr

SPPT gridpt_stddev_sppt 0.5 0.33 0.33

lengthscale_sppt 150 km

timescale_sppt 6 hr 3 hr 3 hr

Abbreviations: SKEB, stochastic kinetic-energy backscatter; SPPT, stochastically perturbed parametrization tendency.

for EX-54 km, EX-6 km and EX-2 km. A total of 1944 per-
turbed forecasts are conducted for the six TCs. Then, the
perturbation amplitude providing the best forecasting skill
is finally determined as 𝛿54km = 7 × 10−9J ⋅ kg−1 ⋅ s−1 for
EX-54 km, 𝛿6km = 5 × 10−9 J ⋅ kg−1 ⋅ s−1 for EX-6 km, and
𝛿2km = 3 × 10−9 J ⋅ kg−1 ⋅ s−1 for EX-2 km.

To explore the quality of the O-NFSVs perturbations,
the ensemble forecasts are compared with those gen-
erated by two popular stochastic physics schemes, the
stochastic kinetic-energy backscatter scheme (SKEB) and
the stochastically perturbed parametrization tendencies
scheme (SPPT). SKEB focuses on the reinjection of exces-
sive energy dissipation near the truncation scale at higher
scales in the numerical model. It compensates for the dissi-
pated energy by adding a stochastic rotational zonal wind
and meridional wind forcing and potential temperature
forcing (Shutts, 2005; Berner et al., 2009). The SPPT emu-
lates the uncertainty of the subgrid-scale parametrization
process by multiplying the tendency terms with stochas-
tic perturbations (Palmer et al., 2009; Berner et al., 2015).
Leutbecher et al. (2017) noted that SPPT sometimes pro-
vides a risk of unrealistic extreme situations [see also Lang
et al. (2021)] and suggested ignoring unrealistic ensemble
members in advance in operational forecasting. Therefore,
for both SPPT and SKEB, we also select the ensemble
members of the low-pressure structure as for the O-NFSVs
ensemble. Furthermore, we find that when 26 perturbed
forecasts are applied to SPPT and SKEB, the ensemble
forecasting skill is not substantially modified when more
perturbed forecasts are added. Therefore, we also adopt
26 perturbed forecasts for SPPT and SKEB as for the
O-NFSVs. Then, a total of 1,458 individual forecasts are
produced to compare the forecasting skills of the different
model perturbation schemes at 54, 6 and 2 km resolution
models.

The SKEB and SPPT schemes are two popular ten-
dency perturbation schemes. Many studies have con-
ducted a large number of comparative experiments to
discuss the sensitivity of the parameters determining the
amplitude of the tendency perturbations in the WRF

model (Berner et al., 2011; Romine et al., 2014; Ha
et al., 2015; Duda et al., 2016; Melhauser et al., 2017).
Thanks to these studies, ranges of parameter values for
the SKEB and SPPT schemes are available. Taking into
account these ranges, we conduct additional numerical
experiments to refine the ensemble parameters for the
six TC cases to achieve an optimal forecasting skill. The
main final parameters of the SKEB and SPPT schemes are
provided in Table 2.

The ensemble forecasting skills are measured by the
deterministic ensemble mean forecasting error, the prob-
abilistic Brier Score (BS), the Relative Operating Charac-
teristic (ROC) curves, and the Reliability Diagram (RD)
for TC track strike probability within a 120 km radius of
a given location [see Weber (2003)] for all lead times.
The ensemble mean forecasting error and the BS are also
used to measure the forecasting skill for TC intensity,
graded from tropical depression, tropical storm, typhoon,
severe typhoon, to super-typhoon. The BS, the ROC and
the RD are described in the Appendix. In addition, the
comparison of the ensemble spread to the ensemble mean
forecast error is also performed to evaluate the reliability
of the ensembles generated by the O-NFSVs (Eckel and
Mass, 2005; Buckingham et al., 2010). The details of all
these measures are described in the Appendix.

In the following section, we first present the
results of EX-54 km and further extend the applica-
tion of the O-NFSVs to a higher model resolution (i.e.
EX-6 km), and then test the approach at a more real-
istic convection-permitting resolution (i.e. EX-2 km) in
Section 6.

5 PERFORMANCE OF THE
ENSEMBLE FORECASTING
GENERATED BY O-NFSVS FOR TCS

In this section, ensemble forecast experiments for the
six selected TC cases (see Table 1) are conducted, and
the forecasting skills between the O-NFSVs and the two
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2212 YICHI et al.

F I G U R E 1 The ensemble forecasts conducted by (a) ECMWF and (b) NCEP, for (1) tracks, (2) Pmin and (3) V max of TC Hato (201713).
The black lines are control forecasts, the red lines are the best tracks, the blue lines are the ensemble means, and the grey lines are ensemble
members. The corresponding data are from the THORPEX Interactive Grand Global Ensemble (TIGGE) database.

stochastic physics schemes are compared. In the six TC
cases, TC Hato (201713) experienced an RI and evolved
into a super-typhoon within 24 hr before landfall. This
typhoon led to serious disasters in Guangdong Province.
Operational forecasting, however, failed to produce the
RI process. Figure 1 displays the forecasts according to
the ensemble forecast products generated by ECWMF and
NCEP, clearly showing that the ensembles generated are
both under-dispersive for the TC intensity and miss the
RI process of Hato (201713). To illustrate the usefulness
of the O-NFSVs in representing model uncertainties and
improving TC forecasting skill, we first explore the ensem-
ble forecasts of Hato (201713). The statistics for the six TC
cases investigated are then provided.

5.1 The ensemble forecasting for TC
Hato (201713)

5.1.1 Results for the coarse resolution

The ensemble forecasting experiments for TC Hato
(201713) are conducted in this subsection according to the
strategy discussed in Section 4.

We first investigate the structures of the O-NFSVs.
Both the NFSVs and their perturbation energies are
generally located differently around the TC centre, with
their energies mostly spanning the low levels of the atmo-
sphere (i.e. 925–850 hPa). Figure 2 shows the first three
NFSVs for TC Hato (201713) with their horizontal struc-
tures at 900 hPa, vertical integrated energies and vertical
structures of the horizontal integrated energies. In fact, for
each TC case, we observe that they exhibit similar spa-
tial characteristics. This indicates that the change in TC
intensity is more sensitive to the change in the poten-
tial temperature and moisture close to the TC centre, and
the O-NFSVs tend to mainly describe the uncertainties in
the potential temperature and moisture at these locations.
Does this sensitivity of O-NFSVs result in much higher
ensemble forecasting skill for TC forecasting?

Figure 3 shows the TC intensity measured by the min-
imum sea-level pressure (Pmin) and maximum 10 m wind
speed (V max) of the control forecast and the ensemble fore-
casting members for TC Hato (201713) using the O-NFSVs,
SKEB and SPPT for the coarse-resolution WRF model (i.e.
the EX-54 km defined in Section 4). Some of the ensemble
members generated by the O-NFSVs display an intensifi-
cation process measured by both Pmin and V max similar to
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YICHI et al. 2213

F I G U R E 2 Horizontal structures of the first three NFSV (a–c) moisture and (d–f) potential temperature tendency perturbations
(shaded) at 900 hPa and (g–i) horizontal structures of vertically integrated tendency perturbation energies (shaded), and potential height field
at 500 hPa (blue lines) for TC Hato (201713). The blue bold lines are the 5,880 gpm lines. The black dots and lines represent the TC tracks of
perturbed forecasts. The vertical structures of horizontally integrated moisture (green lines), potential temperature (blue lines), and all (black
lines) tendency perturbation energies of (j–l) the first three NFSVs, for TC Hato (201713).

the one produced in the best track, while the control fore-
cast fails to do so. For SPPT and SKEB, the ensembles have
a much smaller spread than those based on the O-NFSVs.
Moreover, they all concentrate close to the control forecast,
consequently failing to capture the intensification process.

As a result, the ensemble mean of Pmin and V max generated
by the O-NFSVs is much closer to the observed. To further
quantify the improvement achieved by the O-NFSVs, we
compute the ensemble mean forecasting errors for all lead
times against the control forecast error (Figure 4). It is
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2214 YICHI et al.

F I G U R E 3 The (a) ensemble forecasts generated by the O-NFSVs, (b) stochastic kinetic-energy backscatter (SKEB) and (c)
stochastically perturbed parametrization tendency (SPPT), for (1) track, (2) Pmin, and (3) V max of TC Hato (201713). The Weather Research
and Forecasting (WRF) model version has a coarse resolution. The black lines are the control forecasts, the red lines are the best tracks, the
blue lines are the ensemble means, and the grey lines are the ensemble members.

clear that the forecasting errors of Pmin and V max are sig-
nificantly smaller for the ensemble mean of the O-NFSVs
than for both SKEB and SPPT. More precisely, the improve-
ments achieved by the O-NFSVs reach 29.5% for Pmin and
30.1% for V max, while those obtained with SKEB and SPPT
are −2.3% and −1.2% for Pmin and −5.0% and −2.4% for
V max, respectively. In other words, the classical stochas-
tic physics schemes tend to be neutral or even degrade
the skill in predicting the intensity of TC Hato (201713).
A comparison is also made with respect to the reliability
of the ensembles generated by the O-NFSVs, SKEB and
SPPT by comparing the ensemble spread to the ensemble
mean forecast error (Figure 5). The discrepancy between

the ensemble spread and ensemble mean forecast error
for the ensemble based on the O-NFSVs is much smaller
than those of SKEB and SPPT for both Pmin and V max
forecasting. The O-NFSVs therefore provide more reliable
ensembles than the stochastic physics schemes for TC
Hato (201713).

Although the focus in this article is on TC intensity,
TC track forecasting is also investigated (Figure 3). The
ensemble members generated by the O-NFSVs have a
spread covering the best track, and the ensemble mean
is closer to the best track than the two stochastic physics
schemes. Quantitatively, the forecasting error made by
the O-NFSVs members is 32.8% smaller than that of the
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YICHI et al. 2215

F I G U R E 4 The forecast errors of the control and ensemble mean for (a) track, (b) Pmin, and (c) V max for Hato (201713) using Weather
Research and Forecasting (WRF) at coarse (grey bars) and finer (orange bars) resolutions. The improvements of the ensemble mean forecasts
against the control forecasts, where the ensemble means are generated by the orthogonal nonlinear forcing singular vectors (O-NFSVs) (blue
bars), the stochastic kinetic-energy backscatter (SKEB) (purple bars) and the stochastically perturbed parametrization tendency (SPPT)
(green bars) using the WRF of the (d) coarse and (e) finer resolution, and the improvement is estimated by calculating the percentage of the
error reduction averaged over all lead times.

control forecast, while for the SKEB and SPPT members,
the forecasting errors are 8.8% and 0.6% smaller than that
of the control forecast (Figure 4). In addition, when we
examine the reliability of the ensembles for track forecast-
ing, the ensemble generated by the O-NFSVs possesses
a smaller discrepancy between the ensemble mean fore-
casting error and the ensemble spread than those of the
SKEB and SPPT schemes (Figure 5). It is therefore clear
that the representation of the model uncertainties on the
track forecast of TC Hato (201713) can considerably be
improved by using the O-NFSVs that perturb the poten-
tial temperature and the moisture mainly describing the
model uncertainties on the TC intensity.

To clarify how the O-NFSVs contribute to optimiz-
ing the track of the TC, we plot in Figure 6 the spread
of 500 hPa wind speed and the ensemble mean of the
500 hPa geopotential height generated by the O-NFSVs at
lead times of 12, 24, 36 and 48 hr for TC Hato (201713).
When the O-NFSVs are superimposed on the control fore-
cast, the pressure field is perturbed, together with the
pressure gradients and the wind fields near the TC. These

fields readjust to reach gradient wind balances. Simultane-
ously, the pressure gradients and the environmental flow
between the TC and its surrounding circulation system
(such as the western Pacific subtropical high, depicted by
the contour of 5,880 geopotential height in Figure 6) are
also progressively modified to reach a quasi-geostrophic
balance between pressure and wind. These balances occur
for each ensemble member generated by the O-NFSVs,
leading to a large wind spread near the TC centre and
around the TC track (Figure 6). The spread appropriately
captures the uncertainties of the steering flow of the TC,
and in turn, an ensemble mean TC track is closer to the
best track. To confirm this, we also plot the evolution of the
environmental steering flow vectors [i.e. the winds aver-
aged over the radii between 300 and 700 km from the TC
centre, from 700 to 500 hPa (Chan and Gray, 1982; Munsell
and Zhang, 2014)] of the ensemble mean forecast gener-
ated by the O-NFSVs, the SKEB and the SPPT (Figure 7).
The environmental steering flow vectors generated by the
O-NFSVs are oriented farther to the west than those gen-
erated by SKEB and SPPT at lead times of 12 and 24 hr,
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2216 YICHI et al.

F I G U R E 5 The ensemble mean forecast errors (solid lines) and the ensemble spread (dashed lines) generated by the O-NFSVs (blue),
stochastic kinetic-energy backscatter (SKEB) (purple) and stochastically perturbed parametrization tendency (SPPT) (green) using Weather
Research and Forecasting (WRF) at coarse [(a), as in EX-54 km] and high [(b), as in EX-6 km] resolutions. The panels correspond to the
forecasting of the (1) track, (2) Pmin, and (3) V max of Hato (201713).

which displaces the TC track generated by the O-NFSVs
westward, now much closer to the best track than those
generated by SKEB and SPPT (Figure 3). This ultimately
leads to a higher forecast skill of the track for TC Hato
(201713).

5.1.2 Results with the higher resolution

Although the ensembles generated by the O-NFSVs above
show higher forecasting skills for TC Hato (201713) com-
pared with those generated based on SPPT and SKEB,
the model resolution is relatively coarse. To evaluate the
impact of the resolution on the ensemble forecast gen-
erated by the O-NFSVs, we extend the analysis to the
high-resolution WRF model (i.e. the EX-6 km in Section 3).

The control forecasts and associated ensembles for TC
Hato (201713) in EX-6 km are plotted in Figure 8. The
errors of the control forecast for the TC intensity decrease
compared with those in EX-54 km. However, the offshore
RI is still not completely captured. It is also important to
note that the ensembles generated by the O-NFSVs again
present a larger spread for both Pmin and V max. Further-
more, there exist a few members (∼1/6 of the ensemble

members) that capture the RI processes. This suggests that
the O-NFSVs used in the high-resolution model provide a
more appropriate representation of the model uncertainty
for TC intensity forecasting, particularly for RI forecast-
ing. We also find that the RI timing in the ensemble
members generated by O-NFSVs exhibits a wider diver-
sity than those generated by the SKEB and SPPT schemes
(Figure 8). Some members display the RI earlier than it
occurred in reality, while other members exhibit the RI
later, but the ensemble mean forecast is much closer to
the reference solution compared with the SKEB and SPPT
schemes. Therefore, it seems that the ensemble mem-
bers generated by the O-NFSVs of the high-resolution
model also describe the uncertainty of the RI timing more
appropriately than those created by the SKEB and SPPT
schemes. In addition, we find that the spread of the ensem-
bles generated by SKEB and SPPT for the TC intensity
in EX-6 km increases compared with that in EX-54 km.
Romine et al. (2014) indicate that small-scale motions
exhibit faster instabilities and that stochastic perturbations
at this scale may partly project on unstable growing pertur-
bations and then develop faster than those at much larger
scales. This may explain why the ensembles generated by
SKEB and SPPT with high resolution in EX-6 km have a
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YICHI et al. 2217

F I G U R E 6 The ensemble
spread of wind speed at 500 hPa
(shaded), and the 500 hPa
geopotential height field (lines) and
the 500 hPa wind (vectors) of the
ensemble mean generated by
orthogonal nonlinear forcing
singular vectors (O-NFSVs) at lead
times of (a) 12, (b) 24, (c) 36 and (d)
48 hr for TC Hato (201713) using
Weather Research and Forecasting
(WRF) at coarse resolution. The blue
bold lines are the 5,880 gpm lines.

much larger spread than those with coarse resolution in
EX-54 km. Despite this, the O-NFSVs still provide a better
approach in describing the nonlinearly growing perturba-
tions and consequently induce an ensemble spread much
larger than those generated by SPPT and SKEB, especially
for Pmin, with more ensemble members able to encom-
pass the RI process. This also implies that the ensemble
mean generated using the O-NFSVs experiences a higher
improvement of 13.1% for Pmin and 31.8% for V max against
the control forecast in EX-6 km (Figure 4), while those
for SKEB and SPPT are −20.1% and −8.1% for Pmin and
−23.4% and−12.2% for V max, respectively. In terms of relia-
bility, the ensemble based on the O-NFSVs, as in EX-54 km,
also displays a discrepancy between the ensemble mean
forecast error and ensemble spread that is much smaller
than those of SPPT and SKEB for both Pmin and V max
(Figure 5). The O-NFSVs, for both the coarse and high res-
olutions, show a skill superior to those of the SKEB and
SPPT schemes.

For the track forecast of TC Hato (201713), the control
forecast at high resolution displays a forecast error smaller
than that at coarse resolution. The ensembles generated by
the O-NFSVs still provide an ensemble mean whose fore-
cast errors are reduced by 24.0% compared with the control
forecast. For the ensemble mean obtained with SKEB and

SPPT, the improvement in the control forecast is equal
to 8.3% and −5.2%, respectively (Figure 4). The higher
performance of the O-NFSVs compared with SKEB and
SPPT for TC track forecasting of Hato (201713) also holds
for the high-resolution model version. Note that although
the track errors in the control forecast and corresponding
ensemble mean have been reduced due to the use of the
high resolution, this is not generally the case; in fact, for
the six TC cases investigated in the present study, there are
only two TC cases that possess a track forecasting skill at
high resolution that is higher than that at coarse resolu-
tion, while the other four TC cases have similar forecasting
skills at both resolutions. This may suggest that the TC
tracks are often controlled by large-scale environmental
flow and that finer resolution plays a less important role
in improving the track forecasting skill [see also Chan and
Gray (1982), Chan (1985) and Munsell and Zhang (2014)].
The details are further discussed in the next section.

5.2 Statistical evaluation of the
ensemble forecasting skill for the six TCs

In Section 5.1, it is shown that the O-NFSVs provide
remarkable tools to describe the model uncertainties for
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2218 YICHI et al.

F I G U R E 7 The environmental steering flow vectors of the ensemble mean forecasts generated by orthogonal nonlinear forcing
singular vectors (O-NFSVs) (blue), stochastic kinetic-energy backscatter (SKEB) (purple), and stochastically perturbed parametrization
tendency (SPPT) (green) at lead times of (a) 12, (b) 24, (c) 36 and (d) 48 hr for TC Hato (201713) using Weather Research and Forecasting
(WRF) at coarse resolution. The numbers around the compass represent the orientation of the environmental steering flow vectors, and the
radius represents the magnitudes of the environmental steering flow (unit: m⋅s−1).

both track and intensity forecasting of TC Hato (201713).
To further examine how reliable this conclusion is, we con-
duct ensemble forecasting experiments for five other TC
cases presented in Section 3.

5.2.1 Behaviour of the ensemble mean
and spread

Figure 9 displays the ensemble spread and the ensemble
mean forecast error averaged for the six TC cases. For

both EX-54 km and EX-6 km, the ensembles generated by
the O-NFSVs usually possess a larger spread and have
a smaller ensemble mean forecast error than the SKEB
and SPPT, particularly during the intensifying period (i.e.
0–72 hr), including during the RI processes (Figure 11).
This indicates a higher reliability of the ensembles gener-
ated by the O-NFSVs for both Pmin and V max forecasting.
The improvement of the ensemble mean forecasts gener-
ated by the O-NFSVs, compared with the control forecasts
averaged over all lead times, is 16.9% for Pmin and 11.4%
for V max in EX-54 km, while it is 20.7% for Pmin and 14.0%
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YICHI et al. 2219

F I G U R E 8 (a1–c3) As in Figure 3, but for the high-resolution model (EX-6 km).

for V max in EX-6 km. The improvement is also highly
significant during the intensifying period (i.e. 0–72 hr)
(Figure 11). Those generated by SKEB and SPPT hardly
improve the errors, with modifications of−5.4% and−2.6%
for Pmin and −3.8% and 4.5% for V max in EX-54 km and of
−3.1% and −0.17% for Pmin and −2.5% and −3.6% for V max
in EX-6 km, respectively (Figure 10).

For the track forecasting of the TCs, the ensemble
mean forecast error generated by the O-NFSVs is reduced
by 32.9% in EX-54 km and by 21.6% in EX-6 km, compared
with control forecast error, respectively; these reductions
are also more significant than those in the ensemble mean
forecasts made by SKEB and SPPT with 14.0% and 9.3%
in EX-54 km and 7.3% and 1.9% in EX-6 km, compared
with control forecast error, respectively (Figure 10). In
addition, the ensemble spread shows the smallest differ-
ence from the ensemble mean forecasting error for the

O-NFSVs, and the ensembles generated by the O-NFSVs
for track forecasting are more reliable than those of SKEB
and SPPT. Therefore, although the ensembles are gener-
ated by perturbing the potential temperature and moisture
only, the O-NFSVs as defined here represent a considerable
improvement over SKEB and SPPT for track forecasting.

When comparing EX-54 km and EX-6 km, we find that
the track errors of the control forecasts become much
smaller in EX-6 km than in EX-54 km; furthermore, the
ensemble mean generated by the O-NFSVs in EX-6 km fur-
ther reduces the errors by 21.6%. However, the ensemble
mean generated by SKEB improves the track forecasting
skill to a lesser extent, by exactly 14.0%, while that of SPPT
can hardly increase the skill. This result certainly empha-
sizes the important role of the O-NFSVs in improving the
track forecasting skill. For the intensity forecasts, the finer
resolution in the EX-6 km greatly enhances the forecasting
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2220 YICHI et al.

F I G U R E 9 (a1–b3) As in Figure 5, but for the results averaged over the six TC cases.

F I G U R E 10 The improvements in the ensemble mean forecasts against the control forecasts averaged over all lead times, where the
ensemble means are generated by the orthogonal nonlinear forcing singular vectors (O-NFSVs) (blue bars), stochastic kinetic-energy
backscatter (SKEB) (purple bars) and stochastically perturbed parametrization tendency (SPPT) (green bars) using Weather Research and
Forecasting (WRF) at (a) coarse and (b) finer resolution.

skill of the control forecast compared in the EX-54 km and
in this situation, the O-NFSVs still show its great posi-
tive effect on the improvement of the forecasting skill for
the TC intensity, but both the SKEB and the SPPT often
present a negative effect. Therefore, the O-NFSVs show an
obvious advantage over SKEB and SPPT in improving TC
intensity forecasts.

Figure 11 shows the forecast errors of the control fore-
casts and the ensemble mean generated by the O-NFSVs,
SKEB and SPPT at all lead times for TC track and inten-
sity. The ensemble mean produced by the O-NFSVs in
EX-54 km substantially reduces the track errors compared
with the control forecast at all lead times. However, the
O-NFSVs do not reduce the error any further beyond that
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YICHI et al. 2221

F I G U R E 11 The forecast errors for TC (1) track, (2) Pmin, and (3) V max in the control forecasts and the ensemble mean generated by
the orthogonal nonlinear forcing singular vectors (O-NFSVs), stochastic kinetic-energy backscatter (SKEB), and stochastically perturbed
parametrization tendency (SPPT). The results are obtained by using the Weather Research and Forecasting (WRF) at both coarse (54 km) and
high (6 km) resolutions and then averaged over the six TC cases and (a) all lead times, (b) 0–24, (c) 24–48, (d) 48–72, (e) 72–96 hr.
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2222 YICHI et al.

F I G U R E 12 The BS for the five categories of TC intensity [i.e. tropical depression (TD), tropical storm (TS), typhoon (TY), severe
typhoon (STY), and super-typhoon (Super)] for the ensembles generated by the orthogonal nonlinear forcing singular vectors (O-NFSVs),
stochastic kinetic-energy backscatter (SKEB), and stochastically perturbed parametrization tendency (SPPT) using Weather Research and
Forecasting (WRF) at coarse [(a); 54 km] and high [(b); 6 km] resolutions. The statistics are computed on the six TC cases and all lead times.

of EX-54 km when the model resolution becomes finer in
EX-6 km. If we further compare the control forecast in
EX-6 km and the ensemble mean of the ensemble forecasts
based on the O-NFSVs in EX-54 km, it is found that the for-
mer has a much larger forecast error. This suggests that the
O-NFSVs play a more important role in track forecasting
than the finer resolution plays. For both SKEB and SPPT,
however, the ensemble mean in EX-54 km has a track error
larger than that in the control forecast of EX-6 km. There-
fore, the improvement of the ensemble mean generated by
both SKEB and SPPT in EX-6 km for track forecasting skill
is the result of a combined effect of finer resolution and
ensemble perturbation approaches.

In summary, both SKEB and SPPT play a minor role
in improving the forecast skill of the TC track, while
O-NFSVs greatly improve it. In addition, TC tracks are
mainly modulated by large-scale flows, such as the steer-
ing flow located between the TC and its surrounding
circulation systems (e.g. Carr and Elsberry, 2000; Wu
et al., 2004; Torn et al., 2018). This is further illustrated
here by the impact of the O-NFSVs in EX-6 km, which pro-
vides nearly identical track errors to those in EX-54 km
(Figure 11). Furthermore, much smaller track errors for
the O-NFSVs than for the SKEB and SPPT illustrate that
the O-NFSVs are better at capturing the model uncertainty
of the large-scale flow.

The comparison of the TC intensity forecasts between
EX-54 km and EX-6 km is also displayed in Figure 11.
It reveals that the finer resolution allows for a large
decrease in the errors of the control forecast, compared
with the track forecasts. The ensemble mean generated

by the O-NFSVs further reduces the errors. Obviously,
the reductions achieved by the O-NFSVs result from the
combined effect of both finer resolution and the nature
of the perturbations. For both SKEB and SPPT, the TC
intensity errors of the ensemble mean forecasts are not fur-
ther reduced from the control forecast in EX-6 km. The
decrease in errors should therefore mostly be attributed to
the impact of the finer resolution in the EX-6 km and not
to the use of the SKEB and SPPT schemes.

5.2.2 Probabilistic forecasts.

For the probability forecasts of TC intensity and track
generated by the O-NFSVs, we estimate the Brier Score
(BS) based on five categories of TC intensity [i.e. tropical
depression (TD), tropical storm (TS), typhoon (TY), severe
typhoon (STY), and super-typhoon (Super)] for the six TC
cases. For the TC tracks, we also compute the relative
operating characteristic (ROC) curve and the reliability
diagram (RD) for track strike probability.

The BS averaged over all lead times for all TC cases
is shown in Figure 12 for the five categories of TC inten-
sity. The ensembles generated by the O-NFSVs exhibit a
lower BS value for almost all categories of TC intensities in
both EX-54 km and EX-6 km. This suggests that the prob-
abilistic forecast skill achieved by the O-NFSVs is higher
than those of the SKEB and SPPT for almost all categories
of TC intensities. Moreover, we can see that when the
model resolution becomes much finer in EX-6 km, the BS
values obtained by the O-NFSVs, SKEB and SPPT are all
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F I G U R E 13 (a) The BS of the
track strike probability computed based
on the ensembles generated by the
orthogonal nonlinear forcing singular
vectors (O-NFSVs), stochastic
kinetic-energy backscatter (SKEB), and
stochastically perturbed
parametrization tendency (SPPT) for
the six TC cases for the Weather
Research and Forecasting (WRF) model
at coarse (54 km; solid bars) and high
(6 km; slant bars) resolutions. The
Relative Operating Characteristic
(ROC) curves for the track strike
probability forecasts generated by the
O-NFSVs, SKEB and SPPT using WRF
at (b) coarse and (c) high resolutions
are also plotted.

further reduced, which suggests that the finer resolution,
as expected, helps the ensembles enhance the TC intensity
forecasting skill. For the strike probability of the TC tracks
(Figure 13), the ensembles generated by the O-NFSVs have
the smallest BS values in both EX-54 km and EX-6 km.
Moreover, the corresponding ROC curves display the high-
est hit rates and the lowest false alarm rates (Figure 13).
Figure 14 also suggests that the O-NFSVs provide the most
reliable ensembles for estimating the track strike probabil-
ity with an RD line closest to the diagonal. Comparing the
EX-54 km and EX-6 km for track forecasting, the O-NFSVs
ensembles show a probabilistic skill as measured by the
BS, the ROC curve and the RD line that are similar in
both experiments. The SPPT ensembles show a probabil-
ity skill in EX-6 km with a higher BS, an ROC curve closer
to the ROC diagonal line and an RD line farther from the
RD diagonal line. While the SKEB ensembles show in the
EX-6 km a much better probabilistic skill with a lower BS,
an ROC curve far away from the ROC diagonal line and an
RD line close to the RD diagonal, both are still less skilful
than the O-NFSVs.

In summary, the ensembles generated by the O-NFSVs
provide a better representation of the model uncertainty
associated with the forecasts of TC intensity and its related
track at resolutions of 54 and 6 km.

6 TEST OF THE O-NFSVS IN THE
CONVECTION-PERMITTING WRF
MODEL

In Section 5, we demonstrated that the O-NFSVs provide
a very good forecasting skill for TC track and intensity
at both coarse and intermediate resolutions of the WRF
model (i.e. EX-54 km and EX-6 km). However, these two
versions of models cannot resolve the TC inner core struc-
tures and may underestimate the TC intensity and miss the
RI process in TC forecasts. A convection-permitting reso-
lution model (<4 km) better resolves the development of
convection and would be more appropriate for TC inten-
sity forecasting. Therefore, to test the use of the O-NFSVs
in TC forecasting, we conduct ensemble forecast exper-
iments using the WRF model with a 2 km resolution,
referred to as EX-2 km, as in Section 4.

A similar experimental strategy as in Section 4 is
applied to EX-2 km and, compared with both EX-54 km
and EX-6 km, a much smaller amplitude of O-NFSVs, that
is 𝛿2km = 3 × 10−9 J ⋅ kg−1 ⋅ s−1 is used (see Section 4). In
fact, from EX-54 to EX-2 km, the amplitude of O-NFSVs
decreases, as expected since the resolution of the model
is improved. From this evidence, it can be concluded that
the O-NFSVs appropriately describe errors at the scale of
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F I G U R E 14 The reliability
diagram for the track strike
probability forecasts generated by
the orthogonal nonlinear forcing
singular vectors (O-NFSVs),
stochastic kinetic-energy backscatter
(SKEB) and stochastically perturbed
parametrization tendency (SPPT)
using the Weather Research and
Forecasting (WRF) model at (a)
coarse and (b) high resolutions.

interest. Again, 26 perturbed forecasts for each TC are
generated, which, together with the control forecast, are
composed of the 27 ensemble members. For SKEB and
SPPT, we also adopt similar experimental strategies as
in Section 4 to determine the ensemble parameters for
EX-2 km (see Table 2). A comparison is then made among
O-NFSVs, SKEB and SPPT, and a total of 486 perturbed
forecasts for the six TCs are conducted.

The control forecast and associated ensemble mem-
bers for TC Hato (201713) are plotted in Figure 15. It is
found that the errors of the control forecast for TC inten-
sity, compared with those in EX-6 km, further decrease.
However, the RI is not yet accurately captured, especially
in the Pmin forecast. The O-NFSVs, compared with SKEB
and SPPT, still present a much larger spread and better
forecast skill for both Pmin and V max, which is similar to
the results reported for EX-6 km (Figure 8). Furthermore,
the O-NFSVs ensemble also describes the RI uncertainty
much better than EX-6 km, with approximately 1/3 of
the ensemble members capturing the RI process. In addi-
tion, the ensemble mean forecast is even closer to the
true TC intensity. All these results indicate that even if
the control forecast skill is improved due to the use of a
convection-permitting model, the O-NFSVs are still able to
further increase the TC intensity forecast skill.

The above ensemble forecast experiments are also con-
ducted for the five other TC cases. Figure 16 displays the
ensemble spread, the ensemble mean forecast error and
the improvement of the ensemble mean forecasts aver-
aged for the six TC cases. The results indicate that the
O-NFSVs ensemble provides a large spread and a small
ensemble mean forecast error compared with SKEB and
SPPT for TC intensity, especially during the intensify-
ing period (0–72 hr). More precisely, the ensemble mean
forecasts generated by the O-NFSVs, compared with the
control forecasts, decrease the errors by 23.6% for Pmin
and 12.7% for V max, while those generated by SKEB and
SPPT decrease the errors by much less (and sometimes

even increase the errors) by 4.5% and −0.1% for Pmin and
7.0% and −0.9% for V max, respectively. These results fur-
ther underscore the excellent performance of the O-NFSVs
for TC intensity forecasting at EX-2 km, as at EX-54 km
and EX-6 km.

Concerning the reliability of the ensemble, the picture
is more complicated, as the O-NFSVs ensemble is less reli-
able in V max forecasting in EX-2 km. The ensemble mean
forecasting error is very small (<5 m⋅s−1) and not very close
to the ensemble spread, suggesting that the spread is too
large (Figure 16). This discrepancy for V max forecasting is
also visible in the probabilistic BS scores for TC intensity
categories, now not as good as those for SKEB and SPPT
(not shown). However, for Pmin forecasting, the ensemble
mean forecast error is closer to the ensemble spread for
the O-NFSVs than for both SKEB and SPPT. Furthermore,
track forecasting not only possesses an ensemble spread
closer to the ensemble mean forecast error but also dis-
plays a smaller ensemble mean forecast error (Figure 16).
The improvement is further illustrated with a much higher
probability forecast skill, including a lower BS score, a
better ROC curve and a better RD line (Figure 17). Inter-
estingly, these skills are almost the same as in EX-54 km
and EX-6 km.

We can still conclude that the TC track is mainly mod-
ulated by large-scale flow and that the O-NFSVs ensemble
can much better depict the uncertainties of the large-scale
flow, achieving higher track forecasting skills than SKEB
and SPPT.

In summary, the superiority of the O-NFSVs
over the SKEB and the SPPT is also found in the
convection-permitting model for TC track and intensity
forecasting. Nevertheless, with the change in model reso-
lution from 6 km to the convection-permitting resolution
of 2 km, the impact of SPPT and SKEB improves, and their
differences with the O-NFSVs are reduced. In addition,
we note in particular that for the six TC cases above, their
control forecasts either underestimate (as in TC Hato’s
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F I G U R E 15 (a1–c3) As in Figure 3, but for the convection-permitting model (EX-2 km).

forecasting; see Figure 15) or overestimate the TC intensi-
ties (as in TC Lekima’s forecasting; the figure is omitted)
in the EX-2 km. However, for these two situations, the
ensemble forecasts generated by the O-NFSVs still provide
larger spreads than the SKEB and the SPPT for intensity
forecasting, especially for RI forecasting. Moreover, the
ensemble means generated by the O-NFSVs are closer
to the observed intensity than the control forecasts and
even the ensemble means generated by the SKEB and
the SPPT, although a selection of the ensemble members
with low-pressure structures is applied. Of course, these
results are obtained from a very limited number of TC
cases, and to obtain a full picture, more cases should be
considered to properly extract the differences between
the different schemes and evaluate the genericity of the

superior performance of O-NFSVs as compared to SKEB
and SPPT.

7 CONCLUSION AND
DISCUSSION

In this study, orthogonal nonlinear forced singular vectors
(O-NFSVs) are used to emulate the model uncertainties
that limit tropical cyclone (TC) intensity forecasts in the
context of the advanced WRF model at three different
resolutions: 54, 6 and 2 km. The ensemble forecast exper-
iments for six TC cases are conducted with a focus on the
rapid intensification (RI) process. A comparison of the per-
formances is conducted between the O-NFSVs approach
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2226 YICHI et al.

F I G U R E 16 (a) Improvements in the ensemble mean forecasts against the control forecasts averaged over all lead times, where the
ensemble means are generated by the orthogonal nonlinear forcing singular vectors (O-NFSVs) (blue bars), stochastic kinetic-energy
backscatter (SKEB) (purple bars) and stochastically perturbed parametrization tendency (SPPT) (green bars) using the WRF model with 2 km
resolution. (b) The ensemble mean forecast errors (solid lines) and ensemble spread (dashed lines) generated by the O-NFSVs (blue), SKEB
(purple) and SPPT (green) using the WRF model with 2 km resolution. (c) The evolution of improvements at each lead time of the ensembles
generated the O-NFSVs (blue lines), the SKEB (purple lines) and the SPPT (green lines) using the WRF model with 2 km resolution. The
panels correspond to the forecasting of (1) the track, (2) Pmin, and (3) V max.

and two traditional stochastic physics schemes (SKEB and
SPPT) based on the evaluation of the forecast skill and the
reliability of the ensembles.

We first investigate the forecast of TC Hato (201713),
which experienced an RI within 24 hr before landfall, at
resolutions of 54 and 6 km. Our results demonstrate that
the O-NFSVs provide a few ensemble members that cap-
ture the RI, particularly at the finer model resolution,
while both the SKEB and SPPT do not produce any. Fur-
thermore, the O-NFSVs allow for obtaining an ensem-
ble mean whose forecasting errors are often significantly

smaller than those of SKEB and SPPT. It is also demon-
strated that the O-NFSVs, although they are optimized
based on potential temperature and moisture for TC inten-
sity, produce a distribution of TC track members close to
the best track at both model resolutions. SKEB and SPPT
generate ensembles that mainly spread close to the control
forecast, leading to an ensemble mean far away from the
best track.

When statistics are gathered for the six TC cases
selected, similar results are obtained at resolutions of
54 and 6 km. Specifically, at both model resolutions, the
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F I G U R E 17 (a) The BS
scores, (b) the ROC curves, and
(c) the reliability diagrams, of the
track strike probability computed
based on the ensembles
generated by the orthogonal
nonlinear forcing singular vectors
(O-NFSVs) (blue bars and lines),
the stochastic kinetic-energy
backscatter (SKEB) (purple bars
and lines), and the stochastically
perturbed parametrization
tendency (SPPT) (green bars and
lines) for the six TC cases using
the WRF model with 2 km
resolution.

ensembles generated by the O-NFSVs usually possess a
much larger spread and smaller ensemble mean forecast
errors than those generated by the SKEB and SPPT, par-
ticularly during the intensification period (including the
RI processes). This leads to smaller discrepancies between
the ensemble spread and the ensemble mean forecast
error and points to a higher reliability of the ensembles
generated by the O-NFSVs for TC intensity forecasting.
The ensembles based on the O-NFSVs also show lower
BSs for intensity and track and better ROC curves for track
strike probability. These results illustrate that the proba-
bility forecast skills for TC intensity and track are higher
than those of SKEB and SPPT. Furthermore, the reliability
diagram for the track forecasting is close to the diagonal
for the O-NFSVs for both resolutions. All these results
indicate that the O-NFSVs are more appropriate than
SKEB and SPPT in representing the model uncertainties
of WRF at resolutions of 54 and 6 km and in improving
the TC forecasting skill.

When a comparison is made between the coarse (i.e.
EX-54 km) and finer (i.e. EX-6 km) resolutions, we find
that finer resolutions augment the importance of using
O-NFSVs in improving TC forecasting. For the intensity

forecasts, the finer resolutions provide a considerable
decrease in the errors in the control forecast, which, com-
bined with the O-NFSVs, further reduce these errors.
However, the use of both SKEB and SPPT does not reduce
them any further. For the track forecasts, SKEB and SPPT
both decrease the errors in the control forecasts with finer
resolutions, but the O-NFSVs tend to reduce them by
much more.

In the convection-permitting model, the role of the
O-NFSVs is further tested. They show similar perfor-
mances as for the coarser resolution, except for a less good
reliability of the TC intensity forecasting than the SPPT
and SKEB schemes, as measured by the spread-skill rela-
tionship. The O-NFSVs scheme, however, shows superior
performance than the SKEB and SPPT for ensemble fore-
casting of the TC track and intensity while comparing
other skill scores.

Nevertheless, the reliability of the ensembles gener-
ated by the O-NFSVs needs to be improved, especially
when the convection-permitting model is used. These
structures only represent model uncertainty errors. In
fact, TC forecasts are contaminated by both initial errors
and model errors. A natural extension for the current
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analysis will be to explore the approach proposed in Duan
et al. (2022). They developed the C-NFSVs ensemble fore-
casting method that consists of optimally combining initial
perturbations and model perturbations in a nonlinear set-
ting. In particular, the approach allows us to take into
account the interaction between the sources of initial and
model errors. Duan et al. (2022) in particular show that the
C-NFSVs yield an ensemble spread that is almost identical
to the ensemble mean forecasting error and provide highly
reliable ensembles in the context of an idealized model. It
is therefore expected that when the O-NFSVs are properly
combined with initial perturbations, new highly reliable
ensembles will be available. This aspect will be explored in
the future for TC forecasting.

Multiple perturbation schemes are often adopted to
achieve higher forecasting skill (Jankov, 2017; Melhauser
et al., 2017; Xu et al., 2022a, 2022b). For instance, Xu
et al. (2022a, 2022b) superimposed the first NFSV on SPPT
perturbations and further improved the probabilistic skill
of convective-scale systems. In fact, when comparing the
O-NFSVs with SKEB and SPPT, we found that with the
change in model resolution, they differentially impact the
TC forecasting skill. This interesting phenomenon sug-
gests that further exploration of the usefulness of the
hybrid scheme of O-NFSVs, SKEB and/or SPPT is worth
pursuing in a future study.

In addition to SPPT and SKEB, a large body of
research discusses the usefulness of the Stochastically
Perturbed Parameterization scheme (i.e. SPP) to emu-
late model uncertainty (Ollinaho, 2017). The SPP focuses
on perturbing one or a set of parameters with stochas-
tic noise. The O-NFSVs, on the other hand, tend to
describe the impact of tendency errors, which is similar
to SKEB and SPPT. Therefore, O-NFSVs, as a new ensem-
ble forecasting method, naturally compares with SKEB
and SPPT.

Although we have shown the effectiveness of the
O-NFSVs in improving TC forecasting skill, the current
approach requires a massive amount of computer time.
In this study, we use the SPG2 algorithm to compute the
O-NFSVs, which calls the adjoint of the WRF model dur-
ing the iteration process. This requires many computing
resources. Furthermore, the NFSVs must be solved one
by one. More precisely, 1–2 hr is necessary to compute
one NFSV with 144 computing kernels in parallel. It is
also noted that when calculating the O-NFSVs, pertur-
bations to wind field or higher vertical resolution would
cause the integration to break down. We believe that this
problem is due to the limited computing resources rather
than the sensitivity of O-NFSVs. We are currently working
on the development of a new efficient algorithm, which
is similar to the Lanczos algorithm (Simon, 1984), for cal-
culating singular vectors (SVs: Mureau et al., 1993; Buizza

and Palmer, 1995; Molteni et al., 1996) or forcing singu-
lar vectors (FSVs: Barkmeijer et al., 2003). We have used
an idealized model to test it, and the preliminary results
are encouraging. Its advantage is that it allows for com-
puting all the NFSVs at once. In other words, we would
be able to use this algorithm to generate all the above 26
O-NFSVs of WRF in 1–2 hours, even less time in the future.
This new efficient algorithm for the O-NFSVs may help
address the above difficulty and generalize the potential
applications of the O-NFSVs, which will be reported in a
follow-up article.
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APPENDIX A. STATISTICAL TOOLS TO
EVALUATE THE FORECAST SKILL

A.1 Forecast error
The forecast error of the TC track is determined by
the great-circle distance between the forecast TC centre
F = (af, yf) and observed TC centre A = (ao, yo), where
af and ao are the longitudes and yf and yo are the lati-
tudes. Then, the forecast errors of the TC track can be
written as

Etrack = |F − A| = 111.11 ⋅ cos−1

× [sin yo sin yf + cos yo cos yf cos(ao − af)] . (A1)

The forecast error of TC intensity (i.e. Pmin and V max)
is determined by the difference between the forecast TC
intensity (i.e. F) and observed TC intensity (i.e. A), which
can be expressed as:

Eintensity = |F − A|. (A2)

A.2 Ensemble spread
The ensemble spread reflects the uncertainty of the fore-
cast. The ensemble spread is described as follows:

s =

√√√√ 1
N-1

N∑
i=1

|||Fi − F|||2, (A3)

where F = 1
N

∑N
i=1Fi is the ensemble mean and N is the

number of members.
For a reliable ensemble forecast system, the ratio of

the error of the ensemble mean forecast and the spread of
ensemble members should be close to 1.
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A.3 Brier score
The Brier score (BS: Brier, 1950) is the mean square error
of the probability forecasts and can be described as:

BS = 1
N

N∑
𝑗=1

(
p𝑗 − o𝑗

)2
, (A4)

where N is the number of realizations of the prediction
process, p𝑗 is the probability of a dichotomous event in the
jth prediction process and o𝑗 is the probability of an obser-
vation in the jth prediction process. When the BS value is
closer to 0, the probability forecast skill is higher.

In this study, the BS value is used to evaluate the prob-
ability forecast skills of TC track intensity. For the TC
track, the BS values of the track strike probability are cal-
culated. For intensity, the BS values of five TC intensity
categories of ensemble members are calculated according
to the following classification.

Tropical Depression (TD) 22 kt≤maximum wind<34
kt.

Tropical Storm (TS) 34 kt≤maximum wind<64 kt.
Typhoon (TY) 64 kt≤maximum wind<80 kt.
Severe typhoon (STY) 80 kt≤maximum wind<100 kt.
Super-typhoon (Super) maximum wind ≥100 kt.

When an ensemble member for each TC is generated,
the relevant TC intensity may fall in different categories
at different times during the forecast period. With these
intensities and the corresponding observed intensities, one
can calculate the BS scores for different intensity cate-
gories in the forecast period.

A.4 Relative operating characteristic curve
The relative operating characteristic curves (ROCs) assess
the ability of the forecast to discriminate between event
and non-event. By considering whether an event occurs at

T A B L E A1 Two-by-two contingency table of a binary event.

Observation

Forecast Yes No Total

Yes a b a+ b

No c d c+ d

Total a+ c b+ d

every grid and checking forecasts against observations, a
two-category contingency table is constructed in Table A1,
where a and b represent the number of hits and false
alarms, respectively, and c and d represent the number of
misses and correct rejections, respectively.

Then, the hit rate (H) and the false alarm rate (F) can
be calculated as follows:

H = a∕(a + c)
F = b∕(a + b). (A5)

The ROC curve can be obtained by the pairs H and F. Per-
fect skill produces a curve from bottom left to top left to top
right, and no skill is indicated by the diagonal line from
(0,0) to (1,1).

A.5 Reliability diagram
The reliability diagram (RD) is used to assess the degree of
matching between the forecast probability and observation
frequency. The forecast probability can be set to multiple
intervals between 0 and 1. Here, we calculate the obser-
vation frequency of samples with the interval [0.0–0.1,
0.2–0.3, … , 0.9–1] for the forecast probability. If the fore-
cast probability is consistent with the frequency of the
event, the reliability line would be distributed from (0.0)
to (1.1), which indicates that the probabilistic forecasts are
credible.

 1477870x, 2023, 755, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4502 by Institution O
f A

tm
ospheric Physics, W

iley O
nline L

ibrary on [04/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	A new approach to represent model uncertainty in the forecasting of tropical cyclones: The orthogonal nonlinear forcing singular vectors 
	1 INTRODUCTION
	2 THE O-NFSVS APPROACH FOR MEASURING THE MODEL ERROR EFFECT
	3 THE WRF MODEL AND TC CASES
	4 EXPERIMENTAL STRATEGY
	5 PERFORMANCE OF THE ENSEMBLE FORECASTING GENERATED BY O-NFSVS FOR TCS
	5.1 The ensemble forecasting for TC Hato (201713)
	5.1.1 Results for the coarse resolution
	5.1.2 Results with the higher resolution

	5.2 Statistical evaluation of the ensemble forecasting skill for the six TCs
	5.2.1 Behaviour of the ensemble mean and spread
	5.2.2 Probabilistic forecasts.


	6 TEST OF THE O-NFSVS IN THE CONVECTION-PERMITTING WRF MODEL
	7 CONCLUSION AND DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	ORCID
	REFERENCES

	APPENDIX A. STATISTICAL TOOLS TO EVALUATE THE FORECAST SKILL
	A.1 Forecast error
	A.2 Ensemble spread
	A.3 Brier score
	A.4 Relative operating characteristic curve
	A.5 Reliability diagram

