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Chapter 17 
Conditional Nonlinear Optimal 
Perturbation: Applications to Ensemble 
Forecasting of High-Impact Weather 
Systems 

Wansuo Duan, Lichao Yang, Zhizhen Xu, and Jing Chen 

Abstract The conditional nonlinear optimal perturbation (CNOP) method, which 
includes CNOP-I for identifying the optimally growing initial perturbation, CNOP-P 
for revealing the most sensitive parameters, CNOP-B for disclosing the boundary 
uncertainty that exerts the largest effect on forecasts, and CNOP-F for exploring the 
combined effect of kinds of model errors, is introduced. Their applications to the 
ensemble forecasting of tropical cyclone and convectional scale weather systems are 
reviewed to show the usefulness of CNOP-I, -P, and -F in estimating the initial error 
effect, model parametric error effect, and even the combined effect of kinds of model 
errors, respectively. The future outlook and prospects are also provided. 
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17.1 Introduction 

Ensemble forecasting is performed to evaluate forecasting uncertainties. Ensemble 
forecasting is often implemented by superimposing a group of mutually independent 
initial perturbations on the initial analysis of the control forecast to estimate the 
initial uncertainties and then the associated forecasting uncertainties (Leith 1974). 
Ensemble forecasting provides the ensemble mean forecasting results of concerned 
weather and climate events, the ensemble mean forecast error quantified by the 
ensemble spread, and probabilistic information about the occurrence of concerned 
events (Buizza et al. 2005; Bowler  2006; Leutbecher and Palmer 2008; Buckingham 
et al. 2010). Due to the diversity and usefulness of ensemble forecast products, 
ensemble forecasting is an irreplaceable method in numerical predictions. The World 
Meteorological Organization (WMO) has treated ensemble forecasting as one of the 
main development strategies of numerical predictions. 

The traditional ensemble forecast, as introduced above, is applied to address the 
effect of initial uncertainties. Determining what kind of initial perturbations are 
more beneficial for estimating initial uncertainties and acquiring higher forecast 
skill is the essential issue of ensemble forecasting. Actually, the ensemble fore-
casting members are generated to neutralize the errors of the control forecasts and to 
make the members better characterize the true state. Since the errors of the control 
forecast often grow rapidly with time due to the instability of atmospheric and/ 
or oceanic motions, a group of rapidly growing initial perturbations are expected 
to superimpose on the initial analysis of the control run to neutralize the forecast 
error growth. Thus, only rapidly growing initial perturbations can help improve the 
ensemble forecasting skill (Mureau et al. 1993; Toth and Kalnay 1993, 1997). Various 
approaches have been introduced to generate the growing-type initial perturbations 
for ensemble forecasting, and some of them have gained great success in operational 
weather forecasting and climate predictions. Toth and Kalnay (1993) developed the 
breeding method to identify growing-type initial perturbations, i.e., the bred vectors 
(BVs), and applied it to the ensemble forecasting system at the National Centers 
for Environmental Prediction (NCEP) in 1992. The European Centre for Medium-
Range Weather Forecasts (ECMWF) introduced an alternative method of singular 
vectors (SVs; Mureau et al. 1993; Buizza and Palmer 1995; Molteni et al. 1996) and 
produced ensemble forecasts with great success. Ensemble forecasting, as mentioned 
above, requires growing-type initial perturbations superimposed on control forecasts 
to achieve higher forecasting skill; that is, it should be ensured that such initial pertur-
bations grow rapidly during the forecast period. Notably, SVs possess clear dynamics 
to yield growing-type initial perturbations during the forecast period (Du et al. 2018). 
However, their fatal shortcoming is that they cannot cope with the impact of nonlinear 
physical processes on the amplification of the initial perturbations (Anderson 1997; 
Hamill et al. 2000; Mu  2000). To overcome this limitation, Mu et al. (2003) proposed 
the conditional nonlinear optimal perturbation (CNOP), which is an extension of the 
leading SV in the nonlinear regime. The CNOP fully considers the influence of
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nonlinear physical processes and represents the optimally growing initial perturba-
tion in the nonlinear regime. Mu and Jiang (2008b) replaced the leading SV with the 
CNOP to produce ensemble initial perturbations and demonstrated higher forecast 
skills than SVs (also refer to Huo and Duan 2019; Zhou et al. 2021). To take into 
account fully nonlinear impacts in the development of the initial perturbations, Duan 
and Huo (2016) further formulated the orthogonal CNOPs (O-CNOPs) method to 
produce mutually independent nonlinear optimal initial perturbations for ensemble 
forecasting. The O-CNOPs have been shown to display a higher ensemble forecast 
skill than SVs and BVs and a more reasonable ensemble spread for estimating the 
uncertainty in a hierarchy of models (Duan and Huo 2016; Huo et al. 2019; Wang 
and Duan 2019; Wang 2021; Zhang et al. 2023a). 

The ensemble forecasting methods mentioned above focus on addressing the 
initial uncertainty effects and are only reasonable under a perfect model assumption. 
For the model error effect, it is much difficult to estimate its uncertainties. Despite this 
disadvantage, some methods have been designed to address the corresponding fore-
casting uncertainties. For example, the ECMWF proposed a stochastically perturbed 
parameterization tendency scheme (SPPT; Buizza et al. 1999) and stochastic kinetic 
energy backscatter scheme (SKEB; Shutts 2005), leading to important improvements 
in the ensemble forecast skill (Du et al. 2018; also refer to the special issue, Buizza 
2019). Hou et al. (2006) also developed a stochastic total tendency perturbation 
scheme (STTP) to emulate model uncertainties in the NCEP global ensemble fore-
casting system in February 2010 (also refer to Hou et al. 2008, 2010). As argued 
above, the ensemble forecasting system also requires growing-type perturbations 
to account for the unstable growth of forecast errors. However, the randomness 
of these model perturbation methods limits their ability to fully capture the rapid 
growth behavior of forecast errors caused by model errors. To obtain the rapidly 
growing model perturbations, Barkmeijer et al. (2003) proposed using a forcing 
singular vector (FSV) closely related to the SVs, which represents a rapidly growing 
constant tendency perturbation in a linear framework. This constant tendency pertur-
bation describes the combined effects of the model systematic errors and parts of 
state-dependent model errors that are not explicitly described in the model equations 
(Feng and Duan 2013). To obtain a higher forecasting level, Duan and Zhou (2013) 
proposed approaching this problem by using the nonlinear forcing singular vector 
(NFSV). The NFSV is the tendency perturbation that implants the full nonlinear 
effect and makes the forecast deviate from the reference state more significantly. 
Relative to the CNOP method mentioned above, Wang et al. (2020b) also referred 
to the NFSV as CNOP-F, a special case of the CNOP, particularly for addressing the 
model error effect. If the NFSV is employed in an ensemble forecasting framework, 
it could better encompass the truth and provide more reliable ensemble members. 
To achieve this purpose, Duan et al. (2022a) proposed a new approach based on a 
set of orthogonal NFSVs (O-NFSVs), following the idea of O-CNOPs developed in 
Duan and Huo (2016). The O-NFSVs provide mutually independent model tendency 
perturbations that enable the description of the forecast uncertainties caused by model 
errors. Furthermore, Zhang et al. (2023b) are trying to apply O-NFSVs to yield model 
perturbations to imitate the model uncertainties responsible for tropical cyclone (TC)



444 W. Duan et al.

forecasts by using the realistic Weather Research and Forecast (WRF) model. Prelim-
inary results showed the usefulness of O-NFSVs in offsetting the model error effect 
on TC forecasts. 

To address the inevitable effects of both initial errors and model errors in numer-
ical forecasts, Duan et al. (2022a) further developed C-NFSVs to combine all these 
uncertainty effects, which particularly consider the effect of initial and model error 
interactions and generalize the original NFSV only for measuring the model error 
effect, finally proposing a novel ensemble forecasting method. Although there have 
been ensemble forecasting systems that consider both initial error effects and model 
error effects (e.g., Buizza et al. 1999; Hou et al. 2010), they were built by superim-
posing the independent initial perturbations (such as SVs, BVs, or others) and the 
model tendency perturbations (e.g., SPPT or STTP). To date, no attention has been 
given to the dynamically coordinated growth of the initial and model perturbations, 
which may limit the skill of ensemble forecasts, and C-NFSVs may compensate for 
this gap. 

In this chapter, we would summarize the advances in ensemble forecasting with 
respect to the implementation of the newly developed CNOP method and its applica-
tions to high-impact weather system forecasting. The subsequent section will intro-
duce the idea of the CNOP method, and then Sect. 17.3 presents the applications to 
ensemble forecasting studies, especially for tropical cyclone and convectional scale 
weather systems. In Sect. 17.4, a novel ensemble forecasting method, C-NFSVs, to 
estimate the forecast uncertainties caused by both initial errors and model errors 
is introduced, and its special case, the O-NFSVs is described, accompanied by 
its applications to TC forecasts. Finally, a summary and prospect are provided in 
Sect. 17.5. 

17.2 Conditional Nonlinear Optimal Perturbation 

Since Mu et al. (2003) proposed the CNOP method (also refer to Mu and Duan 2003), 
it has been extended from the original CNOP representing the optimally growing 
initial errors (for convenience, hereafter CNOP-I; Mu et al. 2003; Mu et al.  2010) 
to additional CNOP-P for addressing the influences of optimally growing model 
parametric errors (Mu et al. 2010), CNOP-B for disclosing the boundary uncertainties 
that have the largest effect on forecasts (Wang and Mu 2015), and CNOP-F [i.e., the 
nonlinear forcing singular vector proposed in Duan and Zhou (2013)] for exploring 
the combined effect of various model errors. This section focuses on introducing 
the ideas of CNOP-I, -P, and -F, which have been applied in ensemble forecasting 
studies. The specifics are presented as follows. 

The dynamic equations responsible for atmospheric and oceanic motions are 
generally written as a nonlinear partial differential equation (Eq. (17.1)).
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⎧ 
⎨ 

⎩ 

∂U 

∂t 
= F(U, P) 

U |t=0 = U0 

in Ω × [0, T ], (17.1) 

where U (x, t) = [U1(x, t), U2(x, t), . . . ,  Un(x, t)] is the state vector, U0 is its initial 
value, F is the nonlinear differential operator, x = (x1, x2, . . . ,  xn), t ≤ T (0 < T < 
+∞) is the time, P = (P1, P2, ..., Pm ) are model parameters, Pi represents one 
model parameter independent of time t, and Ω is a domain in the n-dimensional 
Euclidean space Rn . Since a forecast is often contaminated by initial and model 
errors, Eq. (17.1) is rewritten as Eq. (17.2) to represent forecast model equations 
consisting of both initial perturbation u0 and parametric perturbation p. 

⎧ 
⎨ 

⎩ 

∂(U + u) 
∂t

= F(U + u, P + p) 

U + u|t=0 = U0+u0 

in Ω × [0, T ], (17.2) 

where u represents the departure from the reference state U caused by the combined 
effects of initial and parametric perturbations. In this circumstance, when a nonlinear 
optimization problem is defined as in Eq. (17.3), its solution (u∗

0, p∗) represents the 
optimal combined mode of initial and parametric perturbations that satisfies a certain 
constraint and results in the largest departure from the reference state at time τ . Mu  
et al. (2010) referred to this combined mode as CNOP. 

J (u∗ 
0, p

∗) = max 
(u0, p)∈Cu0 , f

||u(τ )||, (17.3) 

where C confines the scope of the initial perturbation u0 and parametric perturbation 
p. The CNOP has two special cases: the first case is CNOP-I, proposed by Mu et al. 
(2003), which is used to reveal the optimally growing initial perturbation when the 
parametric perturbation p = 0, while the second case is CNOP-P, which causes the 
largest departure from the reference state when the initial perturbation disappears 
(Mu et al. 2010). 

If one rewrites Eq. (17.2) as Eq.  (17.4), its resultant forecast can be understood 
as being influenced by the combined effect of the initial error and the model errors 
contained in the total tendency. F̃ associated with the uncertainties in the sub-grid 
process parameterization, the external forcing and the stochastic noises, and other 
kinds of model uncertainties. 

⎧ 
⎨ 

⎩ 

∂(U + u) 
∂t

= F̃(U + u) 

U + u|t=0 = U0+u0 

in Ω × [0, T ]. (17.4) 

If the total tendency F̃ is rewritten into two terms F0 and f and F0 represents the 
accurate tendency, then the term f represents the total tendency error. It is obvious 
that the tendency error f is composed of different kinds of model errors. In this sense,
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Eq. (17.4) can be expressed as Eq. (17.5). 

⎧ 
⎨ 

⎩ 

∂(U + u) 
∂t

= F0 (U + u) + f (x, t) 

U + u|t=0 = U0+u0 

in Ω × [0, T ]. (17.5) 

Then, which tendency error will cause the largest forecast error at the forecast 
time when the initial errors are neglected? Eq. (17.6) would produce such optimal 
tendency error, or more generally, optimal tendency perturbation f ∗. 

J ( f ∗) = max 
f ∈C f

||u(τ )||. (17.6) 

This optimal tendency perturbation is the nonlinear forcing singular vector 
(NFSV) proposed by Duan and Zhou (2013). Relative to the CNOP, Wang et al. 
(2020b) took the NFSV as a special case of the CNOP and denoted it as CNOP-F, 
particularly for exploring the combined effect of different kinds of model errors. 

Thus, a family of CNOPs has been achieved, including CNOP-I, -P, -F intro-
duced above and CNOP-B formulated for exploring the boundary condition error 
that has the largest effect on the forecasting results by Wang et al. (2020b). All these 
perturbations fully considered the effects of nonlinear physical processes and have 
been shown to represent the optimally growing mode in their respective scenarios. 
One can search for the CNOPs by using existing optimization solvers such as Spec-
tral Projected Gradient 2 (SPG2; Birgin et al. 2000) or Limited memory Broyden– 
Fletcher–Goldfarb–Shanno for bound-constrained optimization (LBFGS-B; Liu and 
Nocedal 1989) according to the descending direction provided by the gradients of 
relevant cost functions. Notably, some intelligent algorithms, such as particle swarm 
optimization (PSO) and genetic algorithms, have emerged to solve similar optimiza-
tion problems. These algorithms do not calculate the gradient and may be applicable 
to models with different complexities. 

The CNOPs have been widely applied to reveal the sensitivity and uncertainties 
of atmospheric and oceanic motions and to address associated problems of target 
observations, data assimilation and ensemble forecasting of high-impact weather 
and climate events, such as TCs, atmospheric blocking, El Niño-Southern Oscil-
lation (ENSO), the Indian Ocean Dipole (IOD), atmospheric environmental heavy 
air pollution and oceanic mesoscale eddies (Duan et al. 2022b). In this chapter, 
we would summarize the advances in ensemble forecasting studies for high-impact 
weather systems.
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17.3 Applications to Ensemble Forecasting 
for High-Impact Weather Systems 

In the applications of CNOPs, CNOP-I was applied to ensemble forecasting for 
addressing effect of initial uncertainties, and O-CNOPs were proposed to produce 
mutually independent ensemble initial perturbations as requested by ensemble fore-
casting (refer to the introduction; Duan and Huo 2016); subsequently, the O-CNOPs 
were applied to forecast TC tracks and achieved higher forecasting skills than the 
BVs and SVs methods (Huo and Duan 2019; Huo et al. 2019). For the model error 
effect, the CNOP-P, which, as introduced in Sect. 17.2, solves the optimal para-
metric perturbation, was employed in the ensemble forecasting of convective-scale 
weather systems based on its recognized sensitivity to parameter uncertainties (Wang 
et al. 2020a). Furthermore, considering that CNOP-P only accounts for the effect of 
model parameter errors and other kinds of model errors and that their interactions also 
substantially disturb weather and climate predictions, Xu et al. (2022a) adopted the 
NFSV [also referred to as CNOP-F in Wang et al. (2020b)] to measure the combined 
effect of various model errors to explore ensemble forecasting in convective-scale 
weather systems [also refer to Xu et al. 2022b]. Both CNOP-P and CNOP-F achieved 
much higher forecasting skills than the operational use of SPPT. In this section, we 
will provide a thorough overview of all CNOP applications to ensemble forecasts of 
high-impact weather systems. 

17.3.1 Forecasts of Tropical Cyclone Events Associated 
with the Initial Error Effect 

For ensemble forecasting, to consider the effect of nonlinearity on ensemble initial 
perturbations, Mu and Jiang (2008a, b) introduced the CNOP method to SV ensemble 
forecasting by replacing the leading SV with the CNOP (also refer to Jiang and Mu 
2009) and attempted to improve the related ensemble prediction skill. However, such 
an approach still involves linear approximation because nonleading SVs still have 
the role of ensemble initial perturbations. Inspired by this limitation, Duan and Huo 
(2016) developed O-CNOPs based on CNOP-I by applying Eq. (17.1). 

J (u∗ 
0 j ) = max 

u0 j∈Cu0 j

||
||u j,τ

||
||, (17.7) 

where 

Cu0 j =
  

u0 j ∈ Rn
 
 
||
||u0 j

||
|| ≤ δ

 
, j = 1

 
u0 j ∈ Rn

 
 
||
||u0 j

||
|| ≤ δ, u0 j⊥Cu0k , k = 1, . . . ,  j − 1

 
, j > 1 

, (17.8)
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Cu0 j is one subspace of the whole phase space, R
n is the n-dimensional Euclidean 

space, “⊥” is the orthogonality of vector spaces, u0 j is the initial perturbation in 
Cu0 j , and

||
||u0 j

||
|| ≤ δ is the constraint condition (δ is a positive constant); then, 

u∗ 
0 j is the j-th CNOP-I. According to Eqs. (17.7) and (17.8), the first CNOP-I (i.e., 

u∗
01) possesses the largest nonlinear evolution in the first subspace, i.e., the whole 

space, and the j-th CNOP-I (i.e., u∗ 
0 j ) possesses the largest nonlinear evolution in the 

subspace orthogonal to the j − 1 CNOP-Is (i.e., u∗
01, u∗

02, . . . ,  u∗ 
0 j−1). These CNOP-Is 

constitute the O-CNOPs. The O-CNOPs are all derived from nonlinear model and 
fully consider the effect of nonlinearity (Duan and Huo 2016). 

Duan and Huo (2016) first used the famous Lorenz-96 model (Lorenz 1996) to  
test the dynamics of O-CNOPs. They found that when the initial analysis errors are 
fast-growing, the ensemble forecasts generated by O-CNOPs perform much more 
skillfully; however, for the slowly growing initial analysis errors, the ensemble fore-
casts generated by O-CNOPs achieve almost the same forecast skill as those gener-
ated by SVs when the ensemble initial perturbations are sufficiently small, whereas 
the ensemble forecasts generated by SVs possess higher skill when the ensemble 
initial perturbations are much larger. The authors also showed that the O-CNOPs 
are more applicable than the SVs for achieving much higher ensemble forecast skill 
of extreme events. In particular, the ensemble forecasts generated by the O-CNOPs 
require a very small number of ensemble members to achieve high forecast skills. 
Therefore, the O-CNOPs may provide another useful technique to generate initial 
perturbations for ensemble forecasting. 

Huo et al. (2019) further applied the O-CNOPs to the realistic Pennsylvania 
State University/National Center for Atmospheric Research (PSU/NCAR) Fifth-
Generation Mesoscale Model (MM5; Dudhia 1993; Grell et al. 1994) for  the  
ensemble forecasts of five TC tracks; furthermore, they made a thorough skill compar-
ison with the SVs since they present different patterns from O-CNOPs [see Fig. 17.1, 
for the STY Matsa (2005)]. The results showed that the ensemble members generated 
by the O-CNOPs present large spreads but tend to be located on the two sides of real 
TC tracks and show agreement between ensemble spreads and ensemble mean fore-
cast errors for TC tracks. This finding indicates that these members generated by the 
O-CNOPs are more feasible to reveal forecast uncertainties of TC tracks than SVs in 
terms of these TCs. The results also illustrated that the O-CNOPs of smaller ampli-
tudes are more reasonable to construct the ensemble members for short lead–time 
forecasts but that those of larger amplitudes should be utilized for longer lead–time 
forecasts due to the stronger effects of nonlinearities. In particular, Huo and Duan 
(2019) compared O-CNOPs to the ensemble strategy of replacing the leading SV 
with the first CNOP-I (hereafter CNOP + SVs), as in Mu and Jiang (2008b), in an 
attempt to reveal the importance of the nonlinear effect in yielding ensemble initial 
perturbations. The authors showed that the CNOP + SV ensemble strategy is not 
necessary to produce greater ensemble forecast skill than that of the SVs, but it is 
certain that the O-CNOPs are more likely to cause much higher ensemble forecasting 
skill for TC tracks. These results indicate that the inclusion of fully nonlinear effects 
on ensemble initial perturbations enhances the ensemble forecasting skill for TC 
tracks.



17 Conditional Nonlinear Optimal Perturbation: Applications to Ensemble … 449

Fig. 17.1 Spatial structures of the temperature (shaded) and wind components (vectors) of the first 
five O-CNOPs and SVs for the STY Matsa (2005) at the level σ = 0.975, which were used to 
produce the ensemble perturbations. The columns list the structures in sequence, from the first to 
the fifth. From Huo and Duan (2019). ©2019 Springer Nature Publisher. Used with permission 

With the more advanced WRF model, Zhang et al. (2023a) predicted another 
twelve strong TC cases by using the O-CNOPs ensemble forecasting method, and as 
expected, obtained much higher ensemble forecasting skill compared with the SVs, 
BVs, and random perturbations (RPs) methods (Fig. 17.2). In particular, the authors 
demonstrated that the ensemble members generated by the O-CNOPs are more likely 
than those made by BVs, SVs, and RPs to reproduce the tracks of unusual TCs, such 
as the sharp northward-turning track of Megi (1013) and the counterclockwise loop 
track of Tembin (1214). Zhang et al. (2023a) also showed that when the WRF was 
compared with MM5, its resultant ensemble forecasts made by the O-CNOPs still 
significantly increased the forecasting skill of the TC tracks in the control forecasts, 
although the control forecasts possessed a higher skill than MM5, while those gener-
ated by SVs and BVs only slightly improved it or became much worse. That is to 
say, the SVs and BVs are less functional in improving the track forecasting skill in 
the much more advanced WRF model for the twelve selected TCs.

Based on the above findings, O-CNOPs are shown to be useful in estimating 
initial uncertainties and then yielding much higher ensemble forecasting skill from 
the realistic MM5 to the advanced WRF model for TC track forecasting. However, 
the results are still derived from a small number of TC cases and therefore are only 
indicative. Despite this finding, the results have made us confident in validating the 
usefulness by using more TC cases, even to apply O-CNOPs to the real-time fore-
casts of TCs. Other high-impact weather systems, even high-impact climate events, 
should also be used to investigate the effectiveness of O-CNOPs. Then, operational 
suggestions can be provided.
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Fig. 17.2 a1 Track errors (solid lines) at different forecast times for the control forecast and 
ensemble mean forecasts averaged for twelve selected TCs and the corresponding ensemble spreads 
(dotted lines) generated by the RPs (green), orthogonal BVs (yellow), SVs (purple) and O-CNOPs 
(blue); a2 the error reduction rate (i.e., skill improvement) due to the ensemble mean; and a3 the 
box-and-whisker plot for the skill improvement averaged for twelve TCs and all lead times, with a 
95% confidence interval. The circles denote the maximum and minimum of the improvements for 
the twelve TCs;  b1, b2, and  b3 plot the Brier skill score, reliability diagram, and relative operating 
characteristic curve for the TC strike probability, respectively, generated by the four methods
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17.3.2 Forecasts of the Convectional Scale Weather System 
Associated with the Model Error Effect 

It is worth noting that convection-allowing ensemble prediction systems with high 
resolutions of 2–4 km have emerged as a major focus and become a hot topic of current 
research on numerical weather predictions. How to accurately address model uncer-
tainties in a convective-scale system is a crucial issue in studies of convection-scale 
ensemble forecasts. Even if ensemble techniques have been applied, the ensemble 
members generated by the stochastically perturbed physics tendencies (SPPT; Buizza 
et al. 1999) utilized in operational centers still face new scientific challenges, espe-
cially the problem of under-dispersion. To address this under-dispersion issue, Wang 
et al. (2020a) applied the CNOP-P approach to the Global and Regional Assimilation 
and Prediction Enhanced System (GRAPES), which is a convection-scale ensemble 
prediction model, to detect the most sensitive parameters. Then, the authors formu-
lated a kind of parameter perturbation by adding a group of stochastic perturbations 
to these sensitive parameters to depict the model uncertainty and conducted ensemble 
forecast experiments on relevant variables at convective scales. The authors showed 
that the relevant ensemble members, compared with those generated by the SPPT, 
enable a much larger spread for humidity and temperature over the troposphere and 
yield much more reliable forecasting skill on near-surface variables and precipitation. 
This study concludes that the application of the CNOP-P sensitivity to identifying 
parametric uncertainties greatly improves the ensemble forecasting skill of convec-
tional scale weather systems, even to a higher skill than the SPPT employed in 
operational centers. 

It is easily recognized that the CNOP-P only accounts for the effect of model 
parameter errors, and other kinds of model errors also severely influence weather 
and climate predictions; in particular, these model errors are interactive. Consid-
ering this situation, Xu et al. (2022a) further adopted the CNOP-F [i.e., the NFSV in 
Duan and Zhou (2013)] to measure the combined effect of various model errors to 
explore the ensemble forecast of convective scales [also refer to Xu et al. 2022b]. The 
authors superimposed the structured NFSV on the SPPT perturbations and formu-
lated new tendency perturbations (denoted by “SPPT_NFSV”) for ensemble fore-
casts. With these new perturbations, Xu et al. (2022b) conducted ensemble experi-
ments by using the GRAPES convection-scale ensemble prediction model adopted 
in Wang et al. (2020a). The authors illustrated that the overall probabilistic skills 
are obviously improved by using the SPPT_NFSV and have an advantage over the 
SPPT (Fig. 17.3). Particularly, the authors demonstrated that the use of the NFSV 
enhances the forecasting skill of precipitation accuracy. It is inferred that addi-
tional structured nonlinear perturbations (e.g., the NFSV) superimposed on the SPPT 
can better represent model uncertainties in convection-scale ensemble forecasts and 
finally contribute to a more comprehensive characterization of model uncertainties 
for convective-scale forecasts.

Either the CNOP-P or the NFSV provides more sensitivity information related 
to the model perturbations and thus leads to higher ensemble forecasting skill of
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Fig. 17.3 Probabilistic skill for 500 hPa zonal wind (left column) and temperature (right column). 
a and b show the domain-averaged RMSE of the control forecast (gray line), SPPT_NFSV exper-
iment (red line), and SPPT experiment (blue line), with the ensemble spread for the SPPT_NFSV 
(red bar) and SPPT (blue bar). c and d represent the spread-error consistency, e and f depict the 
continuous ranked probability score, g and h illustrate the Talagrand rank histograms, and i and 
j indicate the outlier scores. From Xu et al. (2022b). @ John Wiley and Sons Publisher. Used with 
permission

the convectional scale system by reasonably enlarging the ensemble spread. This 
finding indicates that the errors of the control forecasts caused by model errors in 
the GRAPES often grow at a fast rate and that the model perturbations related to 
CNOP-P and NFSV provide growth behavior that is much closer to the dynamical 
growth of the model errors than the SPPT provides. Then, it is naturally questioned 
whether the model perturbation strategies implemented as above are most applicable 
for capturing the rapid growth behavior of the forecast errors induced by the model 
errors. In particular, for the NFSV, if the SPPTs are fully replaced by mutually
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Fig. 17.3 (continued)

independent NFSVs, similar to O-CNOPs, can they depict much better the model 
uncertainties that exhibit fast growth behaviors and obtain much higher forecast 
skill? All these questions deserve our in-depth investigations. It is expected that 
a more efficient and user-friendly ensemble forecasting method for addressing the 
model error effect, even the combined effect of model and initial errors, will be 
investigated. 

17.4 A Novel Ensemble Forecasting Method for Addressing 
the Combined Effect of Initial and Model Errors 
and Its Special Case O-NFSVs Accompanied 
by Applications to TC Forecasts 

The ensemble forecasting mentioned in Sect. 17.3 focuses on considering either the 
initial uncertainties or model uncertainties. However, in realistic forecasting systems, 
the effects of both the initial errors and the model errors, especially the effects of 
their interaction, are inevitable (Nicolis et al. 2009). In this actual situation, the key 
question is how to correctly combine the initial errors and model errors to obtain 
reliable ensemble forecasting. As discussed in the introduction, although there exist 
ensemble forecasting systems that consider the combined effect of initial and model 
errors (e.g., Buizza et al. 1999; Hou et al. 2010), they yielded initial perturbations
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(such as SVs and BVs) only for measuring initial uncertainties and model pertur-
bations (e.g., SPPT or STTP) merely for estimating model uncertainties and did 
not consider the dynamically coordinated growth of initial and model perturbations, 
which may limit the skill of ensemble forecasting. 

Duan et al. (2022a) generalized the original NFSV (also CNOP-F; refer to 
Sect. 17.2) for measuring model error effects and proposed C-NFSVs that combine 
the impacts of both model errors and initial errors, formulating a novel ensemble 
forecasting method that considers the dynamically coordinated growth of initial and 
model perturbations. The specific equations are Eqs. (17.9) and (17.10). 

J ( f ∗ 
j ) = max 

f j∈C j
||
||uτ (r f j ; f j )

||
||
b 
, (17.9) 

where 

C j =
 

f 1 ∈ Rn,
||
|| f 1

||
||
a 

≤ σ f , 
f j ∈ Rn

 
 
 
||
|| f j

||
||
a 

≤ σ f , f j⊥Ck, k = 1, . . . ,  j − 1
 
, j > 1, (17.10) 

and
||
||r f j

||
||
a 

≤ σI ; r f j is the initial perturbation with r = σI 
σ f and f j is the tendency 

perturbation used to offset the model errors in Eq. (17.4) [i.e., tendency errors f (x, t) 
in Eq. (17.5)], Rn is the n-dimensional Euclidean space, the symbol { · } refers to an 
ensemble of vectors, and the symbol ⊥ indicates the orthogonality; || · ||a and || · ||b 
are the norms that are applied to measure the amplitudes of the initial perturbations 
r f j and tendency perturbations f j and the departure from the reference state at time 
τ , respectively; σ f and σI are positive constant numbers that constrain the amplitudes 
of the tendency perturbations and initial perturbations, respectively. The combined 
modes (r f ∗ 

j , f 
∗ 
j ) are defined as the C-NFSVs. 

The C-NFSVs have two particular cases: O-CNOPs and O-NFSVs. The former 
has been proposed in Duan and Huo (2016) to address the initial error impact on the 
forecasts (refer to Sect. 3.1), while the latter estimates the model error impact, as 
proposed by Duan et al. (2022a). Duan et al. (2022a) adopted the famous Lorenz-96 
model and demonstrated that ensemble forecasting based on O-CNOPs has a higher 
skill than that based on O-NFSVs in the early stage of the forecasts, while in the later 
stage of the forecast, the impact of the model errors becomes more prominent and 
ensemble forecasting based on O-NFSVs excels. The forecasts based on C-NFSVs, 
due to their optimization on both the initial errors and model errors, possess higher 
skill than those based on O-CNOPs and O-NFSVs during the whole forecast period. 
In Duan et al. (2022a), a simple combination of O-CNOPs and O-NFSVs was also 
compared with C-NFSVs; the results showed that the simple combination may cause 
inconsistent dynamical behaviors between the initial perturbations and the tendency 
perturbations and would degrade the ensemble forecasting skill, while the C-NFSVs 
possess additional dynamical features that lead to a higher forecast skill (Fig. 17.4). 
These results justify the advantage of using C-NFSVs in building ensemble forecasts.
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Fig. 17.4 Skill performance differences between the ensemble forecasts made by the combination 
of O-CNOPs and O-NFSVs when they obtain the highest skill scores and those made by C-NFSVs 
(red) and the skill performance differences between the combination of O-CNOPs and O-NFSVs 
with the same optimization period and perturbation amplitudes as in C-NFSVs and those made 
by C-NFSVs (blue). The horizontal axis denotes the lead time, and the vertical axis represents the 
differences in the RMSE, ACC, BS, and ROCA values. From Duan et al. (2022a). ©2022 American 
Meteorological Society. Used with permission 

Considering that TC track forecasts have considerably improved during the past 
decades while the TC intensity forecasts remain challenging, Zhang et al. (2023b) 
adopted the special case of C-NFSVs, i.e., O-NFSVs for estimating the effect of 
model uncertainties to conduct TC ensemble forecasting experiments with the WRF 
model, with a focus on improving TC intensity forecasting skill (Fig. 17.5). The 
authors performed a comparison between the O-NFSVs and the traditional SKEB 
and SPPT schemes. The results demonstrated that the O-NFSV ensembles provide 
a better representation of the model uncertainties affecting TC intensification, with
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much better deterministic and probabilistic skills. Similar improvements were also 
extended to the forecasting skill for TC tracks, although the perturbations were 
not optimized for that specific purpose. Therefore, O-NFSVs could be a kind of 
perturbation structure that is able to describe the uncertainties in TC intensity and 
tracks. Furthermore, Zhang et al. (2023b) showed that such perturbations are also 
favorable for recognizing a TC’s rapid intensification process during forecast periods. 

Although the O-NFSV structures presented in Zhang et al. (2023b) are realized 
using mutually independent, growing-type tendency perturbations to represent model 
uncertainties for TC forecasts, ensemble forecasting to address the combined effect 
of initial and model errors has not yet been implemented. Therefore, a natural exten-
sion of this study will be conducted to explore the application of the C-NFSVs 
in TC forecasts. It is expected that when the O-NFSVs are properly combined with 
initial perturbations by the C-NFSVs, new highly reliable ensembles will be available

Fig. 17.5 Ensemble forecasts generated by O-NFSVs (a), SKEB  (b) and SPPT (c) for track (1), 
Pmin (2), and Vmax (3) of TC Hato (201713). The black lines represent the control forecasts, the 
red lines denote the best tracks, the blue lines indicate the ensemble means, and the gray lines 
represent the ensemble members 
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for further improving TC forecasting skill in terms of intensity and track, even the 
much more challenging TC precipitations. For the convectional scale weather predic-
tion systems investigated above, it is also anticipated that the ensemble forecasting 
experiments using the C-NFSVs can be conducted to examine if they, compared with 
those using the NFSV_SPPT in Sect. 17.3, perform much well in depicting model 
uncertainties and achieving higher forecasting skill. 

17.5 Summary and Prospect 

Studies on the CNOP method and their applications to ensemble forecasting for high-
impact weather systems are summarized. The CNOP method which includes CNOP-
I for revealing the optimally growing initial perturbation, CNOP-P for extracting 
the most sensitive parameters, CNOP-B for determining the boundary condition 
uncertainty that exerts the largest effect on forecasts, and CNOP-F for exploring the 
combined effect of kinds of model errors, is introduced. These CNOPs fully consider 
the effect of nonlinearity and provide a way to obtain the optimally growing-type error 
mode for predictability studies, including ensemble forecasting in their respective 
scenarios. 

The CNOP-I, -P, and -F [i.e., NFSV] have been applied to the ensemble forecasting 
of high-impact weather systems. O-CNOPs were proposed to produce ensemble 
perturbations for estimating the initial uncertainties, and with the applications to the 
numerical models from the conceptual Lorenz-96 model to the realistic MM5 and 
further to the advanced WRF, they were demonstrated to have the ability to repre-
sent the initial error effect and to promote the ensemble forecasting skill. Especially 
for the TC track forecasts, O-CNOPs, compared with the operationally utilized SVs 
and BVs, provide the ensemble members that exhibit larger spreads but tend to be 
located on the two sides of real TC tracks and show much better agreement between 
ensemble spreads and ensemble mean forecast errors. Furthermore, O-CNOPs were 
illustrated to be favorable for reproducing the unusual TC tracks in forecasts. For 
the TC intensity forecasts, the O-NFSVs developed from the CNOP-F were used to 
depict the effect of model errors, and it was revealed that the ensemble members 
generated by the O-NFSVs have the ability to represent the model uncertainties 
affecting TC intensification and to provide much higher ensemble forecasting skills 
than the operationally employed SPPT and SKEB. This ability was also extended to 
the forecasting skill for TC tracks, although the O-NFSVs were not optimized for 
that specific purpose. For convectional scale weather systems, ensemble forecasting 
focuses on addressing the model uncertainty effect. An alternative perspective has 
been applied to provide the relevant sensitivities using both CNOP-P and CNOP-F, 
which have helped extract more sensitive ensembles or exert more unstable model 
perturbations on the SPPT ensembles, consequently promoting the ensemble fore-
casting skill of convectional scale weather systems to a higher level. To explore an 
ensemble forecast method to address the combined effect of initial and model errors,
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the C-NFSV perturbation scheme was proposed, and its particular feature of dynam-
ically coordinated growth of initial and model perturbations was found to be respon-
sible for the ensemble forecasting skill being higher than any simple combination 
between initial perturbations and model perturbations. It is hoped that the C-NFSVs 
can be continually applied in realistic forecasts for high-impact weather systems 
and further increase the forecast skill by reasonably estimating the combined effect 
of initial and model errors. In particular, comparisons between C-NFSVs and the 
combined modes of other types of initial perturbations (e.g., BVs or SVs) and other 
types of model perturbations (such as SPPT or SKEB) are worth performing in the 
future. Another interesting avenue in the development of C-NFSVs is to consider the 
effect of time-varying stochastic errors; a combined mode of C-NFSVs and random 
forcing tendency perturbations may cover a broader range of model errors and have 
potential for further improving the ensemble forecast skill. 

Either O-CNOPs for addressing initial uncertainties, O-NFSVs for interpreting 
the model uncertainties or C-NFSVs that combine initial and model error effects are 
worthy of further investigation, especially in applications to realistic models with 
different complexities for high-impact weather event and even high-impact climate 
event forecasting. Furthermore, it is noted that these perturbations are the optimally 
growing mode in nonlinear models in their respective scenarios; thus, it is naturally 
questionable whether associated ensemble forecasts prefer to achieve high skill in 
the forecasts of extreme events [also refer to Duan and Huo (2016)]. These will be 
the subjects of follow-up work. In addition, computational efficiency is a challenge 
of any ensemble forecast method; whether the presently popular machine learning 
algorithm can be combined with ensemble forecasting to save time and increase 
the efficiency of ensemble forecasting should also be explored. In any case, with 
the development of computing sciences and emerging disciplines and technologies, 
the above ensemble forecast methods would become much useful and applicable in 
realistic forecasts of high-impact weather and climate events. 
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