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ABSTRACT: The orthogonal conditional nonlinear optimal perturbations (O-CNOPs) approach for measuring initial
uncertainties is applied to the Weather Research and Forecasting (WRF) Model to provide skillful forecasts of tropical
cyclone (TC) tracks. The hindcasts for 10 TCs selected from 2005 to 2020 show that the ensembles generated by the
O-CNOPs have a greater probability of capturing the true TC tracks, and the corresponding ensemble forecasts signifi-
cantly outperform the forecasts made by the singular vectors, bred vectors, and random perturbations in terms of both
deterministic and probabilistic skills. In particular, for two unusual TCs, Megi (2010) and Tembin (2012), the ensembles
generated by the O-CNOPs successfully reproduce the sharp northward-turning track in the former and the counterclock-
wise loop track in the latter, while the ensembles generated by the other methods fail to do so. Moreover, additional
attempts are performed on the real-time forecasts of TCs In-Fa (2021) and Hinnamnor (2022), and it is shown that
O-CNOPs are very useful for improving the accuracy of real-time TC track forecasts. Therefore, O-CNOPs, together with
the WRFModel, could provide a new platform for the ensemble forecasting of TC tracks with much higher skill.

KEYWORDS: Tropical cyclones; Uncertainty; Ensembles; Probability forecasts/models/distribution; Nonlinear models

1. Introduction

Tropical cyclones (TCs), a type of high-impact weather
event occurring in the western North Pacific basin (WNP),
cause great losses in terms of human lives and property every
year from high winds, heavy rainfall, and storm surges along
coastlines. Improving the accuracy of TC forecasts helps to
minimize property damage and casualties from TCs. One of
the most important aspects of predicting a TC is its future
track (Wang 2014); furthermore, accurate track forecasts
would also help to improve other aspects of TC forecasts, such
as wind speed and precipitation (Majumdar and Finocchio
2010).

In recent decades, TC track forecast errors, especially for
short-range forecasts, have substantially decreased due to
progress in numerical weather prediction models and the
greater number of observations obtained by satellites and air-
crafts (Goerss et al. 2004; Rappaport et al. 2009). However,
providing more skillful medium-range (approximately 5 days)
track forecasts to the public for the early warning of TCs is
also essential. In addition, although the forecast errors of TC
tracks have been reduced on average, there are still cases that
have very large forecast errors, particularly for some unusual
cases (Puri et al. 2001; Yamaguchi and Majumdar 2010; Titley
et al. 2020). There is potential for further reducing the annual
mean of TC track errors by reducing the track errors of these
particular cases. Large track errors are often related to initial
uncertainties in the TC steering flow associated with nearby
synoptic-scale systems, such as the subtropical high (SH) and
midlatitude troughs (Yamaguchi and Majumdar 2010; Torn

et al. 2018; Magnusson et al. 2019). In particular, Miyachi and
Enomoto (2021) noted that the prediction of the steering flow
is sensitive to initial conditions and that the uncertainties sig-
nificantly affect the forecasting skills of the recurvature tracks
of TCs. There are inherent difficulties in accurately forecast-
ing TC tracks by a single deterministic forecast given the inev-
itable initial errors, which motivates the use of ensemble
forecasts to describe and reduce the forecast uncertainties
associated with initial uncertainties. Most operational centers
have built and developed their ensemble prediction systems
to improve forecast skill, provide uncertainty information and
deliver probability forecasts for TC tracks (Puri et al. 2001;
Yamaguchi et al. 2009; Dube et al. 2020).

Currently, several perturbation methods have been devel-
oped to represent the initial uncertainties. Singular vectors
(SVs) and bred vectors (BVs) (Lorenz 1965; Epstein 1969;
Leith 1974) are two popular methods. They both aim to prop-
erly sample the fastest-growing components of the initial
errors, which are believed to be potentially responsible for a large
part of forecast uncertainties (Molteni et al. 1996; Magnusson
et al. 2008; Diaconescu and Laprise 2012). The SVs method
has been successfully applied at the European Centre for
Medium-Range Weather Forecasts (ECMWF) to generate ini-
tial perturbations (Molteni and Palmer 1993; Molteni et al.
1996). Benefiting from the application of target SVs on TCs,
the track forecast skill of the ECMWF has been improved
(Puri et al. 2001; Yamaguchi and Majumdar 2010; Titley et al.
2020). Under the assumption that perturbations grow linearly,
SVs are able to capture a set of orthogonal initial perturbations
that have the largest growth rates within a finite time interval
(Lorenz 1965). However, SVs sometimes cannot capture the
most unstable directions in nonlinear models, resulting in anCorresponding author: Wansuo Duan, duanws@lasg.iap.ac.cn
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underestimation of the forecast uncertainty (Anderson 1997;
Hamill et al. 2000). For example, Buizza (1994) noted that
some leading SVs represent spurious modes that have a large
growth rate in the linear model but decay quickly in the non-
linear model. Puri et al. (2001) also observed that similar
modes appeared when computing tropical SVs and target SVs
for TCs. Ehrendorfer et al. (1999) noted that the tangent linear
assumption is only qualitatively accurate for small-scale SVs
structures in regions dominated by moist convection. The con-
tradiction in which the evolution of initial errors is highly non-
linear while SVs are based on linear hypotheses has limited
the role of SVs in improving ensemble forecasting skill.

To overcome the linear limitation of SVs, Mu et al. (2003)
proposed the conditional nonlinear optimal perturbation
(CNOP) method. The CNOP method is a natural extension
of the leading SV (LSV) method into the nonlinear regime
and represents the initial perturbation having the largest non-
linear evolution within a finite time interval (Duan et al. 2004;
Duan and Mu 2009). The CNOP method has been success-
fully applied to predictability studies of high-impact weather
and climate events, such as El Niño–Southern Oscillation
(ENSO; Duan et al. 2018), the Indian Ocean dipole (IOD;
Feng and Duan 2014), and TCs (Mu et al. 2009; Qin et al.
2013). To consider the influence of nonlinearity on ensemble
forecasts, Jiang et al. (2009) replaced LSVs with CNOPs to
yield initial perturbations in a two-dimensional quasigeostrophic
model and consequently made the forecast quality better than
the SVs method. This indicates the benefits from the initial per-
turbations that describe the nonlinearly fast-growing component
of the initial errors of the ensemble forecast. However, such an
approach is still insufficient to estimate forecast uncertainties in
nonlinear models because the other SVs do not consider the
effect of nonlinearity.

To fully consider the influence of nonlinearity, Duan and
Huo (2016) further proposed the orthogonal conditional nonlin-
ear optimal perturbations (O-CNOPs) method. The O-CNOPs
generalize SVs to fully nonlinear fields and represent a group of
mutually independent initial perturbations that have the maxi-
mum nonlinear evolution in their respective subphase spaces
within a finite time interval (Duan and Huo 2016; Huo et al.
2019; Wang and Duan 2019). These characteristics illustrate the
potential of the O-CNOPs method to generate initial perturba-
tions for ensemble forecasts. Duan and Huo (2016) first applied
the O-CNOP method to a simple Lorenz-96 model (Lorenz
1996) to perturb the initial conditions, leading to a much higher
forecast skill than the SVs method. Huo et al. (2019) then
adopted O-CNOPs to conduct ensemble forecast experiments
for TC tracks using the fifth-generation Pennsylvania State Uni-
versity, National Center for Atmospheric Research Mesoscale
Model (MM5) and showed advantages over the forecasts made
by the random perturbation (RP), BV, and SV methods. How-
ever, this previous study did not examine the performance of
O-CNOPs for the forecasting of unusual TC tracks, which
still poses challenges for operational forecasts; furthermore,
O-CNOPs have not yet been used in real-time TC forecasting.
In addition, the MM5 has been thought of as falling behind the
ranks and performs much worse than the Weather Research
and Forecasting (WRF) model in simulations of TC tracks

(Pattanayak and Mohanty 2008). Hence, further applying the
O-CNOPs method to the WRF Model is of more practical sig-
nificance for improving the forecasts of TC tracks. The CNOP
have been applied in the WRF version 3.6 (WRFV3.6) model
to identify the sensitive area for targeted observations associ-
ated with TC forecasts in a real-time field campaign, and when
assimilating the corresponding targeted data, unanimously posi-
tive effects on the TC track forecasting skill have been achieved
(Qin et al. 2022). This useful sensitivity revealed by the CNOP
is also the requirement of ensemble forecasting with respect to
initial perturbations and therefore encourages us to use the
WRFV3.6 model to examine the usefulness of O-CNOPs in en-
semble forecasts for the first time. Therefore, we naturally ask
the following: can O-CNOPs still provide improvements in the
forecasting skill of TC tracks? To answer this question, we con-
ducted ensemble forecasting experiments to provide both deter-
ministic and probabilistic forecasts for TC tracks in the present
study and evaluate the performance of the O-CNOPs method
in forecasting TC tracks, particularly concerning unusual TCs.
Moreover, we implemented the O-CNOPs method in the real-
time forecasts of TC In-Fa (2021) and TC Hinnamnor (2022),
and in the present study, we also report these forecasts and indi-
cate the potential of O-CNOPs for enhancing the accuracy of
real-time TC track forecasts in the future.

The remainder of the paper is organized as follows. Section 2
introduces the TC cases, model configuration, and ensemble
forecast methods, and section 3 presents the O-CNOPs configu-
ration for the ensemble forecasting of TC tracks. Section 4 ap-
plies O-CNOPs in the hindcasts of strong TCs during 2018–20,
hindcasts of the two unusual TC tracks and real-time forecasts
of TCs IN-FA (2021) and Hinnamnor (2022). In section 5, the
performance of the O-CNOPs method is statistically evaluated
by comparison with the SV, BV, and RP methods, and in
section 6, the performance of the O-CNOPs for determining
TC track forecasts in the MM5 and WRF Model is discussed.
Finally, a summary is provided in section 7.

2. TC cases, model, and methods

a. Case overview

Six TC cases that had great impact on China from 2018 to
2020 and reached the strong typhoon (STY) or super typhoon
(Super TY) levels are selected for testing O-CNOPs, and two
others, STY Matsa (2005) and Super TY Sepat (2007), which
were the only two strong TC cases adopted by Huo et al.
(2019) for examining the application of O-CNOPs in the
MM5, are also selected to compare the ensemble forecasting
skills in the MM5 and WRF Model. Among these TCs, five
[i.e., Matsa (2005), Sepat (2007), Maria (2018), Mangkhut
(2018), and Lekima (2019)] tended to move northwestward or
westward toward land in the coastal areas of southeastern
China, while the other three [i.e., Bavi (2020), Maysak (2020),
and Haishen (2020)] moved straight northward and influ-
enced Northeast China.

Super TY Megi (2010) and STY Tembin (2012) are two ad-
ditional TC cases. They exhibited unusual movements during
their passages (see Fig. 1), and their operational forecasts
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were challenging (Qian et al. 2013; Tallapragada et al. 2015;
Moon and Ha 2019). Megi (2010) moved westward into the
South China Sea from 13 to 19 July 2010, abruptly turned al-
most 908 to the north at 0000 UTC 20 October, and subse-
quently made landfall on the coast of Fujian Province, China,
at 0455 UTC 23 October (Qian et al. 2013). For Tembin
(2012), its erratic track appeared to be associated with binary
interactions with TC Bolaven (2012) when they were close to
each other. Specifically, Tembin (2012) moved westward from
22 August 2012 and entered the northern part of the South
China Sea on 24 August; then, it executed a slow counter-
clockwise loop in the following 2 days and moved northeast-
ward after 27 August (Liu et al. 2015).

In addition to the above 10 TCs, we made additional attempts
to forecast STY In-Fa (2021) and Super TY Hinnamnor (2022)
in real time. In-Fa (2021) had the longest-lasting effect on the
Chinese mainland on record. It first made landfall in Zhoushan
(on the east coast of China’s Zhejiang Province) at 0430 UTC
25 July 2021 and then made landfall in Zhejiang at 0150 UTC
26 July; afterward, In-Fa (2021) continued to move northwest-
ward slowly, lingered for a long time on land and brought contin-
uous precipitation to China. Hinnamnor (2022) had an unusual
V-shaped track during the period from 28 August to 6 September
2022. At the early stage, Hinnamnor (2022), with extreme wind,
steadily moved southwestward to approach the east coast of
China. Suddenly, Hinnamnor (2022) turned to the northeast on
2 September and did not directly make landfall in China but
brought heavy rain and wind to China’s coastal areas. Subse-
quently, Hinnamnor (2022) continued to move northeastward
and made landfall in South Korea on 6 September 2022.

In summary, a total of 12 TCs are investigated in the pre-
sent study to evaluate the performance of the O-CNOPs in

the ensemble forecasts of TC tracks. The forecast periods are
chosen to be 5 days for the TC cases to cover their landfall
processes except that the forecast periods of Megi (2010) and
Hinnamnor (2022) are 6 and 7 days, respectively, because this
much better captures not only their sharp turn but also their
landfall after turning, and even longer forecast periods are
chosen for Tembin (2012) to cover its complete loop track.
Then, a total of 29 forecast periods are determined. The spe-
cific initial and end times of the forecast periods are shown in
Table 1, and the best tracks obtained from the China Meteo-
rological Administration (CMA) of these TCs are plotted in
Fig. 1.

b. Model configuration

As mentioned in the introduction, we use the WRFV3.6
model in the present study. The model domain is configured
with 151 3 96 model grid points in the west–east and south–
north directions and, similar to Huo et al. (2019), has a hori-
zontal grid spacing of 60 km, which makes it easy to compare
the results in the present study with those in Huo et al. (2019).
The simulation area covers the region of the WNP and South
China Sea. A coarser vertical resolution of 15 vertical levels with
the top level at 50 hPa is experimentally adopted for less use of
computing resources. The nonlinear physics parameterizations

FIG. 1. The best tracks obtained from the China Meteorological
Administration (CMA) for the 12 selected TCs in this study. The
position at the initialized time of the first forecast period of TC
forecasts is used as the beginning of the track, and its subsequent
track is marked by dots every 6 h. The red and green stars repre-
sent the first and second landfall points of TC In-Fa (2021).

TABLE 1. List of TC names, initialized times (UTC), and end
times of 29 forecasts for 12 TCs carried out in this study.

TC names
Initialized time of

forecasts End time of forecasts

Matsa 1200 UTC 3 Aug 2005 1200 UTC 8 Aug 2005
Sepat 1200 UTC 15 Aug 2007 1200 UTC 20 Aug 2007
Maria 0000 UTC 6 May 2018 0000 UTC 11 May 2018

1200 UTC 6 May 2018 1200 UTC 11 May 2018
0000 UTC 7 May 2018 0000 UTC 12 May 2018

Mangkhut 1200 UTC 11 Sep 2018 1200 UTC 16 Sep 2018
0000 UTC 12 Sep 2018 0000 UTC 17 Sep 2018
1200 UTC 12 Sep 2018 1200 UTC 17 Sep 2018

Lekima 1800 UTC 4 Aug 2019 1800 UTC 9 Aug 2019
0600 UTC 5 Aug 2019 0600 UTC 10 Aug 2019
1800 UTC 5 Aug 2019 1800 UTC 10 Aug 2019

Bavi 1800 UTC 21 Aug 2020 1800 UTC 26 Aug 2020
0600 UTC 22 Aug 2020 0600 UTC 27 Aug 2020
1800 UTC 22 Aug 2020 1800 UTC 27 Aug 2020

Maysak 1800 UTC 28 Aug 2020 1800 UTC 2 Sep 2020
0600 UTC 29 Aug 2020 0600 UTC 3 Sep 2020
1800 UTC 29 Aug 2020 1800 UTC 3 Sep 2020

Haishen 1200 UTC 2 Sep 2020 1200 UTC 7 Sep 2020
0000 UTC 3 Sep 2020 0000 UTC 8 Sep 2020
1200 UTC 3 Sep 2020 1200 UTC 8 Sep 2020

Megi 1200 UTC 17 Oct 2010 1200 UTC 23 Oct 2010
Tembin 0000 UTC 21 Aug 2012 0000 UTC 29 Aug 2012

0000 UTC 22 Aug 2012 0000 UTC 29 Aug 2012
0000 UTC 23 Aug 2012 0000 UTC 29 Aug 2012

In-Fa 0000 UTC 21 May 2021 0000 UTC 26 May 2021
0000 UTC 22 May 2021 0000 UTC 27 May 2021
0000 UTC 23 May 2021 0000 UTC 28 May 2021
0000 UTC 24 May 2021 0000 UTC 29 May 2021

Hinnamnor 0000 UTC 30 Aug 2022 0000 UTC 6 Sep 2022
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selected in the WRF Model include the Lin microphysics
scheme (Lin et al. 1983), Kain–Fritch cumulus parameteriza-
tion scheme (Kain 2004), Dudhia shortwave radiation scheme
(Dudhia 1989), and Rapid Radiative Transfer Model longwave
radiation scheme (Mlawer et al. 1997). The WRFV3.6, together
with its adjoint model, is used to calculate the O-CNOPs (see
section 2c), where only three simplified physics packages, sur-
face friction, cumulus parameterization, and large-scale conden-
sation, are available for the adjoint model (Xiao et al. 2008;
Zhang et al. 2013). This configuration of the WRF and its ad-
joint model have been widely used in studies of data assimila-
tion or ensemble forecasting.

To hindcast the 10 TCs (see section 2a), the analysis data
derived from the National Centers for Environment Predic-
tion final operational global analysis (NCEP FNL) dataset are
adopted to provide the initial and boundary conditions, where
the horizontal resolution is 18 3 18, and the time interval is
6 h. It is noted that the present study focuses on the perfor-
mance of the O-CNOPs and mainly investigates the effect of
the initial uncertainties on TC track forecasts; thus, a more ac-
curate analysis boundary condition could highlight the role of
the initial conditions in the TC track forecasts. Strictly speak-
ing, these forecasts are not in retrospective circumstances and
very unrealistic as compared with those that use forecast
boundary conditions. However, in contrast with the subse-
quent real-time forecasts, we still call them “hindcasts.” In
fact, when we conduct the real-time forecasts of the two addi-
tional TC cases of STY In-Fa (2021) and Super TY Hinnam-
nor (2022), we have to adopt more realistic forecast data to
provide initial and boundary conditions; specifically, we take
the data from the NCEP Global Forecast System (GFS) fore-
cast dataset with a horizontal resolution of 0.258 3 0.258 and a
time interval of 6 h. In this case, we investigate the role of
having a much more accurate estimation of the initial uncer-
tainties in improving the ensemble forecast skill under the ex-
istence of large boundary condition errors, which indicates
that the O-CNOPs method is examined under more realistic
circumstances. Finally, for the verification of the TC track
forecasts, the best track dataset from the CMA (Lu et al.
2021) is used in this study.

c. The O-CNOPs method

The O-CNOPs method (Duan and Huo 2016) is adopted to
perturb the initial conditions of the control forecast generated
by the WRF Model for the ensemble forecast experiments of
the TC track. The resultant forecast skills are compared with
those of three traditional methods: the RPs and SVs methods,
as mentioned in the introduction, and the orthogonal BVs
method, which is similar to the orthogonal nonlinear local
Lyapunov vectors proposed by Feng et al. (2016, 2018). This
subsection gives a brief overview of the O-CNOPs method
adopted in this study, while descriptions of the traditional
methods are given in appendix A.

Consider a nonlinear model M acting on an N-dimensional
state vector X0 2 Rn, such that Xt 5 M(X0), where the sub-
script t refers to the integration time, and its corresponding
time interval [0, t] is named the optimization time interval

(OTI) for O-CNOPs. Let dX0 and dXt represent the initial
and final perturbation states, respectively; then, Xt 1 dXt 5

M(X0 1 dX0). If two norms, C1 and C2, are chosen to measure
the amplitude of the perturbations at the initial and final
times, the O-CNOPs can be formulated by Eq. (1), where the
O-CNOPs identify a group of orthogonal initial perturbations,
i.e., 1st-CNOP, 2nd-CNOP, 3rd-CNOP, … , jth-CNOP … ,
etc. The jth-CNOP belongs to the subspace Vj and is referred
to as the initial perturbation x*0j that satisfies the constraint in
Eq. (2) and has the largest nonlinear evolution at time t

(Duan and Huo 2016):

J(x*0j) 5 max
x0j2Vj

[PMt(X0 1 x0j) 2 PMt(X0)]TC2[PMt(X0 1 x0j)

2 PMt(X0)], (1)

where subspace Vj is represented by

Vj 5
{x0j 2 R

n|xT0jC1x0j # d}, j 5 1,

{x0j 2 R
n|xT0jC1x0j # d, x0j ⊥Vk, k 5 1, …, j 2 1}, j . 1,

⎧⎪⎪⎨⎪⎪⎩
(2)

where P is a local projection operator, which has a value of 1
when the final perturbations are in the verification region and
otherwise, it has a value of 0, the superscript “T” is the trans-
position symbol, and d is a positive number that constrains
the amplitude of the initial perturbations. Note that the norms
C1 and C2, local projection operator P, OTI, and initial per-
turbation amplitude d need to be determined experimentally
according to the problem of interest (see section 3 for TC
track forecasts).

Based on the WRF and its adjoint model, we adopt the Spec-
tral Projected Gradient 2 optimization algorithm (Birgin et al.
2000) to compute the O-CNOPs along the fastest-descending
direction of the gradient of the cost function in Eq. (1), where
the norms (C1 and C2 at the initial and optimization times both
use the total moist energy (TME, also adopted to compute the
RPs, BVs and SVs) and are expressed by Eq. (3):

‖dX‖2C1
5 ‖dX‖2C2

5
1
D

�
D

�1

0
u′2 1 v′2 1

g

Nu

( )2
u′2 1 RaTr

p′s
pr

( )2[

1
L2

cpTr

q′2
]
dsdD, (3)

where dX is composed of u′, v′, u′, p′s, and q′, representing
the perturbed zonal wind, meridional wind, potential temper-
ature, surface pressure, and water vapor mixing ratio, respec-
tively; the constants g, N , Ra, L, and cp are the gravitational
acceleration, Brunt–Väisälä frequency, dry air gas constant,
latent heat of condensation per unit mass, and specific heat at
a constant pressure, respectively; u 5 300K, Tr 5 270 K and
pr 5 1000 hPa are prescribed physical parameters; D is the
horizontal domain; and s represents the vertical coordinate.
The vertical integration of the kinetic energy and potential
energy term extends up to the top level, while that of the
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water vapor term is limited up to approximately 500 hPa. By
employing the local projection operator P, the verification re-
gion is determined to cover a 108 3 108 box centered on the
TC position at the optimization time, where the boxed region
is sufficient to interpret the positional uncertainties of the TC
circulation at the optimization time (Tseng and Lai 2020),
while the initial perturbation region covers the whole domain,
including the TC itself and the environmental flow.

3. Configuration of the O-CNOPs for TC track forecasts
generated by the WRF Model

The ensemble forecasting skill, as mentioned in section 2c,
is sensitive to the ensemble size N, initial perturbation ampli-
tude d, and OTI for computing the optimal initial perturba-
tions (Wang and Duan 2019). However, these essential
parameters are different for different models and methods
(Puri et al. 2001; Yamaguchi and Majumdar 2010), and there
is not a universal approach to determine them. In the present
study, we design sensitivity experiments to evaluate the sensi-
tivity of the ensemble forecasting skill to these parameters
and determine their values for TC track forecasting. The per-
turbation amplitude d is experimentally chosen from the
range 0.12 to 1.8, which avoids unreasonable perturbation am-
plitudes that can trigger numerical instabilities and ensures
that the initial perturbation amplitudes are physically reason-
able; the OTI is restricted so that it does not exceed 36 h and
includes 6, 12, 24, and 36 h. Therefore, a total of 28 combina-
tions of d and OTIs are shown in Table 2. For each combina-
tion, the O-CNOPs are calculated for each control forecast
and then added to the initial field of the control forecast with
a positive/negative perturbation pair. With these perturbed
initial fields, the WRF Model is integrated, and a group of
perturbed forecasts is obtained, which, together with the con-
trol forecasts, are composed of ensemble forecasting mem-
bers. Next, we finalize the ensemble parameters of ensemble
size N, initial perturbation amplitude d, and OTI, which
would help the ensemble forecasts of TC tracks achieve much
higher ensemble forecasting skill.

We determine the ensemble parameters by evaluating the
ensemble forecasting skills of TCs from both ensemble mean
forecasting and TC strike probability forecasting. The ensem-
ble mean is calculated by taking the mean of all ensemble
members. The TC strike probability focuses on a spatial loca-
tion and is defined as the probability that a TC will pass within
a 120-km radius from the location during the next 120 h
(WMO 2013). We compute the ensemble mean forecasting
error of the TC track to evaluate the deterministic forecasting
skill, which is defined as the great-circle distance between the
best track and the ensemble mean forecasting at a lead time
(Heming 2017); for the TC strike probability, we compute the
Brier skill score (BSS) to measure the relative skill of the proba-
bilistic forecast over that of the control forecast in terms of fore-
casting whether an event occurred. Larger BSS values indicate
higher probabilistic forecasting skills. The details of these meas-
urements are introduced in appendix B.

We select one TC case from each year during 2018–20
shown in Table 1, and obtain three TC cases of Manghut

(2018), Lekima (2019) and Bavi (2020), which present west-
ward, northwestward, and straight northward moving tracks,
respectively (see Fig. 1). Additionally, the two TC cases of
Matsa (2005) and Sepat (2007) adopted in Huo et al. (2019)
are selected. With these five TC cases, we optimize the ensem-
ble parameters by performing the forecasts over the predeter-
mined forecast periods (see Table 1). For each Ei in Table 2,
we conduct ensemble forecasting experiments for the prede-
termined five TC cases by assigning varying OTIs in Table 2
and varying ensemble sizes N (see Fig. 2). We first evaluate
the ensemble mean forecasting errors of TC tracks averaged
over all lead times in 5 days for all five TC cases and find that
similar results are obtained for each value of d as N increases.
For simplicity, we only plot the results of d 5 1.8 in Fig. 2. It
is evident that the ensemble mean forecasts of the TC tracks,
despite presenting different forecasting errors and improve-
ments against the control forecast for different OTIs and en-
semble sizes N, all significantly improve the control forecast,
with the largest improvement being for an OTI of 6 h, and in
this case, ensemble sizes from 13 to 21 yield better results
than other sizes [see Figs. 2a(1),(2)]. Afterward, we examine
the ensemble mean forecasting errors for an OTI of 6 h with
different perturbation amplitudes d and find that the error for
d 5 1.8 is the smallest and decreases the control forecasting
error to the greatest extent [see Figs. 2b(1),(2)]. The BSS of
the strike probability for an OTI of 6 h and perturbation am-
plitude d 5 1.8 is also superior to those of other values of the
OTI and d [see Figs. 2a(3),b(3)]. Therefore, we determine the
ensemble parameters of the OTI and d as 6 h and 1.8, respec-
tively. For the ensemble sizes, it has been shown that the en-
semble mean forecasting errors for an OTI of 6 h are much
smaller for ensemble sizes N from 13 to 21; nevertheless,
when we look at the BSS as a function of ensemble sizes, such
ensemble sizes cannot support the largest BSS of the strike prob-
ability but merely approach the largest score [see Fig. 2a(3)]. In
this situation, we have to balance the OTI, d, and N to achieve
much higher ensemble forecasting skill. As a result, we select
an ensemble size of N 5 21 because the corresponding skill is
nearest to the largest score. Although this ensemble size is
finalized for the O-CNOPs using the WRFV3.6, there are pre-
vious studies and even operational forecasts that adopt ap-
proximately the same ensemble sizes (Zhou et al. 2017; Li
et al. 2019; Mamgain et al. 2019; Sarkar et al. 2021). This im-
plies that the ensemble size of 21 could be feasible. Therefore,
we determine the ensemble parameters of the O-CNOPs as
OTI 5 6 h, perturbation amplitude d 5 1.8, and ensemble size
N5 21.

TABLE 2. Twenty-eight combinations of initial perturbation
amplitudes d and OTIs.

OTI (h)

Initial perturbation amplitude (J kg21)

0.12 0.3 0.6 0.9 1.2 1.5 1.8

6 E1 E2 E3 E4 E5 E6 E7
12 E8 E9 E10 E11 E12 E13 E14
24 E15 E16 E17 E18 E19 E20 E21
36 E22 E23 E24 E25 E26 E27 E28
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4. Ensemble forecasting experiments for TC cases

In the last section, we finalized the configuration of the
O-CNOPs for the ensemble forecast experiments with the
WRF Model using the five TC cases formed in the WNP, in-
cluding one in 2005, one in 2007 and three during 2018–20. In
fact, there were a total of six TCs in the WNP during 2018–20,
which all reached at least STY intensity and greatly influenced

China (see section 2a). Therefore, it should be investigated
whether the above configuration of the O-CNOPs also greatly
helps increase the track forecasting skill in the other three TC
cases, i.e., Maria (2018), Maysak (2020), and Haishen (2020).
In addition, it is worth examining whether the usefulness of
the O-CNOPs with the above configurations can be reflected
in improving the forecasts of two other TCs, Megi (2010) and

FIG. 2. Effect of the ensemble size and OTI on (a1) the ensemble mean TC track forecasting error, (a2) its improve-
ment against the control forecast, and (a3) the BSS for TC strike probability. These skills are obtained by averaging
all lead times over 5 days and the 5 selected TC cases when the initial perturbation amplitude is 1.8 and the OTIs
are 6, 12, 24, and 36 h, respectively. (b1)–(b3) The corresponding skills as a function of the initial perturbation ampli-
tude when the ensemble size is fixed to 21 and the OTI is 6 h. A paired t test is performed on the track errors of the
five TC cases at all lead times, and significance at the 95% confidence level is achieved for the improvement of the
ensemble mean against the control forecast.
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Tembin (2012), which have unusual tracks. After addressing
these questions, we make additional attempts to implement
O-CNOPs in the real-time track forecasts of TC In-Fa (2021)
and TC Hinnamnor (2022), and the results are also reported
in this section.

a. Hindcasts of the other three TCs

The three TC cases, as mentioned above, include the
westward-moving TC Maria (2018) and the northward-moving
TCs Maysak (2020) and Haishen (2020). Each of these TCs in-
cludes three forecast periods (see Table 1). The ensemble mem-
bers for each TC case and their respective ensemble mean and
best tracks are shown in Fig. 3. It is shown that the ensembles
for any case tend to be located on the two sides of the best
track, rather than the control forecast, which certainly causes
the ensemble mean to be farther from the control forecast but
close to the best track. From Fig. 3, it can be seen that almost
all of the TC forecasts present ensemble mean forecasting in
which the TC landfall points and times are much closer to those
in the best tracks compared to the control forecasts, except for
the forecast of the first forecast period of TC Haishen (2020); in
particular, there are always several members that capture the
landfall points accurately. Quantitatively, for the three forecasts
of each TC case, the landfall positions of the ensemble mean
reduce their counterpart errors in the control forecasts from
371 to 194 km for Maria (2018), from 130 to 90 km for Maysak
(2020), and from 113 to 60 km for Haishen (2020), which all de-
crease the position errors of the control forecasts by at least
31%. We also investigate the performance of the O-CNOPs
with the above configuration at different lead times. As
shown in Fig. 3, the TC tracks in the ensemble mean often
have forecasting errors that are obviously smaller than those
in the control forecasts, especially when the lead times exceed
72 h.

b. Hindcasts of the two unusual TC tracks

Now, we investigate whether the above O-CNOPs also per-
form well in the hindcasts of unusual TC tracks. It is known
that accurately forecasting the unusual movement of a TC is
very difficult. Therefore, if the ensemble forecasts generated
by the O-CNOPs can reproduce the unusual tracks, it would
further confirm the usefulness of the O-CNOPs in improving
the TC track forecasting skill. To test this, we conduct ensem-
ble forecast experiments for the two unusual TCs, Super TY
Megi (2010) with a sharp northward-turning track and STY
Tembin (2012) with a counterclockwise loop track.

For Megi (2010), we use the initial and boundary conditions
derived from the NCEP FNL dataset as described in section 2
and integrate the WRF Model from 1200 UTC 17 October to
1200 UTC 23 October 2010. Then, the control forecast with a
lead time of 6 days is obtained. This control forecast reprodu-
ces the motion of Megi (2010) well, except for an earlier turn
than that in the best track. In this case, the use of the O-
CNOPs reduces the track error averaged over 6 days from
130 km in the control forecast to 94 km in the ensemble mean
forecasting, which corrects the turning position much more
but does not correct the turning angle (see Fig. 4). However,

when we additionally use the corresponding fifth-generation
ECMWF reanalysis (ERA5) dataset to provide the initial and
boundary conditions and yield the control forecast, similar to
the operational forecast from the ECMWF global model, we
obtain a much larger forecast error of the TC track and fail to
catch the sharp northward turning position and time of Megi
(2010) (Qian et al. 2013). Then, in this situation, can the
O-CNOPs correct this large track error? Fig. 4 also shows
the ensemble members of Megi’s track generated by the
O-CNOPs with a lead time of 6 days, which covers the north-
ward turn and final landing processes. Note that these ensem-
ble members are generated on the control forecast associated
with ERA5. It is inspiring that the ensembles tend to be lo-
cated on the two sides of the best track, especially after the
turning point for this unusual TC. As a result, Megi’s track in
the ensemble mean forecasting reproduces the sudden north-
ward movement and associated subsequent landfall in the
best track much more accurately. On average, Megi’s track in
the ensemble mean forecasting corrects the bias of the control
forecast by approximately 41%.

For Tembin (2012), we attempt to conduct ensemble fore-
casts initialized at 0000 UTC 21–23 August 2012, all finalized
at 0000 UTC 29 August 2012, which have 8-, 7- and 6-day lead
times, respectively, and all cover the complete loop track of
Tembin (2012). Practically, Tembin (2012) in the best track
moved westward along the periphery of the SH in the early
stage, and the much larger Super TY Bolaven (2012), which
was located east of Tembin (2012), gradually approached
Tembin (2012), affecting its environmental steering flow and
forcing Tembin (2012) to execute a slow cyclonic loop (Xian
and Chen 2019). To reveal the forecast errors in the speed
and direction of TC movement, we decompose the track error
into one part along the best track, which is denoted as the
along-track error (ATE), and another part orthogonal to
the best track, which is called the cross-track error (CTE) (see
appendix B for the definition). Figure 5 plots ATE and CTE
for the control forecasts initialized at 0000 UTC 21 August
with the NCEP FNL and the associated ensemble mean for
Tembin (2012), where a positive (negative) ATE indicates
that the forecasted storm moves faster (slower) than indicated
by the best track and a positive (negative) CTE indicates
that the forecasted track is to the right (left) of the best
track. Figure 5 shows that the control forecast initialized at
0000 UTC 21 August has a slow bias in the westward move-
ment of Tembin (2012) in the early stage (as indicated by the
negative ATE before 0000 UTC 25 August shown in Fig. 5),
which may result from a weak bias in simulating the SH in the
control forecast and a stronger bias in simulating the continen-
tal high (CH), thus causing a much smaller distance between
Tembin (2012) and Bolaven (2012). This could result in a
stronger interaction between the two TCs than the actual
interaction, and it yields a premature onset near Taiwan of
Tembin’s loop track; thereafter, the track error grows rapidly
as Tembin (2012) moves northeastward after 0000 UTC
27 August (as indicated by the positive CTE shown in Fig. 5).
Nevertheless, regarding the ensemble forecast generated by
the O-CNOPs, the real track of Tembin (2012) is much better
replicated when averaged over the entire forecast period,
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FIG. 3. The 5-day tracks for the control (black) and three ensemble mean (blue) forecasts of TCs (a1)–(a3) Maria
(2018), (a4)–(a6) Maysak (2020), and (a7)–(a9) Haishen (2020) and their respective best tracks (red), where any two
consecutive dots located on a track define a time interval of 6 h, and the ensemble members are time phases marked
with different colors representing 0–24 h (gray), 24–48 h (orange), 48–72 h (green), 72–96 h (magenta), and 96–120 h
(light blue). (b1)–(b3) The track errors at different forecast times for the control forecast (black bar) and the ensemble
mean (blue bar) when averaged over all three forecasts for each of the three TC cases.
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even though there is a slow bias at day 8 (see Fig. 5); in partic-
ular, there exist some ensemble members possessing a stron-
ger SH and weaker CH and thus correct the slow-moving
bias of Tembin (2012) in the early stage as well as the
strength and speed of the westerly trough (see Fig. 6). These
members realistically describe the interaction of Tembin
(2012) with Bolaven (2012) and ultimately enhance the im-
provement of the forecasting skill of Tembin’s track.

The ensemble forecast initialized at 0000 UTC 22 August
for Tembin (2012) exhibits a dramatic range across the en-
semble members (see Fig. 5). While some bad members, for
example, the control forecast, present tracks that drift north-
eastward quickly and make landfall in the Korean Peninsula
or Japan earlier than the best track, there exist other good
members, which loop slowly and present TC movements that
are similar to those of the best track and do not affect Korea
or Japan before 29 August. Regardless, the ensemble mean
improves the skill of the control forecast for Tembin’s track.
More precisely, the control forecast possesses an ATE that

grows from almost zero on 26 August to approximately
1000 km on 29 August and a CTE from approximately 2500
to 373 km, indicating that Tembin (2012) moves northeast-
ward much faster than the best track after 26 August, while
the ensemble mean reduces the 7-day track forecasting errors
by approximately 40% on average despite presenting a much
faster and more eastward movement compared with the best
track. When the lead time is shortened as initialized at
0000 UTC 23 August, the track error in the control forecast
obviously decreases (see Fig. 5); correspondingly, more en-
semble members reproduce the slow loop track of Tembin
(2012) than the forecasts initialized at 0000 UTC 21 and
22 August and cause the ensemble mean to present a track
much closer to the best track even though the moving speed is
still slightly faster.

From the above, it is clear that the O-CNOPs are still useful
for improving the forecasting skill of unusual TC tracks, espe-
cially because they capture the turning positions and times of
unusual TCs well.

FIG. 4. (a1) The 6-day best track (red) and 6-day tracks of the control forecast (black), ensemble mean forecast
(blue), and ensemble members (gray) for Megi (2010) generated by the O-CNOP method initialized at 1200 UTC
17 Oct 2010 using the NCEP FNL dataset to provide the initial and boundary conditions. (b1) Track errors at differ-
ent forecast times for the control forecast (black bar) and ensemble mean forecast (blue bar) and the error reduction
rate (i.e., skill improvement; solid green line) due to the ensemble mean, where the dashed line represents the mean
of the improvements averaged over a forecast period of 6 days. (a2),(b2) As in (a1) and (b1), but for the ensemble
forecasts using the ERA5 dataset to provide the initial and boundary conditions.
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c. Real-time forecasts of STY In-Fa (2021) and Super TY
Hinnamnor (2022)

To further evaluate the role of the O-CNOPs in improving
TC track forecasting skill, we also conducted real-time fore-
casts for STY In-Fa (2021) and Super TY Hinnamnor (2022)
using the GFS forecast data as the initial and boundary condi-
tions of the WRF Model. Because the GFS data are delayed
in terms of their availability from the National Oceanic and
Atmospheric Administration (NOAA; see the data availabil-
ity statement at the end of the article) and time is needed to
calculate the O-CNOPs, the real-time forecasts are initialized
approximately 8 hours later, but we focus on the future tracks
after this 8-h period. Taking In-Fa (2021) as an example, the
5-day track forecast is initialized at 0000 UTC 21 July 2021
but focuses on the future track from 0800 UTC 21 July 2021
to 0000 UTC 26 July 2021.

For In-Fa (2021), the challenges of operational track fore-
casts are its northward movement before landfall and slow
movement on land (Wang et al. 2022; Xiang et al. 2022). We
initialize the forecasts of In-Fa (2021) at 0000 UTC 21–24 July
2021 and finalize them with a lead time of 5 days. To facilitate
the discussion, we also call these forecasts control forecasts,

similar to those in the hindcast experiments in sections 4a and
4b. Figure 7 shows that the control forecasts initialized at
0000 UTC 21 and 22 July for the northwestward movement of
the TC in the best track present a southward bias reaching
200 and 130 km before landfall, as indicated by the negative
CTEs; however, the ensemble mean forecasts made by the
O-CNOPs correct the biases to below 80 and 60 km and accu-
rately capture the first landfall point of the TC. For the strike
probability, the ensembles made by the O-CNOPs exhibit
50%–70% probabilities for the actual landfall point when the
forecasts are initialized at 0000 UTC 21 and 22 July (see
Fig. 7). As expected, when the initialized times are much
closer to the landfall time, for example, when the forecasts
are initialized at 0000 UTC 23 and 24 July, an increasing num-
ber of ensemble members capture the landfall positions, and
the strike probabilities across the landfall positions also in-
crease to 80%–100% (see Fig. 7). When In-Fa (2021) landed,
the SH and CH retreated to the east and west, respectively,
which trapped In-Fa (2021) into a saddle pattern and caused
a very weak steering flow that slowed it down (Yang et al.
2022). From Fig. 7, we can also see that after TC landfall
at 0430 UTC 25 July, the control forecasts initialized at

FIG. 5. Best track (red) and tracks of the control forecast (black), ensemble mean (blue), and ensemble members (gray) for Tembin
(2012) generated by the O-CNOPs initialized at 0000 UTC 21–23 Aug 2012, which represent (a1) 8-, (a2) 7-, and (a3) 6-day lead times, re-
spectively. The corresponding ATEs (dots) and CTEs (boxes) are for the control forecasts (black) and the ensemble mean (blue) during
the lead times of (b1) 8, (b2) 7, and (b3) 6 days.
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0000 UTC 22 and 23 July move faster than the best track,
while the ensemble mean forecasts correct the erroneously
fast-moving tracks to nearly overlay the best track. However,
the control forecast initialized at 0000 UTC 24 July already re-
produces the movement speed of In-Fa (2021) much better,
and the track error only includes a small bias of northward
movement. Although the bias is small, it is still reduced by the
ensemble mean of the O-CNOPs; in particular, more ensemble
members are also found to be much closer to the best track,
giving the best track a more than 80% strike probability at
lead times ranging from 6 h to 4 days.

The real-time forecast for Hinnamnor (2022) is initialized
at 0000 UTC 30 August 2022 and finalized with a lead time of
7 days to see whether it could greatly influence China at the
longer lead times. This TC also has an unusual track, and the
ensemble forecasts generated by the O-CNOPs perform well
regarding the track forecasts. Figure 8 shows the control fore-
cast, the ensemble mean and the best track of Hinnamnor
(2022). It is shown that the control forecast presents a much
smaller track error in the first 3 days, and the ensembles gen-
erated by the O-CNOPs exhibit a much smaller divergence at
this stage. However, after the TC turns northward, the track

FIG. 6. Deep-layer mean winds averaged vertically between 850 and 250 hPa (black streamlines) and 500-hPa
geopotential heights (red contours, interval of 40 gpm) at 0000 UTC 25 Aug, 0000 UTC 26 Aug, and 1800 UTC
26 Aug 2012 for Tembin (2012) for (left) the control forecast and (right) one of the ensemble members generated by
the O-CNOPs that possesses a stronger SH and weaker CH. The areas above 5880 gpm are shaded. The forecasts are
initialized at 0000 UTC 21 Aug 2012.

Z HANG E T A L . 1917OCTOBER 2023

Brought to you by Institute of Atmospheric Physics,CAS | Unauthenticated | Downloaded 09/19/23 01:27 PM UTC



error in the control forecast grows rapidly, and a slow bias occurs,
finally reaching an error of approximately 600 km (see the nega-
tive ATE in Fig. 8); in this situation, the ensemble mean forecast
corrects the bias to less than 150 km (see Fig. 8) and captures the

landfall in Korea, which does not occur in the control forecast.
Therefore, the ensemble forecast better evaluates the influences
of Hinnamnor (2022) on the eastern coast of China, which are
overestimated in the control forecast at the later stage.

FIG. 7. The 5-day tracks in the best forecasts (black), control forecasts (blue), and ensemble mean forecasts (light
blue) generated by the O-CNOPs for In-Fa (2021) and corresponding strike probabilities (shaded), where the initial-
ized times are at (a1) 0000 UTC 21 Jul, (a2) 0000 UTC 22 Jul, (a3) 0000 UTC 23 Jul, and (a4) 0000 UTC 24 Jul 2021.
The (b1) ATE and (b2) CTE for the control forecasts (solid lines) and the ensemble mean forecasts (dotted lines).
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It is now obvious that the O-CNOPs method shows the po-
tential to greatly improve the track forecast skill in real-time
forecasts of TCs.

5. A statistical metric for the O-CNOPs’ performance
and comparison with SVs, BVs, and RPs

As stated in section 4, a total of 18 ensemble forecast ex-
periments are conducted for the 7 TCs to investigate the per-
formance of O-CNOPs. In this section, we combine these
ensemble forecasts, together with the 11 ensemble forecasts
of the 5 TCs adopted in section 3, to statistically evaluate the
performance compared with that of traditional RPs, BVs, and
SVs, where the same configurations are used for the ensem-
ble size, amplitude of initial perturbations, and OTI, partic-
ularly for the SVs, as those in the O-CNOPs. In fact, we test
different configurations of the RPs, BVs, and SVs as in the
O-CNOPs in numerical experiments (see section 3) and
find that they are always shown to have much lower ensem-
ble forecast skill than the O-CNOPs; for simplicity, the
same configuration as that for the O-CNOPs is chosen to
compare them.

A comparison of the ensemble forecast skills is performed
from both the ensemble mean forecasts and TC strike proba-
bility forecasts. In this section, the ensemble mean forecast er-
ror and the BSS, as described in section 3 and appendix B,
respectively, are adopted to assess the quality of the determin-
istic forecasts and strike probabilities. Additionally, the reli-
ability diagram (RD), the relative operating characteristic
(ROC) curve and the area under the ROC curve (ROCA)
are also adopted to evaluate the skill of the strike probabili-
ties. Specifically, the RD displays how well the forecasted
probabilities correspond to their observed frequencies; the
ROC curve acts as a function of the hit rate with respect to
the false alarm rate, and its associated ROCA measures the

probabilistic forecast skill of a binary event, where a forecast
can be regarded as being skillful when the ROCA is larger
than 0.5, and the larger the ROCA is, the more skillful the en-
semble forecasts. The details of these measurements are also
introduced in appendix B.

a. Comparison of ensemble forecast skills

Figures 9–11 show the track forecasts made by the O-CNOPs,
RPs, BVs, and SVs for the 12 selected TC cases. By comparison,
we show that the ensembles for the 12 TC cases made by the
RPs, BVs, and SVs are always much closer to the control fore-
casts and do not capture the best track. However, the ensemble
members generated by the O-CNOPs, as shown in section 4, are
often closer to the best tracks than the control forecasts. As a re-
sult, the ensemble mean forecasts made by the RPs, BVs, and
SVs are almost identical to the control forecasts, while those gen-
erated by the O-CNOPs often remain away from the control
forecasts and approach the best tracks because they have much
faster growth than the RPs, BVs, and SVs in the WRFModel. In
particular, the O-CNOPs capture the sharp northward turn for
Megi (2010) much more accurately and reproduce the counter-
clockwise loop track for Tembin (2012). Qualitatively, the en-
semble mean forecast generated by the O-CNOPs, averaged for
the 12 TC cases and a total of 29 forecast periods, reduces the
track forecast error at day 5 from 316 to 163 km (i.e., the skill
is improved by 48%; see Fig. 12). This error is even smaller
than the error in the control forecast at a lead time of 84 h. How-
ever, the ensemble mean forecasts generated by the SVs only re-
duce the track errors in the control forecasts by approximately
12% at day 5 (see Fig. 12). It is conceivable that the inclusion of
nonlinearities in the O-CNOPs method contributes to its superi-
ority over SVs in the forecasts of nonlinear TC motions. Al-
though the BVs method is also a nonlinear approach, it yields an
ensemble mean for the TC tracks that is initially close to the best
track but after 2 days is very similar to that of the RPs method

FIG. 8. (a) The 7-day track for the best forecast (black), control forecast (blue), and ensemble mean forecast (light
blue) for Hinnamnor (2022) generated by the O-CNOP method initialized at 0000 UTC 31 Aug 2022 and the corre-
sponding strike probability forecast (shaded). (b) ATEs (dots) and CTEs (boxes) for the control (black) and ensem-
ble mean (blue).
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FIG. 9. Forecasts of all four TC cases before 2018 adopted in the present study. The figure plots the best tracks
(red), tracks of control forecasts (black), and ensemble mean forecasts (blue) generated by the RPs, BVs, SVs,
and O-CNOPs, where any two consecutive dots located on the tracks define a time interval of 6 h, and the time
periods of each of the ensemble members are marked with different colors, representing 0–24 h (gray), 24–48 h (orange),
48–72 h (green), 72–96 h (magenta), 96–120 h (light blue), 120–144 h (yellow), 144–168 h (pink), and 168–192 h (purple).
The four TCs are Matsa (2005), Sepat (2007), Megi (2010), and Tembin (2012), and each of the former three TCs
includes one forecast period, while the fourth TC includes three forecast periods.
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FIG. 10. As in Fig. 9, but for the six TC cases during 2018–20, which are Maria (2018), Mangkhut (2018), Lekima
(2019), Bavi (2020), Maysak (2020), and Haishen (2020). Each of these TCs includes three forecast periods, but the
figure only shows the tracks during the latest forecast period.
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and remains away from the best track. In fact, the BVs, as a group
of orthogonal growing initial perturbations, are generated by sam-
pling the growth behaviors of the initial perturbations during a
time period before the initial time of the forecasts. Therefore, the

BVs cannot ensure that they capture the fast-growing modes of
the initial errors during the forecast period as required by ensem-
ble forecasts and thus cannot guarantee a high forecasting skill at
a much longer lead time.

FIG. 11. As in Figs. 10 and 11, but for the real-time forecasts for In-Fa (2021) and Hinnamnor (2022). The figure shows the tracks for four
forecast periods for In-Fa (2021) and one forecast period for Hinnamnor (2022).
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FIG. 12. (a1) Track errors (solid lines) at different forecast times for the control forecast and the ensemble mean
forecasts averaged for 12 TCs and the corresponding ensemble spreads (dotted lines) generated by the RPs (green),
BVs (orange), SVs (purple), and O-CNOPs (blue); (a2) error reduction rate (i.e., skill improvement) due to the
ensemble mean; (a3) box-and-whisker plot for the skill improvement averaged for 12 TCs and all lead times with a
95% confidence interval, where the circles denote the maximum and minimum improvements for the 12 TCs;
(b1) BSSs, (b2) RDs, and (b3) ROC curves are plotted for the TC strike probabilities generated by the four
methods. The improvement of the ensemble mean generated by the O-CNOPs against those generated by the SVs,
BVs, and RPs is statistically significant at the 95% confidence level.
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The strike probabilities of the TC ensemble forecasts are
also compared among the O-CNOPs, RPs, SVs, and BVs by
evaluating the BSS, reliability diagram (RD), and ROC curve
(see appendix B for their calculations). The results, averaged
for the 12 TC cases at all lead times, are illustrated in Fig. 12.
Specifically, the BSS achieved by the O-CNOPs is significantly
larger than those obtained by the RPs, SVs, and BVs, which
implies that the O-CNOPs achieve a strike probability far su-
perior to those of the RPs, SVs, and BVs. For the reliability
illustrated by the RD, the O-CNOPs provide the most reliable
ensembles, which is indicated by the fact that their reliability
curve is closest to the diagonal line, while the other methods ex-
hibit reliability lines that are below the line of the O-CNOPs.
From Fig. 12, we can also see that the O-CNOPs produce the
highest hit rate and the lowest false alarm rate, which is also in-
dicated by the largest ROCA value of 0.972 for the O-CNOPs,
followed by 0.880 for the SVs, 0.855 for the BVs and 0.803 for
the RPs.

In addition, we know that a perfect ensemble forecasting
system is expected to provide an ensemble spread that is al-
most equal to the corresponding ensemble mean forecasting
error (Bowler 2006; Leutbecher and Palmer 2008; Hopson
2014), which allows the ensemble spread to correctly indicate
the forecast uncertainty. A comparison is also made to this
spread-skill relationship for the above four methods that
are used to generate the ensemble in the present study (see
Fig. 12). The ensemble spreads generated by the RPs, BVs
and SVs are significantly smaller than the corresponding en-
semble mean forecast errors. In contrast, the O-CNOPs pro-
vide additional benefits for increasing the ensemble spread,
which helps the ensemble mean forecast achieve a much
higher skill, especially reducing the distance between the en-
semble spread and the ensemble mean forecast error and
making it smaller than those of the SVs, BVs, and RPs when
the lead time exceeds 36 h. This illustrates that the O-CNOPs
provide the best spread-skill relationship of the ensembles
among the above four methods. However, the relationship is
not perfect. The O-CNOPs aim to represent initial uncertain-
ties that grow rapidly, and for a much larger amplitude of ini-
tial perturbations, the O-CNOPs may overestimate the growth
of initial errors when they are applied to ensemble forecasts,
which arises that the ensemble spreads are larger than the
track errors of the ensemble mean. In fact, we find that further
reduction of the initial perturbation amplitude by 50% can
lead to an improvement in the consistency between the ensem-
ble spreads and the track errors of the ensemble mean (the
figure is omitted); however, the track forecast skills of the en-
semble mean are substantially reduced at longer lead times.

From the above comparison, it is clear that the O-CNOPs
presents the best performance in improving TC track fore-
casts among the four ensemble forecasting methods, followed
by SVs and then BVs and RPs. Specifically, the O-CNOPs
method is not only able to provide more accurate ensemble
mean forecasts of TC tracks but can also produce more credi-
ble strike probability estimates, indicating that the O-CNOPs
represent the initial uncertainties of TC track forecasts much
better and provide both more reliable deterministic forecast
results and more credible risk assessments for TCs.

b. Why do the O-CNOPs provide much higher ensemble
forecast skill for the TC tracks?

It has been shown that the RPs, compared with the O-CNOPs,
SVs, and BVs, generate ensemble members that are much closer
to the control forecast and much farther from the best track. In
fact, ensemble forecasts, to achieve much higher forecast skill,
generally require initial perturbations that possess unstable spa-
tial structures for fast growth (Toth and Kalnay 1997; Zhou and
Chen 2006; Duan et al. 2016); however, RPs are generated by
perturbing the initial analysis with random noise and lack unsta-
ble spatial structures, which certainly cause RPs to grow slowly
or even fail to develop (Cheung 2001a,b). This may be the reason
why the RPs have the lowest ensemble forecast skill for the TC
tracks among the four methods. The O-CNOPs, SVs, and BVs
all aim to estimate the subspace of fast-growing perturbations,
but we show that there always exist more ensemble members
generated by the O-CNOPs that better reproduce the best tracks
for different TC cases. It is therefore inferred that the O-CNOPs
are more appropriate for estimating the uncertainties of the key
processes that dominate TC motion and are inclined to achieve
much higher forecasting skill for TC tracks. In this section, we
take Megi (2010) as an example to explain why the O-CNOPs
achieve a higher ensemble forecast skill than the SVs and BVs.

Figure 13 shows the vertical distribution profiles of the per-
turbed moist energies (MEs) averaged for all ensemble mem-
bers and over the entire domain (see section 2) for different
lead times using the O-CNOPs, SVs, and BVs. The MEs of
the BVs capture the dual peaks at both the surface and upper
layers, as illustrated in Thanh et al. (2016), while the MEs for
the SVs have a maximum in the lower boundary, and those
for the O-CNOPs are mainly concentrated in the middle-to-
lower troposphere. Torn et al. (2018) demonstrated that TC
track forecasts are very sensitive to the uncertainty in the
mid-to-lower troposphere [see also Wang and Ni (2011)]. It
seems that the sensitivity provided by the MEs of the
O-CNOPs ensemble captures this uncertainty. Furthermore,
it could be this plausible sensitivity of the O-CNOPs that pro-
motes the evolution of the MEs more significantly than those
of the SVs and BVs at all layers (see Fig. 13). Therefore, the
O-CNOPs are more likely to yield ensemble members that
substantially depart from the control forecasts and provide a
much larger ensemble spread that can most likely encompass
the best track (see Fig. 12). This may be one of the reasons
why the O-CNOPs ensemble yields a much higher ensemble
forecast skill for the TC tracks.

Figure 14 provides the horizontal distributions of the verti-
cally averaged MEs for the first three BVs, SVs and O-CNOPs.
It is clear that their distributions are quite different. The BVs
are often widely dispersed within the TC vicinity and the large-
scale flow in which the TCs are embedded; however, the SVs
and CNOPs generally identify the dynamically unstable struc-
tures located in the outer region of the TCs, which could reflect
the effect on TC flows of the surrounding synoptic-scale systems.
Nevertheless, due to the inclusion of nonlinear processes,
the CNOPs provide unstable structures that are different from
those of the SVs. Specifically, the maximum ME of the SVs is
close to the CH and locates west of the TC center, while that of
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the CNOPs looks like an annulus around the TC and is relevant
to not only the CH but also the SH, whose combined effects
can determine when and where Megi (2010) began to deflect
(Shi et al. 2014). This indicates that the control forecast, which
fails to identify the turning position and time of Megi (2010), is
very sensitive to the uncertainties that occurred in the annulus
region identified by the CNOPs, because the CNOPs represent
the optimally growing initial perturbations in the nonlinear
model. Furthermore, these uncertainties, if they are described
by the ensemble generated by the O-CNOPs, have a greater
probability of capturing the combined effect of the SH and the
CH on the deflection of Megi (2010) and result in a much better
forecasted TC track. In Fig. 15, the environmental steering
flows are illustrated in terms of the ensemble mean and ensem-
ble spread obtained by the O-CNOPs, SVs, and BVs, where the
steering flows are obtained by calculating the wind vertically
averaged from 850 to 250 hPa (Luan et al. 2015). The uncertain-
ties represented by the ensemble spread associated with the
O-CNOPs locate the TC vicinity at the initial time when Megi
(2010) in the control forecast is situated below the high pressure
ridge (as indicated by the 5880-gpm isopleth in Fig. 14), which is
composed of the CH over China and the SH over the WNP. In
fact, when the positive/negative pairs of O-CNOPs presenting
the dominant MEs in the annulus around Megi (2010) are
superimposed on the initial analysis of the control forecast, they
could cause uncertainties to occur in the TC vicinity and
strengthen or weaken the cyclonic circulation of Megi (2010),
thus perturbing the TC size. The change in the size of Megi
(2010) would further modulate the intensity of the high pressure
ridge and then the track of Megi (2010) (Qian et al. 2013; Wang
et al. 2017). Specifically, if an enlarged Megi (2010) occurs in
one ensemble member, it can erode both the SH and the CH
and accelerate the breakdown of the high pressure ridge, which
may in turn weaken the westward steering flow to decrease the
westward moving speed of Megi (2010) and strengthen the me-
ridional steering flows to make Megi (2010) turn northward ear-
lier (Sun et al. 2015). The ensemble members generated by the
O-CNOPs either include an enlarged TC or a diminished TC
with respect to the TC in the control forecast because they are

formed by superimposing the positive/negative pairs of CNOPs
on the control forecast. As a result, there is an ensemble spread
of the steering flows associated with the SH and CH. Figure 15
shows that a much larger spread occurs in the northward steer-
ing flow relative to the SH after 48 h, which tends to modulate
the uncertainty of Megi’s turning northward. It could be that the
O-CNOPs ensemble describes this uncertainty well and thereby
provides more chances to capture the northward turning posi-
tion and time of Megi (2010). As the lead time increases, the en-
semble presents a much larger spread around the TC and starts
to perturb the synoptic systems of the easterly wave and the
midlatitude trough, consequently pushing Megi (2010) north-
eastward after deflection. Therefore, the O-CNOPs ensemble
depicts the uncertainties of the key processes and systems that
affect TC motions during the forecast periods; thus, a higher en-
semble forecast skill for Megi (2010) is achieved. For the SVs
and BVs, it is shown in Fig. 15 that although the ensembles also
focus on the uncertainties of the key systems that influence TC
motions, their spreads are much smaller than those of the
O-CNOPs, especially at longer lead times, resulting in the en-
semble members generally missing the TC best track. In fact,
the SVs are generated by a linearized WRF and do not repre-
sent the optimally growing initial perturbations in the nonlinear
WRF at longer lead times, causing the resultant ensemble to
have a small spread and fail to depict the strong uncertainties of
the TC track at longer lead times; additionally, the BVs are not
optimized for growth during forecast periods and therefore can-
not depict the strong TC track uncertainties at longer lead
times. These could be the reasons why neither the SVs nor BVs
generate a large spread or much higher ensemble forecast skill
for the track of Megi (2010).

Finally, we interpret what dynamic process is responsible
for the growth of the O-CNOPs, SVs, and BVs and reveal
with what manner the O-CNOPs yield a large ensemble
spread. From the horizontal ME patterns shown in Fig. 14, it
is easily found that the O-CNOPs, SVs, and BVs exhibit quite
different scale characteristics. A spectrum analysis using the
two-dimensional discrete Fourier transform method (Rao
et al. 2010) is further performed to quantify the evolution of

FIG. 13. Vertical distributions of the moist energies (MEs; J kg21) averaged for all ensemble members of TC Megi (2010) and over the
entire domain at different lead times (colored curves). (a) BVs, (b) SVs and (c) O-CNOPs.
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the BVs, SVs and O-CNOPs at different scales. From
Fig. 16a, it can be seen that for the BVs, SVs, and O-CNOPs,
the peaks of the power spectra are all located at the mesoscale
wavelength of 1200 km at the initial time. However, when
comparing their powers, it can be found that the power of the
BVs is much larger at wavelengths over 1500 km, whereas that
of the O-CNOPs exhibits larger powers at mesoscales from
500 to 1500 km, while the SVs present larger powers
at much smaller scales. It is obvious that both the SVs and

O-CNOPs trivially include large-scale flow information. How-
ever, the upscale growth of the O-CNOPs within the first 24 h
compensates for this effect. Figure 16 shows that the powers
induced by the O-CNOPs grow much more rapidly at large
scales within a short lead time of 24 h and then are significantly
larger than those yielded by the BVs and SVs at scales larger
than 400 km. The smaller-scale SVs can also grow upscale but
induce large-scale powers to a much smaller degree than the
O-CNOPs (see Fig. 16). For the BVs, the mesoscale modes

FIG. 14. Horizontal distributions of vertically averaged moist energies (MEs; J kg21; shaded) for the first three BVs, SVs, and
O-CNOPs. The black streamlines denote the environmental steering flows (m s21), which are the deep-layer mean winds averaged verti-
cally between 850 and 250 hPa. The blue contours denote the geopotential heights at 500 hPa with an interval of 80 gpm, where the high
pressure ridge composed of the CH and the SH are indicated by the 5880-gpm bold isopleth.

WEATHER AND FORECAS T ING VOLUME 381926

Brought to you by Institute of Atmospheric Physics,CAS | Unauthenticated | Downloaded 09/19/23 01:27 PM UTC



from 200 to 2000 km grow within a 48-h lead time, and after
48 h, the powers at much larger scales start to grow relatively
obviously; however, they are far smaller than those of the SVs
and O-CNOPs. In this situation, the BVs ensemble may not
have the ability to perturb the large-scale flow around Megi
(2010) (Thanh et al. 2016). That is, the BVs ensemble cannot
depict the uncertainties of the interaction of the TC with the
large-scale environment well, which controls the TC motion
(Chan and Li 2005). While for the O-CNOPs and SVs, their
upscale growth indicates the effect on the nonlinear interac-
tion between the TC and its surrounding environmental flow,
and they adjust the steering flows that influence Megi’s mo-
tion. Nevertheless, since the O-CNOPs possess the largest
growth in the power for both the TC circulation and large-
scale flows, they yield a much larger ensemble spread of the
TC track, which may better capture the uncertainties of TC
motion controlled by the nonlinear interaction between the

TC and its surrounding environmental flow and provide much
higher ensemble forecast skill.

6. Discussion

Huo et al. (2019) adopted O-CNOPs to conduct ensemble
forecast experiments for TCs using the MM5, and among the
TC cases selected there, Matsa (2005) and Sepat (2007) are in-
cluded in the scenario of strong TCs considered in the present
study. Therefore, for comparison, these two TCs are further
forecasted using the WRF Model (see section 2b). By com-
paring the results shown in Huo et al. (2019), it is found that
the control forecasts in the WRF Model greatly improve over
those in the MM5, and even the ensemble mean forecasts
further significantly increase the forecasting skill of the TC
tracks. Specifically, taking Matsa (2005) as an example, it is
shown that from the MM5 to the WRF Model, the track error

FIG. 15. Ensemble mean of the deep-layer (250–850 hPa) mean winds (black streamlines) and its spread (shaded; m s21) generated by
(a) the O-CNOPs, (b) SVs, and (c) BVs at lead times of 1) 0, 2) 24, 3) 48, and 4) 72 h.
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in the control forecast for a lead time of 5 days is reduced from
311 to 163 km, while the ensemble mean generated by the
O-CNOPs further reduces the track error from 163 to 96 km,
with the skill improvement increasing to 41% in theWRFModel
(which is significantly larger than 14% in the MM5). A possible
reason for this is related to the model errors. First, a significant
component of the track errors in the MM5 is generated by inher-
ent model uncertainties, causing the reduction in track errors
generated by the O-CNOPs to be small relative to the track
errors generated by both the initial errors and significant model
errors. On the other hand, the model errors are greatly reduced
in the WRFModel, and thus, the reduction in track errors by the
O-CNOPs becomes more significant relative to the track errors
generated by both the initial errors and small model errors.

However, the ensemble mean track errors in the WRF
Model generated by the SVs, BVs, and RPs are up to 147, 162,
and 165 km, respectively, and the skill is slightly improved or be-
comes worse than the control forecast. The results indicate that
the track errors produced by the initial uncertainties have not
been effectively removed with the three traditional methods. It
is clear that there exist small model errors in the WRF, and the
control forecast skill is greatly improved. The O-CNOPs still
contribute more than the SVs, BVs, and RPs to the improve-
ment of the TC track forecast skill. Therefore, it seems that a
much more accurate model is favorable for manifesting the posi-
tive effect of the O-CNOPs in estimating initial uncertainties
and then improving the TC track forecast skill.

7. Summary

In this paper, we apply a new ensemble forecasting method,
i.e., the O-CNOPs, to the WRF Model to provide more

skillful forecasts of tropical cyclone (TC) tracks. First, we con-
duct sensitivity experiments to determine the configurations
of the O-CNOPs for achieving a much higher ensemble fore-
cast skill, which, specifically, consists of the ensemble size, the
initial perturbation amplitude and the optimization time inter-
val for calculating the O-CNOPs. Then, ensemble forecasts
are conducted for 12 TCs, 10 from 2010 to 2022 and 2 of those
selected in Huo et al. (2019), with lead times of at least 5 days.
Most of these TC cases directly made landfall in China, while
the others landed in Korea but greatly influenced China. In
particular, these TCs include two unusual tracks and another
two that were realistically forecasted by the authors in 2021
and 2022. The results show that the ensemble mean forecasts
for the TC tracks generated by the O-CNOPs can significantly
improve the skill of the control forecasts in terms of the track
errors, and even the landfall position errors are reduced by
more than 31% for most TC cases. In particular, the ensem-
bles generated by the O-CNOPs successfully reproduce the
sharp northward-turning track of Megi (2010) and the coun-
terclockwise loop track of Tembin (2012) and demonstrate
the usefulness of the O-CNOPs in forecasting unusual TC
tracks. In addition, the real-time track forecasts of TC In-Fa
(2021) are also significantly enhanced by taking the ensembles
of the O-CNOPs in terms of the moving track before, during,
and after landfall, and the real-time forecast of TC Hinnam-
nor (2022) is also improved at long lead times. It is clear that
the O-CNOPs have the potential to improve the TC track
forecast skill in real-time TC forecasts.

Statistically, we evaluate the superiority of the O-CNOPs
compared with the traditional SVs, BVs, and RPs according
to the ensemble forecasts of the 12 TC cases. The results show
that the ensembles generated by the O-CNOPs generally

FIG. 16. Ensemble mean of the power spectra of the moist energies generated by the O-CNOPs, SVs, and BVs as a function of wavelength
at different lead times.
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exhibit a much larger spread and often include the best track
within them, while those made by the SVs, BVs, and RPs al-
ways miss the best tracks, ultimately causing the O-CNOPs to
possess the highest skill in TC track forecasts. A comparison
of the skill–spread relationships among the four ensemble
forecasting methods suggests that the ensemble spreads gen-
erated by the RPs, BVs, and SVs are significantly smaller than
the corresponding ensemble mean forecasting errors; how-
ever, the O-CNOPs provide additional benefits for increasing
the ensemble spread and making it much closer to the ensem-
ble mean forecasting error. For the TC strike probability fore-
casts, the O-CNOPs also display the highest skill as measured
by the BSS and ROCA and provide the greatest reliability in
terms of the RD. Therefore, the O-CNOPs can provide a
much more credible risk assessment of TCs than the SVs,
BVs, and RPs. Furthermore, from a comparison of the results
in the MM5 and the WRF, it seems that the O-CNOPs can
produce much better TC track forecasting skill using a much
more advanced model.

Taking Megi (2010) as an example, we explore why the
O-CNOPs achieve a higher ensemble forecast skill than the
SVs and the BVs. Specifically, the O-CNOPs are shown to
be located mainly in the middle-to-lower troposphere, and
the sensitivity provided by them captures the uncertainty in
the mid-to-lower troposphere, to which the TC track forecasts
are most sensitive. Simultaneously, the O-CNOPs identify the
uncertainties that occurred over the annulus region around
the TC center that determine when and where Megi (2010)
began to deflect. In addition, the O-CNOPs characterize a
rapid upscale growth that disturbs the steering flow responsi-
ble for Megi’s movement much more and better describes the
uncertainties of TC motion controlled by the nonlinear inter-
action between the TC and its surrounding environmental
flow. Due to these advantages of the O-CNOPs, they provide
much higher ensemble forecast skill for TC tracks than SVs
and BVs. However, it is noted that localized maxima exist in
the O-CNOPs patterns, and we presently still have no clear
idea to interpret this. It is expected that more analysis and
thought will contribute to addressing this question in the fol-
lowing study.

Although the ensemble forecasts generated by the O-CNOPs
achieve much higher skill in deterministic and probabilistic fore-
casts, the spread–skill relationship is not yet perfect for measur-
ing the reliability of the ensembles. In the present study, we
only consider the effect of initial uncertainties and adopt the
O-CNOPs to obtain the ensemble forecasts of TC tracks; how-
ever, the effects of model errors are inevitable. The present
study regards the O-CNOPs as a new method and, for the pur-
poses of showing “proof of concept” of this method, follows
Huo et al. (2019) to adopt a relatively coarse horizontal resolu-
tion of 60 km to explore its performance in forecasting TC
tracks. For the 15 vertical levels adopted, it is also a very
low resolution; however, we have adopted a 60-km horizontal
resolution but increased the vertical levels from 15 to 31 and
60 to make comparisons and validated the applicability of the
15 vertical levels (the details are omitted). Certainly, these
coarse resolutions would cause model errors and deteriorate
TC track forecasts. Duan et al. (2022) demonstrated that

dynamically coordinated growth of initial and model perturba-
tions helps to obtain ensembles of the strongest reliability when
initial and model errors exist in forecasts. Therefore, it is ex-
pected that a combined mode of initial and model perturba-
tions, such as the C-NFSVs in Duan et al. (2022), will be
adopted to perform ensemble forecasts for TC tracks, not only
to acquire much more reliable ensembles but also to acquire
much higher forecast skill. In addition, the calculation of the
O-CNOPs presently requires a large amount of time, which is
another reason why much higher resolution in the WRF Model
is not applied in the present study. In fact, even for the WRF
Model with the above coarse resolution, the calculation of the
above O-CNOPs with 64 computing kernels for one forecast
takes nearly 2 h when we compute the CNOPs one by one,
which is twice the amount of time needed to calculate the SVs.
It is understandable that the O-CNOPs are much more expen-
sive to compute due to their consideration of nonlinear pro-
cesses. Of course, this does not mean that the O-CNOPs cannot
be efficiently produced. In fact, we are currently developing a
new efficient algorithm, which is similar to the Lanczos algo-
rithm (Simon 1984) for calculating the SVs. We have recently
used an idealized model to test it, and the preliminary results
are encouraging. Its advantage is that it allows all the CNOPs to
be computed at once. That is, we can use the computation time
for calculating one CNOP to compute all O-CNOPs. This new
efficient algorithm for the O-CNOPs will be reported in a fol-
low-up paper. It is expected that this efficient algorithm will be
used at much higher resolutions and extend the capability of
O-CNOPs. This also inspires us to further investigate the role
of the O-CNOPs in improving the forecast skill of TC intensity
and even precipitation using WRF Model with a finer resolu-
tion. The performances of O-CNOPs and other methods can
also be more clearly clarified at a finer resolution. Besides, TC
systems are often related to multiscale interactions, which cer-
tainly influence TC track and intensity forecasts (Chan and Li
2005). Therefore, effectively blending multiscale information to
the O-CNOPs is also an important issue for ensemble forecasts
of TCs, which will be explored in future work.

The O-CNOPs method, as a new method, is theoretically
reasonable, but its functions should be gradually revealed and
improved step by step. For TC track forecasts of interest,
there are different types of TCs (e.g., strong TC cases, weak
TC cases, or TC cases with unusual tracks). For each type of
TCs, the configuration of the O-CNOPs for achieving high
forecast skill could be different. Thus, what is the law of the
configurations from strong TCs to weak TCs or other types of
TCs? This question should be addressed by comparing the
forecasts of different types of TC cases. In the present study,
we focus on the forecasts of strong TCs that severely influ-
enced mainland China. The results show that the ensemble
forecasts generated by the O-CNOPs outperform the fore-
casts made by the SVs, BVs, and RPs in terms of both deter-
ministic and probabilistic skills. This result encourages us to
further adopt more weak TC cases to examine the O-CNOPs
and compare the performance with that of the strong TC
cases, thus revealing a law on how to determine the configura-
tions of the O-CNOPs for achieving high forecast skill. It is
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believed that the O-CNOPs method will be a useful ensemble
forecasting method by gradually improving its functions.
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APPENDIX A

SVs, RPs, and BVs

Singular vectors (SVs) represent a group of initial pertur-
bations that have the largest amplification rates in their re-
spective subphases in the tangent linear model (TLM) and
satisfy Eq. (A1):

J(x*0) 5 max
x02Vj

(PLx0)TC2(PLx0)
xT0C1x0

, (A1)

where x0 is the initial perturbation, Vj 5 {x0 2 R
n|xT0C1x0 # d}

is the constraint condition of the initial perturbations, L is the
forward propagator of the TLM, and C1 and C2 refer to the to-
tal moist energy norm. With the TLM and its adjoint model,
the SVs can be computed using the Lanczos algorithm (Simon
1984).

Random perturbations (RPs) in the present study can be
expressed by Eq. (A2) (see Yu and Zhang 2005):

RP(z) 5 vrE(z), (A2)

where RP(z) is the random perturbations in the vertical layer
z, v is a coefficient that controls the amplitude of the perturba-
tions, r 5 (ri)N denotes the ith group of random numbers on
horizontal grids (the grid number is N), and E(z) is the root-
mean-squared error in layer z, which is calculated by the 6-h
forecast field with respect to the NCEP FNL.

The bred vectors (BVs) are a generalization of the local Lya-
punov vectors (LLVs) in a nonlinear field (Toth and Kalnay
1997), which solve the fast-growing initial perturbations during a
time interval prior to the initial time (Cheung 2001b). The or-
thogonal BVs used in this study are not reordered according to

their growth rates, which are more similar to nonlinear local
Lyapunov vectors (Feng et al. 2016, 2018). In the present study,
the BVs are computed 72 h ahead of the initial time, and the
breeding cycle period is taken as 6 h. Specifically, the RPs are
initially added to the state field 72 h ahead of the initial time of
the control forecast, and with this perturbed field as the initial
value, the WRF Model is integrated forward for 6 h; thus, a
group of perturbed forecasts is obtained. Then, the difference
between the control forecast and the perturbed forecast at this
time is taken as a new set of perturbations. These new pertur-
bations are further rescaled to the amplitude of the initially
superimposed RPs and then orthogonalized. Such a process is
often referred to as a breeding cycle. After 12 6-h breeding
cycles, a group of orthogonal initial perturbations can be ob-
tained, which are the orthogonal BVs for ensemble forecasting.
In fact, we have tried more breeding cycles and found that the
resultant BVs possess similar structures when the breeding pe-
riod exceeds 72 h. To save computing costs, we chose a 72-h
breeding period.

APPENDIX B

Forecast Errors of the TC Tracks, Ensemble Spread, and
Strike Probability

The forecast errors of the TC tracks are measured by the
great-circle distance between a TC center in the best track
and that in the forecasts (Neumann and Pelissier 1981),
which can be expressed by Eq. (B1):

Track error 5 111:11 cos21[sinu0 sinus

1 cosu0 cosus cos(l0 2 ls)], (B1)

where l0 and u0 are the longitude and latitude of the TC
center in the best track, respectively, and ls and us are the
longitude and latitude in the control forecast or the ensem-
ble mean forecast, respectively. The forecast error of each
TC track can be decomposed into two components: one is
along the best track (ATE), and the other crosses the best
track (CTE). A positive CTE value indicates that the fore-
casted TC track lies to the right of the best track, and a
negative value indicates that it lies to the left; a positive
ATE indicates that the forecasted TC moves faster than in-
dicated by the best track, and a negative ATE indicates
slower movement (WMO 2013; Heming 2017).

The ensemble spread of the TC track forecasts is defined
by the standard deviation of the ensemble members with
respect to the ensemble mean (Hopson 2014), which can be
calculated by Eq. (B2):

spread 5

�������������������������
1

N 2 1
∑
N

i51
|Fi 2 F |2

√
, (B2)

where N represents the ensemble size, Fi is the track of the
ith ensemble member, F is the ensemble mean, and |Fi 2 F |
is the great-circle distance between Fi and F . A perfect en-
semble forecast is proven to have a relationship in which
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the ensemble spread is equal to the ensemble mean fore-
casting error (Bowler 2006; Hopson 2014).

The TC strike probability at a spatial location is defined as
the probability that a TC will pass within a 120-km radius from
the location during the next 120 h (WMO 2013). The TC strike
probability skill can be evaluated by the Brier score (BS), Brier
skill score (BSS), relative operating characteristic (ROC), and
reliability diagram (RD).

(i) The BS is the mean squared error of the probability
forecasts defined by Eq. (B3):

BS 5
1
N
∑
N

i51
(fi 2 oi)2, (B3)

where N is the number of realizations of the prediction
processed, and fi and oi are the probabilities of the fore-
cast and observation for the prediction processes, re-
spectively. A smaller BS indicates a better probability
forecast skill (Brier 1950).

(ii) The BSS assesses the improvement of the BS for a given
forecast with respect to a reference forecast (i.e., the
control forecast in the present study). A BSS of 0 indi-
cates no skill, and a BSS of 1 represents a perfect fore-
cast with the highest skill (Titley et al. 2020).

(iii) The ROC curve measures the ability of a forecast to dis-
criminate between events and nonevents. This curve is a
function of the hit rate and false alarm rate. Thus,
higher skill is indicated by an ROC curve that is closer
to the top-left corner of the diagram (implying a low
false alarm rate and high hit rate) or a larger area under
the curve (ROCA) (Mason and Graham 2002).

(iv) The RD curve displays how well the forecast probabili-
ties correspond to the observed frequencies. Therefore,
for a perfect ensemble forecast, the RD curve should be
on the diagonal. A line above the diagonal indicates
under-forecasting, meaning that the forecast probabili-
ties are lower than the observed frequencies; in contrast,
a line below the diagonal indicates over-forecasting, i.e.,
that the event is forecasted more often than it is actually
observed (Dube et al. 2020).
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