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Abstract For paired mesoscale eddies, the most sensitive initial errors in relation to sea surface height
anomaly (SSHA) forecasts are investigated by utilizing the conditional nonlinear optimal perturbation (CNOP)
method in a two‐layer quasigeostrophic model and then the sensitive areas are identified accordingly. For
counter‐rotating eddies, the CNOP initial errors primarily occur within the eddies themselves, especially in
areas characterized by clear high‐to low‐velocity gradients, accompanied by shear structures; while for co‐
rotating eddies, besides sharing the feature of the former, their CNOP initial errors also concentrate between the
two eddies and are obliquely tangential to their boundaries with a positive and negative shear structure. The
utility of the CNOP initial errors in determining the sensitive areas for target observation is assessed through
observing system simulation experiments (OSSEs). The OSSEs indicate that giving priority to the
implementation of target observations in the sensitive areas identified by large CNOP initial errors, whether
within eddies or between two co‐rotating eddies, particularly with a specific array guided by the shear structure
of CNOP initial errors, leads to a notable improvement in SSHA forecasting. Finally, the effectiveness of the
target observations, especially within the sensitive area situated between two co‐rotating eddies, is interpreted
from the perspective of barotropic instability. The results of this study offer valuable scientific insights into the
targeted observation of paired mesoscale eddies. These findings have the potential to provide important
guidance for initializating paired mesoscale eddies, ultimately contributing to improvements in SSHA forecast
accuracy.

Plain Language Summary Sea surface height anomaly (SSHA) is a critical variable for describing
ocean surface dynamics, and improving the accuracy of SSHA predictions is of utmost importance. Given that
the initialization of mesoscale eddies plays a pivotal role in SSHA forecasts, and these eddies often appear in
pairs in the world's oceans, we investigate the impact of paired mesoscale eddies on the sensitivity of SSHA
forecasting. Our findings indicate that, for paired mesoscale eddies, in contrast to individual eddies, the sensitive
areas associated with SSHA forecasting are not only confined to the eddies themselves, specifically the area
within eddies characterized by a high‐to low‐velocity gradient, but also located between two eddies, especially
in the case of co‐rotating eddies. Targeting observations in these sensitive areas of paired mesoscale eddies,
especially with a specific array, can significantly enhance the accuracy of SSHA forecasts. This improvement
can be explained by the mechanism of barotropic instability. This research holds the potential to make a
substantial contribution to the initialization of paired mesoscale eddies, consequently enhancing the precision of
SSHA forecasts.

1. Introduction
Sea surface height anomaly (SSHA) is viewed as the foremost variable to describe ocean surface dynamics
(Nicholls & Cazenave, 2010). The SSHA can exert substantial influence on the frequency and severity of extreme
sea level events, and it is very concerned by ship navigation, fishery resource forecasting, marine engineering and
industry (Lumban‐Gaol et al., 2017; Tanajura et al., 2015). Therefore, accurate prediction of SSHA holds
immense significance (Fraser et al., 2019).
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Numerical models have been at the forefront of ocean forecasts for decades and are frequently employed for
predicting SSHA. However, uncertainties in SSHA forecasting persist because of initial and model errors
(Agarwal et al., 2022; Song et al., 2021); furthermore, the nonlinear instability of ocean fluid motion amplifies
these uncertainties (Miao et al., 2023). With the realization of satellite technology, the altimeter provides SSHA
observation data on a nearly global scale, and then assimilating these data becomes an effective way to reduce the
uncertainty of SSHA prediction (Oke et al., 2013). It is worth noting that assimilating additional observations in
regions highly sensitive to the initial values of forecasts leads to a significant improvement in forecasting skill;
conversely, in areas with weak sensitivity, it may yield only modest improvements or, in certain instances, even
poorer forecasting skills due to additional errors induced by imperfect assimilation procedures or unsolved
processes in models (Janjic et al., 2018; Yang et al., 2023). Hence, even if there are sufficient observations, it
remains crucial to prioritize the specific areas where the observations should be preferentially assimilated to attain
better forecasting skills. It is therefore essential to identify the areas where the initial errors are most influential on
the predictions of SSHA. Such argument is associated with an observational strategy known as “target obser-
vation” (Mu, 2013; Snyder, 1996). That is, to enhance the prediction of an event at a future time t1 (referred to as
the verification time) within a specific area of interest (referred to as the verification area), additional observations
are strategically deployed at time t2 (called the targeted time; typically t2 < t1) in some key areas (called the
“sensitive area”), where the additional observations are expected to exert a significant impact on the forecasts
within the verification area. By prioritizing the assimilation of targeted observations in sensitive areas, more
dependable initial states can be formed, thereby reducing the prediction errors of concerned events much
effectively.

It is known that the world's oceans are abundant with mesoscale eddies; in particular, the chaotic nature of such
vortex‐dominated turbulence is significantly controlled by the chaotic motion of eddies (Babiano et al., 1994). By
using a two‐layer quasigeostrophic (QG) model, Weiss and Grooms (2017) demonstrated that accurately
initializing mesoscale eddies can improve the estimation and prediction of ocean states. In their study, they
employed an assimilation strategy for mesoscale eddies by assimilating observations evenly distributed over the
eddies, and the results indicated that this assimilation strategy is more effective in enhancing the forecasting
performance of ocean states than assimilating only a portion of observations distributed on uniformly spaced grids
across the entire model domain. However, mesoscale eddies typically have irregular shapes and asymmetric flow
fields, which reduce vortex structure stability and introduce highly nonlinearity (Cheng et al., 2014; Wang
et al., 2023). Taking this into consideration, Jiang et al. (2022) investigated the sensitivity of mesoscale eddies
related to SSHA forecasts and unveiled the significance of this sensitivity in identifying sensitive areas for target
observation. The investigation also utilized a two‐layer QG model, akin to the one employed by Weiss and
Grooms (2017). They found that there indeed exist sensitive areas on mesoscale eddies, which present strong
sensitivity to initial errors of SSHA forecasting; more specifically, when additional observations are preferentially
implemented in the sensitive area where the eddies present a clear high to low‐velocity gradient along the eddy
rotation, it significantly enhances the forecasting capability for SSHA (also see Jiang et al., 2023). Note that Jiang
et al. (2022) paid attention to the sensitivity of SSHA forecasting on individual mesoscale eddy.

In practice, the oceanic mesoscale eddies frequently arise in pairs (as illustrated in Figure 1) and one of the
hallmarks of ocean turbulence is eddy‐eddy interaction (Harrison et al., 2013; Huang & Wang, 2022; Ni
et al., 2020). Specifically, paired mesoscale eddies manifest in two distinct configurations: counter‐rotating pairs
and co‐rotating pairs. Concerning counter‐rotating pairs composed of an anticyclone and a cyclone, they are
separated by a central jet, and noticeable gradients in density and temperature can be observed between two
counter‐rotating eddies (Durán‐Campos et al., 2019; Pidcock et al., 2013); while regarding co‐rotating pairs,
which comprise either two anticyclones or two cyclones, they are generally recognized for featuring a relatively
weak flow field within the interstice between two eddies. Previous studies demonstrated that paired eddies usually
interact with each other, altering their motion parameters and geometric properties, leading to the redistribution of
kinetic energy and the enhancement of eddy nonlinearity (Fedorov & Belonenko, 2020). Therefore, in relation to
more practical scenarios, it is imperative to delve into the impact of initial uncertainties associated with paired
mesoscale eddies on SSHA prediction. A more specific aspect pertains to target observations, prompting queries:
where are the sensitive areas for target observation of paired mesoscale eddies in relation to SSHA forecasts? Are
they different from those of individual eddies? What mechanism determines the sensitive areas of paired eddies?
To address these issues, the two‐layer QG model utilized in Jiang et al. (2022) is still adopted here, facilitating a
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comparison with their work. Additionally, the conditional nonlinear optimal perturbation (CNOP) (Mu
et al., 2003) approach is still employed.

The remainder of this paper is structured as below. In Section 2.1, the two‐layer QG model is introduced. In
Section 2.2, we briefly review a nonlinear approach named CNOP. In Section 3, we calculate CNOPs for paired
mesoscale eddies related to SSHA forecasting and identify the sensitive areas accordingly. In Section 4, the
effectiveness of target observation of paired eddies in enhancing SSHA forecasting skill is verified by conducting
observing system simulation experiments. Section 5 interprets the reason behind the significant improvement in
SSHA forecasts associated with targeted observations for paired mesoscale eddies. Finally, the summary and
discussion are offered in Section 6.

2. Model and Method
2.1. The Two‐Layer Quasigeostrophic Model

The doubly periodic (QG;Weiss & Grooms, 2017; Jiang et al., 2022) model with two equal layers is adopted. The
model is constructed on the f‐plane and is subject to a vertically sheared zonal flow with horizontally uniform and
baroclinically unstable. By decomposing the instantaneous field into a mean field and a perturbation field, the
governing equations for the evolution of perturbations derived from the two‐layer QG model are expressed as
follows:

∂tq1 = − U1 · ∇q1 − ∂xq1 − v1 − ν∇8q1 (1)

∂tq2 = − U2 · ∇q2 + ∂xq2 + v2 − cd · ∇ × (|U2|U2) − ν∇8q2 (2)

q1 = ∇2ψ1 +
1
2
(ψ2− ψ1) (3)

q2 = ∇2ψ2 −
1
2
(ψ2− ψ1) (4)

where qi and ψi represent the potential vorticity and streamfunction (i = 1, 2, representing the first and second
layers of the model), Ui denotes the two‐dimensional vector composed of zonal velocity ui = − ∂yψi and
meridional velocity vi= ∂xψi, ν(=5 × 10

− 7) and cd(=0.1) are the hyperviscosity coefficient and standard quadratic
drag coefficient, respectively. Equations 1–4 has been nondimensionalized, with the deformation radius and the
imposed zonal velocity as length and velocity scales. The configuration of the model is as employed in the study
conducted by Jiang et al. (2022). Particularly, the model domain is square with nondimensional width of 32π,
nondimensional grid size of 0.39 (enabling that the deformation radius encompasses more than two grid points to
meet the requirements for eddy‐resolving computations), and nondimensional time step of 0.01. Then, the spatial
grid size and the velocity are assigned dimensional values of 15 km and 0.01 m s− 1, respectively; this results in a

Figure 1. The sea surface height anomaly field (units: m) on 18 July 2018, which encompasses paired eddies, obtained from the Archiving, Validation, and Interpolating
of Satellite Oceanographic altimeter data distributed by the Copernicus Marine and Environment Monitoring Service.
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dimensional domain width of 3,840 km, a dimensional deformation radius of 38.2 km, and a dimensional time
scale of about 42 days for this model. The numerical solutions of this model are computed by 256×256 nonzero
Fourier modes and a fourth‐order semi‐implicit Runge‐Kutta scheme.

2.2. Conditional Nonlinear Optimal Perturbation

To reveal the sensitive area associated with paired mesoscale eddies and fully take the nonlinearity of eddies into
account, the (CNOP; Mu et al., 2003) approach is first adopted to investigate the most sensitive area of paired
eddies associated with SSHA forecasts. The CNOPmethod has been applied to the studies of target observation in
relation to Tropical Cyclones, El Nino‐Southern Oscillation, Indian Ocean dipole, and Kuroshio large meander
and the identification of their respective optimal observing locations according to the sensitivity of the most
sensitive error revealed by the CNOP (Qin et al., 2013; Mu et al., 2017; Duan et al., 2018; Wang et al., 2013).
Now, let's provide a brief introduction to the CNOP approach, specific details can be found inMu et al. (2003) and
Jiang et al. (2022).

The QG model can be abstracted as
Xt = Mt (X0) (5)

where Xt represents the state vector of the model at the prediction time t, which is obtained through “propagating”
the initial state X0 to the future time t using the nonlinear propagatorMt. Assuming that the initial condition X0 is
disturbed by x0, then the solution is expressed as

Xt + xt = Mt (X0 + x0) (6)

where xt = Mt(X0 + x0) − Mt(X0) indicates the nonlinear evolution of the initial perturbation x0. To calculate the
initial perturbation that leads to the most significant development at the prediction time within a given constraint
radius δ, we define the nonlinear constraint optimization problem as Equation 7.

J( x∗
0) = max

x0∈Cδ
J(x0), J(x0) =

⃦
⃦Mt (X0 + x0) − Mt (X0)‖A (7)

Cδ restricts the range of the initial perturbations, ‖ ⋅ ‖A represents a norm which measures the evolution of
perturbation at the prediction time with respect to reference state, J is the objective function. Obviously, the x∗

0
exactly represents the CNOP focused in this paper, which denotes the initial perturbation that has the potential to
cause the most significant forecast errors at the verification time t within the verification area, given the specific
constraint radius δ.

In the QG model, the SSHA can be defined from the streamfunction of the first layer ψ1. In view of our concerns
here, the objection function can be rewritten as

J (ψ∗
0δ) = max

ψ∗
1,0∈Cδ

J (ψ∗
1,0), J (ψ

∗
1,0) =

⃦
⃦Mt (ψ1,0 + ψ∗

1,0) − Mt (ψ1,0)‖A (8)

Then, L2 norm is chosen as ‖ ⋅ ‖A here. The scope of the initial perturbations is described as

Cδ = {ψ∗
1,0

⃒
⃒
⃒
⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n ∑

n

i=1
(ψ∗
1,0)

2
i

√

≤ β · (ψ1,0)STD} , n denotes the number of grids perturbed, β denotes a preassigned

positive number, (ψ1,0)STD represents the standard deviation of the ψ1,0 (the initial filed of ψ1 which perturbed by
ψ∗
1,0 here) over the whole model scope. Note that β is set as 0.04 here according to practical observational errors of
SSHA to guarantee the initial perturbations of SSHA at each grid point is constrained within the dimensional
observational errors of 0.02–0.03 m.

After setting all the optimization problems, the objective function J in Equation 8 is calculated, and its maximum
is obtained by applying the spectral projected gradient 2 (SPG2; Birgin et al., 2000) optimization algorithm. The
SPG2 algorithm for calculating CNOPs requires the gradient information of the cost function with respect to
initial perturbations, where the gradient was often calculated by integrating an adjoint model more efficiently.
However, the QG model here does not have its adjoint ready, then we intend to calculate the gradient using
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approach of numerical derivatives. Based on the automated and iterative forward integration of the QG model
controlled by the SPG2, a given initial perturbation is optimized and updated according to the gradient till the
convergence condition in the SPG2 is satisfied. The resulting initial perturbation is then regarded as the CNOP.
For more details, please refer to Jiang et al. (2022).

3. The Most Sensitive Initial Error of Paired Mesoscale Eddies Associated With SSHA
Forecasting
The CNOPs correspond to initial perturbations (or errors) that adhere to specific physical constraints and exhibit
the most significant nonlinear evolution within the focused area (or verification area) at a specified prediction
time (or verification time). The CNOPs act as the most sensitive initial perturbations in a nonlinear model,
possessing a remarkable ability to pinpoint sensitive areas for target observation (Duan et al., 2023). The CNOP
generally possesses areas of much large perturbation energies and the forecast accuracies are often much sensitive
to the initial errors in these areas. Such areas could represent the sensitive areas for targeting observations. Now,
we adopt this CNOP approach to explore the sensitive areas for targeting observations of paired mesoscale eddies,
aiming to optimize initial field and ultimately enhance the forecast accuracy of SSHA.

To do so, we initially integrate the two‐layer QG model, starting from an initial matrix composed of random
numbers that follow a normal distribution N(0,1) of (ψ1,ψ2), up to time T0, so as to obtain a stable model field
containing mesoscale eddies. Subsequently, with the streamfunction (ψ1,ψ2) at time T0 as the initial value, we
further integrate the model to time T1 (T1> T0). The duration between T0 and T1 is 1 week (that is, 7 days, the same
as that in Weiss and Grooms (2017) and Jiang et al. (2022)). Taking the time‐dependent evolution of the SSHA
over one week, specifically the 350th week here within the integration mentioned above, as a reference state for
prediction, the CNOPs of the initial SSHA are calculated, in which the initial perturbation and its final state only
pertain to the SSHA ψ1 confined within a specific rectangle. This rectangle encompasses both the initial and final
locations of two paired mesoscale eddies in spatial proximity (<200 km apart) (the eddies here are recognized by a
simplified SSHA‐based vortex identification algorithm; please see Appendix A in Jiang et al. (2022)).

Paired mesoscale eddies, as mentioned in the introduction, are generally configured including counter‐rotating
pairs and co‐rotating pairs. Then, we conduct experiments respectively for these two configurations and
compare their CNOPs. Specifically, 10 counter‐rotating pairs and 10 co‐rotating pairs are respectively selected.
Then a total of 20 CNOPs are obtained with the respect to SSHA forecasting.

By observing the 10 CNOPs of counter‐rotating/co‐rotating pairs, it is found that similar features emerge within
different counter‐rotating cases/co‐rotating cases, but distinctions are apparent between counter‐rotating and co‐
rotating cases. That is, the counter‐rotating eddies present the CNOPs mainly situated within the eddies, while the
co‐rotating eddies show the CNOPs located not only within the eddies but also between the two eddies (see
Figure 2). More specifically, the former type of CNOP errors tend to locate the areas where eddies manifest clear
high‐to low‐velocity gradients along their rotation, and they appear as a shear structure in SSHA; while the latter
type of CNOPs, besides sharing the feature of the former CNOPs, further concentrate between the two eddies and
obliquely tangential to their boundaries with a positive‐negative SSHA shear structure. This finding suggests that
the SSHA forecasting may be highly sensitive to not only the accuracy of initial eddy itself but also the initial field
between the eddies in pairs, especially for the co‐rotating eddies, which extends the results of Jiang et al. (2022)
when they regarded the mesoscale eddy as an isolated body and did not consider the eddy‐eddy interaction.

From the above, it is known that the areas located in the CNOP patterns and bearing large perturbation energies
could represent sensitive areas for targeting observation. Then these possible sensitivities suggest that, apart from
the sensitive areas on the eddies themselves, the areas situated between two eddies in pairs and obliquely tangential
to their boundaries may also be the sensitive areas, especially when two co‐rotating eddies are investigated. Next,
we perform numerical experiments to examine the feasibility of the sensitive areas of paired eddies.

4. Observing System Simulation Experiments to Examine the Feasibility of the
Sensitive Areas for Paired Eddies
As described in the introduction, the purpose for targeting observations is to provide the most useful additional
observations, so as to provide a more precise initial field for the numerical model, thus much effectively
improving the concerned forecast skill. The “target observation” mainly serves the demand of forecasts on
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observations (Snyder, 1996), which is different from traditional observation strategies, that is, to recognize the
phenomenon and understand its mechanism. Notably, a series of encouraging results have been achieved in
theoretical research and related field experiments of target observations for high‐impact weather and climate
event forecasting. For example, the Observing Systems Research and Predictability Experiment and the program
of Dropwindsonde Observation for Typhoon Surveillance near the Taiwan Region both used the target obser-
vation strategy to reveal the important role of the additional observations in sensitive areas in improving the
forecasting ability of typhoon (Wu et al., 2007, 2009).

In this section, we confirm the rationality of the above possible sensitive areas for targeting observations of paired
mesoscale eddies recognized by the CNOPs through conducting observing system simulation experiments
(OSSEs) along with the thinking of predictions. We first assess the sensitive areas of counter‐rotating pairs which
are only located within the eddies themselves and present significant high‐to low‐velocity gradients in flow fields.
The corresponding OSSEs confirm the rationality of these sensitive areas and provide very similar results to those
of Jiang et al. (2022), which established the validity of the sensitive areas precisely located on mesoscale eddies
and also characterized by clear high‐to low‐velocity gradients through treating eddies as isolated bodies. Then, we
refrain from providing further redundant descriptions here. Now we focus on investigating the rationality of the
sensitive areas for co‐rotating pairs, which are situated not only in areas exhibiting clear high‐to low‐velocity
gradients on the eddies themselves but also in areas between two eddies in pairs and obliquely tangential to
their boundaries.

Figure 2. The left panels depict the conditional nonlinear optimal perturbations (CNOPs) associated with 7‐day sea surface height anomaly (SSHA) forecast (a; shaded)
(units: m); the right panels illustrate the initial velocity field of paired eddies with respect to the CNOPs shown in the left panels (b; shaded) (units: m s− 1). (1) and (2)
denote the case involving paired co‐rotating eddies and paired counter‐rotating eddies respectively. The black "⊙" marks the centers of the mesoscale eddies at initial
time, the red contours depicts the SSHA field, bold contours denote the edges of eddies, the black arrows indicate the velocity vectors.
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In the OSSEs, the reference state spanning from T0 to T1 is chosen to represent the “true” state, hereafter referred
to as the “Nature Run,” and the synthetic observations are generated by introducing errors into the Natural Run at
given observation sites. Subsequently, we superimpose white noise with a larger amplitude on the Nature Run at
time T0 and smooth this field with white errors by Lanczos filtering algorithm. Using the smoothed field as initial
condition, the model is integrated until time T1 to create the “Control Run,” which essentially serves as a control
forecast of the Nature Run. Then, we assimilate synthetic observations into the initial field of the Control Run,
resulting in an updated initial field. Using the revised initial field, we once again integrate the model to generate a
new SSHA forecast. For simplicity, we will call this new forecast the “Assimilation Run” (see Figure 3).

Note that various control forecasts will yield different forecast errors, primarily originating from distinct initial
errors, which refer to the disparities between the initial fields of Natural Run and Control Runs. Certain initial
errors may result in minimal forecast errors, while others can lead to significantly large forecast errors. When
initial errors result in negligible forecast errors, the forecast results are already satisfactory. In such instances,
even if we assimilate targeted observations into the model, the improvement in forecasts is often imperceptible.
However, in cases where initial errors result in large forecast errors, the assimilation of targeted observations
becomes imperative, which will help effectively optimize initial field and lead to a significant enhancement in
prediction skills. Therefore, to conduct a more realistic and reasonable evaluation of targeted observations, we
intentionally select the Control Runs with significant forecast errors for assimilation experiments. Concretely, we
generate 100 Control Runs and get 100 initial errors by taking the difference between Control Runs and Nature
Runs at time T0. All initial errors are scaled to the same amplitude through Xi′ = λiXi，where Xi and Xi′ (i = 1,
2…, 100) respectively represent the initial errors of the Control Run and their scaled counterparts; λi is a scaling

factor, making Xi′ satisfy
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
N

j=1
(Xi,j′)

2
/N

√

= αδ0, where j is a grid point,N is the total number of grid points within

the rectangular area where two initially interacting eddies are located, as well as their positions after 1 week of
evolution, α denote a given positive value constraining the magnitude of the initial errors of Control Runs, δ0
represents the standard deviation of the initial values in the reference states of SSHA. Considering the magnitude
of initial errors in practice, We set α to 0.2 here (sensitivity experiments confirmed that variations within a certain
range of this value have a negligible impact on the final experimental results). Then, we examine the forecast
errors resulting from all the scaled initial errors and select the top 20 initial errors that lead to larger forecast errors
for conducting the OSSEs.

For the 10 co‐rotating eddy cases, whose sensitive areas are situated not only within the eddies but also between
the two eddies and obliquely tangential to their boundaries for the SSHA forecasting over the regions covered by
the rectangles encompassing both the initial and final locations of two paired mesoscale eddies (i.e., the validation
region; see the description for target observation in the introduction), we adopt the above designment to conduct
OSSEs and show the rationality of the sensitive areas. Similar results are obtained in different cases, and we will
take the vortex in Figure 2a1 as an example to elucidate in detail. Specifically, we first extract 11 sub‐regions
within the region where initial perturbations are superimposed and the CNOP is calculated (this region is also
the validation region for target observation). These regions have the same size covering 25 grid points, which are
respectively denoted as R1 to R11 (see Figure 4). Notably, the region R5 is precisely situated between the two
eddies in the co‐rotating pair and covers the possible sensitive area tangential to the eddy boundaries; while the
regions R10 and R11 cover precisely the possible sensitive areas located on mesoscale eddies. The remaining

Figure 3. The schematic diagram of observing system simulation experiment process.
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selected sub‐regions are almost ergodic in the rest of the validation region. Subsequently, for each of the sub‐
regions, we randomly deploy 20 sets of 2‐point observations to generate various assimilation strategies. As an
example, Figure 5 provides the assimilation strategies (G1‐G20) randomly generated for the R5 region. Our
intention is to demonstrate the substantial impact of assimilating targeted observations in the sensitive areas for
the co‐rotating eddies. Optimal interpolation is employed to assimilate observations here (please see Appendix D
in Jiang et al. (2022)). The benefit, which indicates the improvement in SSHA forecasting obtained through
assimilation, is quantified by the following Equation 9.

b =
dF1 − dF2
dF1

× 100%, (9)

Figure 4. R1 to R11 represent 11 local regions that are uniformly extracted within the perturbation region for the specific case shown in Figure 2a1. In each region, 25
connected grid points marked with black points are selected. The black “⊙” represent the centers of the initial eddies.
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where dF1 and dF2 represent the forecast errors of the Control Run and the Assimilation Run, respectively,
relative to the Nature Run.

Utilizing these different assimilation strategies, the model is integrated, and the benefits (denoted as “b”) from
assimilating targeted observations are calculated. Similar results are obtained from different co‐rotating eddies
and then we describe the results using the case shown in Figure 2. As depicted in Figure 6, both median and mean
values clearly indicate that the benefit b, indicating the improvement of SSHA forecasting skill resulting from
assimilating observations, in the R5 region is comparable to that in the R10‐R11 regions, and notably higher than
that in other nonsensitive regions. From these experiments, we confirmed that the preferential deployment of
additional observations in the sensitive area (i.e., R5) situated between two co‐rotating eddies and obliquely
tangential to their boundaries is indeed a valid strategy for improving the forecast accuracy of SSHA. Importantly,

Figure 5. G1‐G20 represent 20 assimilation strategies of R5 region. In these strategies, two‐grid observations are randomly deployed within the R5 region situated
between two co‐rotating eddies, which are marked by bold blue dots.
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its effectiveness is comparable to that in the sensitive areas (i.e., R10 and R11) characterized by clear high‐to low‐
velocity gradients within eddies. Additionally, similar results were obtained when deploying 3‐point or 4‐point
observations in 20 different assimilation strategies, reaffirming the consistency of these findings.

Furthermore, upon conducting a more in‐depth analysis of the improvement effects of different assimilation
strategies (i.e., the 20 sets of 2‐point observations randomly deployed in corresponding sub‐regions) on pre-
dictions, it is evident that the structure of CNOPs offers valuable guidance for determining the deployment with
specific arrays of target observations. Basically, the benefits of assimilation become evident only when obser-
vations are strategically placed in sensitive areas, whether they are situated within or between the two co‐rotating
eddies, with an array crosscutting the shear structure of CNOPs. Specifically, for the sensitive areas within eddies,
such as the R10 and R11 regions, this array is displayed along the radial direction of eddy, which aligns with Jiang
et al. (2022). Their work has thoroughly described this aspect and provided a reasonable explanation from the
perspective of barotropic instability, so we will refrain from reiterating or elaborating on it here. While for
the sensitive areas situated between the two eddies, such as the R5 region, this array manifests perpendicular to the
line connecting the centers of the two interacting eddies, as illustrated in Figures 5 and 7. This has not been found
in previous works. Such observational arrays effectively cut off the possible shear structure of the initial errors
similar to the CNOPs and are beneficial for capturing the spatial characteristic of the optimally growing per-
turbations occurring between two co‐rotating eddies and obliquely tangential to their boundaries. By assimilating
these observations, we are able to effectively mitigate the influence of CNOP on SSHA forecasting, leading to
significant improvements in predictive accuracy. However, there is currently no exact theoretical mechanism to
explain why target observation in the sensitive area situated between two co‐rotating eddies, especially with a
specific observation array oriented perpendicular to the line connecting the centers of the two interacting eddies

Figure 6. Boxplot of the benefits b resulting from assimilating various two‐grid observations in regions R1 to R11 with
respect to 20 Control Runs with larger forecast errors. The red dots and bold black lines represent the mean and median,
respectively.

Figure 7. Boxplot of the benefits b obtained from assimilating various two‐grid observations in G1‐G20 with respect to 20
Control Runs with larger forecast errors. The red dots and bold black lines represent the mean and median, respectively.
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which effectively intersect the possible shear structure of the initial errors similar to the CNOPs, can significantly
improve forecasting skills. An explanation for this phenomenon is warranted and we will discuss it in the next
section.

5. Interpretation
Now, we will elucidate why target observations deployed in the sensitive area situated between two co‐rotating
eddies with the array oriented perpendicular to the line connecting the centers of the two co‐rotating eddies can
lead to a more significant improvement in SSHA forecast skill. Given that this particular configuration of target
observation is determined by the characteristics of CNOPs, the key inquiry revolves around understanding why
CNOPs located in the region between two co‐rotating eddies exhibit such characteristics and can experience
significant growth, ultimately exerting a profound influence on the forecast results. In order to clarify this issue,
the eddy‐energies analysis is utilized below (Tsujino et al., 2006).

Typically, the decomposition of an instantaneous flow field into mean flow and eddy fluctuation is involved in the
calculation of eddy energies. The mean flow is usually obtained by temporally averaging the instantaneous field,
while the eddy fluctuation is represented as the difference between the instantaneous field and the mean field. In
the case of horizontal mean flow, it is generally believed that the development of eddy fluctuation is primarily
driven by the barotropic instability of the mean flow, which facilitates the transfer of energy, particularly kinetic
energy, to sustain the growth of eddy fluctuations. The barotropic conversion rate (BT) is commonly used to
quantify the transfer of kinetic energy from the mean flow to the eddy fluctuation induced by barotropic insta-
bility, and it can be derived from the tendency equation of eddy kinetic energy (EKE) under the QG assumption,
as expressed by the following Equation 10.

∂(EKE)
∂t

= − ρ0(u'u'
∂u
∂x
+ u'v'(

∂u
∂y
+
∂v
∂x
) + v'v'

∂v
∂y
)

− u · ∇(EKE) − u′·∇(EKE) − ua' · ∇P' − W′
∂P′
∂Z

− gδρ'w'

(10)

The terms on the right‐hand side can be understood as horizontal momentum fluxes that are oriented down the
mean momentum gradient, the mean advection of EKE, the eddy advection of EKE, horizontal and vertical eddy
pressure work by the ageostrophic flow, and vertical buoyancy fluxes, respectively (see Tsujino et al. (2006) for
more details). The first term is interpreted as the BT from mean kinetic energy to eddy kinetic energy. That is

BT = − ρ0(u'u'
∂u
∂x
+ u'v'(

∂u
∂y
+
∂v
∂x
) + v'v'

∂v
∂y
). (11)

where u and v are zonal and meridional velocities of the mean flow, u′ and v′ are the corresponding velocities of
the eddy fluctuation field, respectively. Obviously, when BT is positive, the EKE is transferred frommean flow to
eddy fluctuation.

It's important to note that different definitions of mean flow or eddy fluctuations may be applicable to specific
physical problems of interest. Even so, the BT can still serve as an indicator of barotropic instability (Fujii
et al., 2008). With regard to the specific issue concerned here, the reference state for prediction, which is confined
to the regions covered by rectangles encompassing both the initial and final locations of two paired mesoscale
eddies, is considered as mean flow, while the CNOPs are viewed as eddy fluctuations. Then, the BT related to the
CNOPs is calculated using Equation 11, and it is found that the positive BT consistently appears in the area with
significant CNOPs (see Figure 8). Specifically, in addition to the locations where eddies exhibit clear high‐to low‐
velocity gradients, positive BT also appears in the area between two co‐rotating eddies and obliquely tangential to
their boundaries. Hence, it can be concluded that the initial errors between two co‐rotating eddies are also indeed
more likely to extract energy from the reference state and experience significant growth, which consequently have
a crucial impact on the prediction of SSHA.

Then, apart from the areas within eddies characterized by clear high‐to low‐velocity gradients, which has been
explained in the work of Jiang et al. (2022), why does the positive BT also exist between two co‐rotating eddies in
pairs and obliquely tangential to their boundaries? We notice that within the region between two co‐rotating

Journal of Geophysical Research: Oceans 10.1029/2023JC020572

JIANG ET AL. 11 of 17



cyclonic or anticyclonic eddies, there consistently exists a prominent maximum or minimum vorticity. That
reminds us of the Rayleigh criterion for barotropic instability, which was originally defined by Rayleigh (1880).
According to this criterion, barotropic instability occurs only when extreme vorticity is present within a specific
region (for the detailed derivation of this criterion, please see Rayleigh (1880); Emanuel (2009)). Consequently,
in the region positioned between two co‐rotating eddies, in contrast to the scenario involving two counter‐rotating
eddies, initial errors have the capacity to obtain energy from the reference field through barotropic instability.
This leads to the rapid amplification of initial errors and ultimately leads to significant prediction errors
(Figure 9).

After elucidating the reason behind the presence of significant CNOP values within the area between two co‐
rotating eddies, the next step is to provide a comprehensive explanation of the shear structure that presents a
positive‐negative contrast in SSHA of the calculated CNOPs here. To address this issue, Equation 11, which is
derived based on the Cartesian rectangular coordinate system, is further simplified and analyzed. In essence, the
Cartesian rectangular coordinate system is composed of two perpendicular coordinate axes intersecting at the
origin. Then, we can establish the coordinate axes of the Cartesian coordinate system in a flexible manner based
on the concerned problems.

As is well known, barotropic instability arises from the horizontal velocity shear in the mean flow. Assuming that
there is a mean flow with horizontal shear, as depicted in Figure 10, we can establish the X‐axis along the direction
of fluid shear. In this case, there exists u ≠ 0, ∂u∂x = 0, v = 0, and Equation 11 can be further simplified
accordingly:

BT = − ρ0u'v'
∂u
∂y

(12)

Further, we establish the Y‐axis according to the basis ∂u∂y > 0. Density ρ0 is always a positive value. Under this
circumstance, BT > 0 can be guaranteed as long as u′v′ < 0 is satisfied. It's evident that when the disturbance
velocities u′(u′,v′) are either perpendicular or parallel to the coordinate axes, indicating u′ = 0 or v′ = 0, there will
be u′v′ = 0, which does not meet the requirement u′v′ < 0. Therefore, there must be an angle between the
disturbance velocities and the mean shear flow, as depicted in Figure 10 (we established the disturbance velocity
in the first and second quadrants). Through further analysis, we found that only when there exists an obtuse angle
θ2 from the positive direction of the X‐axis to the scalar direction of the disturbance velocity in counterclockwise
rotation, u′v′< 0 can be guaranteed. Correspondingly, BT> 0 at that time. Therefore, only this type of disturbance
flow has the potential to obtain energy from reference state and cause significant prediction errors. The θ2 exactly
suggests the approximate direction followed by the shear structure of CNOPs in the area between two co‐rotating
eddies.

Figure 8. (a) The distribution of the BT (units: 10− 7m2s− 3) associated with the reference state and its corresponding conditional nonlinear optimal perturbations in
Figure 2a1; (b) the corresponding vorticity (shaded; 10− 6s− 1) of initial field.
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Now, we have introduced the angle θ into the coordinate system. This brings us neatly to further describe the u′v′
in a polar coordinate system, which is constructed based on the Cartesian coordinate system established above.
Wherein, the polar coordinate system takes the origin of the Cartesian coordinate system as the pole O, the X axis

as the polar axis, and the angle is considered positive when measured in the
counterclockwise direction. Any point P on the plane can be positioned using
two fundamental components: the length of the line segment OP (called
the polar diameter r) and the angle from OX to OP (called the polar angle θ).
This ordered number pair P (r, θ) is referred to as the polar coordinate of point
P. Then, u′v′ can be expressed as

u'v' = −
∂ψ′
∂y

·
∂ψ′
∂x

= −
sin 2θ
2

(
∂ψ′
∂r
)

2

⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟
(Ι)

+
sin 2θ
2r2

(
∂ψ′
∂θ
)

2

⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟
(ΙΙ)

−
cos 2θ

r
(
∂ψ′
∂r
∂ψ′
∂θ
)

⏟̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅ ⏟
(ΙΙΙ)

(13)

According to the above analysis, in order to ensure a positive BT, it is
necessary to have 90° < θ < 180°, which leads to the condition u'v'<0.
Correspondingly, when 90° < θ < 180°, there exists sin2θ < 0, resulting in the
term (Ι) > 0, the term (ΙΙ) < 0, and the term (ΙΙΙ) > 0 or < 0. Since the term (Ι)
and the term (ΙΙ) are ensured to be positive and negative respectively, to

Figure 9. The conditional nonlinear optimal perturbations and their evolution (shaded) concerning the initial paired eddies in Figure 2a1 are plotted in (a) for the time
1
4(T1 − T0) , (b) for the time 12(T1 − T0) , (c) 34(T1 − T0) , and (d) for the time T1, where [T0,T1] corresponds to the optimization period in Section 3. The red contours draw
the outline of the sea surface height anomaly fields, the bold closed contours represent the edge of the eddies. The black "⊙" marks the centers of the mesoscale eddies at
corresponding time.

Figure 10. Sketch map for theoretically interpreting the inclined direction of
the shear structure of conditional nonlinear optimal perturbations between
two co‐rotating eddies. The solid black lines with arrows represent the
assumed horizontal velocity shear. The solid gray lines with arrows
represent the Cartesian coordinate axes x and y established based on the
velocity shear, with the x‐axis also corresponding to the polar axis in the
polar coordinate system. The thin blue line with an arrow indicates the
positive direction of an angle in the polar coordinate system. The bold gray/
red arrows represent vector velocities which satisfies u′v′ > 0/u′v′ < 0, with
the θ1/θ2 corresponds to the angle in the polar coordinate system.
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maximize the positive BT, it is desirable for the absolute value of the term (Ι)
to be as small as possible, ideally equal to 0, and the absolute value of the term
(ΙΙ) to be as large as possible. Since both term (Ι) and term (ΙΙ) contain the
factor sin2θ, we will temporarily set it aside for now. Then, the ∂ψ′∂r in term (Ι),
which means the shear of ψ′ along the polar diameter direction, is preferably
as small as possible, even equal to 0, which then correspondingly results in
term (ΙΙΙ) being equal to 0. On the other hand, in term (ΙΙ), the ∂ψ′∂θ is desired to
be as large as possible, indicating that the ψ′ is better to show the strongest
shear along the polar angle direction. Besides, in order to obtain the maximum
positive BT, the maximum absolute value of sin2θ also needs to be considered
in term (ΙΙ), which is achieved when θ = 135°.

Up to now, we have gained a clear understanding of the structural features
of our calculated CNOPs located between two co‐rotating eddies and
obliquely tangential to their boundaries. That is, as in Figure 11, the shear
structure in positive‐negative contrast, as observed in CNOPs, aligns with
the expected strongest shear structure along the polar angle direction;
meanwhile, the shear structure of the calculated CNOPs precisely pre-
sented θ = 135° in our build flexible coordinate. Our calculated CNOPs
that satisfied these two elements would induce the largest positive BT
between two co‐rotating eddies, subsequently exerting the most significant
influence on forecast errors.

To sum up, through the theoretical analysis presented above, we reasonably explained the sensitive area and the
shear structure of CNOP between two co‐rotating eddies from the perspective of barotropic instability. Specif-
ically, when initial errors exhibit a pronounced shear structure with a positive‐negative contrast in SSHA aligned
in a fixed direction, similar to the CNOPs computed in this study, and are superimposed within the area situated
between two co‐rotating eddies where extreme vorticity values exist in the reference states, it results in the
generation of a larger positive BT. Consequently, most of the energy is transferred from the reference state to the
errors, facilitating their optimal growth. Therefore, by prioritizing additional observations in the area between two
co‐rotating eddies with an array displayed perpendicular to the line connecting the centers of the two interacting
eddies, the impact of this initial error on the forecast can be minimized, resulting in a more effective improvement
in SSHA prediction skills.

6. Summary and Discussion
Given that mesoscale eddies in the world's oceans typically manifest in pairs, this study presents the first
investigation into the impact of paired mesoscale eddies on the sensitivity related to SSHA forecasting by
unilizing the CNOP approach in a two‐layer QG model. This research extends Jiang et al. (2022), where they
treated mesoscale eddies as isolated bodies to identify their sensitive areas. Firstly, the most sensitive initial errors
of paired mesoscale eddies for SSHA forecasts are calculated. Specifically, for counter‐rotating eddies, the
CNOPs primarily manifest within the eddies themselves, particularly in areas featuring noticeable high‐to low‐
velocity gradients within the eddies, and they are characterized by a shear structure in SSHA. While for co‐
rotating eddies, besides sharing the feature of the CNOPs of counter‐rotating pairs, their CNOPs further
concentrate between the two eddies and are obliquely tangential to their boundaries with a positive and negative
shear structure. These findings indicate that the SSHA forecasting is highly sensitive not only to the accuracy of
initial eddies themselves but also to the field situated between two paired eddies, especially for the co‐rotating
eddies. Correspondingly, it is suggested that, apart from the sensitive areas on the eddies themselves, the areas
situated between two eddies and obliquely tangential to their boundaries could also be sensitive areas, especially
when two co‐rotating eddies are investigated.

Next, we conduct OSSEs to examine whether targeted observations in the sensitive areas determined by CNOPs
can indeed improve SSHA forecasts and to evaluate the practicality of utilizing these sensitive areas for field
observations. For each case consisting of two counter rotating/co‐rotating eddies, we tried multiple observation
arrays of randomly distributed 2 grids in either the sensitive or nonsensitive areas. These observations were

Figure 11. Sketch map for theoretically interpreting the shear structure of
conditional nonlinear optimal perturbations between two co‐rotating eddies.
The solid black lines with arrows represent the Cartesian coordinate axes x
and y established based on the velocity shear, with the x‐axis also
corresponding to the polar axis in the polar coordinate system. The θ
corresponds to the angle in the polar coordinate system. The dotted lines
indicate the polar diameter.
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assimilated to evaluate the enhancement of SSHA forecasting accuracy and to propose a more efficient obser-
vation array for further improving SSHA forecasts. These results demonstrate that in cases of counter‐rotating
mesoscale eddies, the sensitive areas located precisely on eddies themselves are effective in SSHA prediction,
which aligns with Jiang et al. (2022), where mesoscale eddies were considered as isolated bodies. For co‐rotating
eddies, it is crucial to highlight that, apart from target observation with a specific array in sensitive areas within
eddies, prioritizing the implementation of additional observations in the sensitive areas between two co‐rotating
eddies, particularly with an array displayed perpendicular to the line connecting the centers of the two interacting
eddies, can also effectively improve SSHA prediction skills.

Finally, we pay further attention to delving into why the target observation with a specific array deployed in
sensitive areas, especially in the area between two co‐rotating eddies, results in a greater improvement in SSHA
forecast skill from the perspective of barotropic instability. The key lies in positive BT, which ensures that the
initial errors get energy from the reference state and grow. Theoretical formula derivation indicates that when
initial errors exhibit a pronounced shear structure with a positive‐negative contrast in SSHA aligned in a
fixed direction, similar to the CNOPs calculated in this study, and are superimposed on the area situated between
two co‐rotating eddies where extreme vorticity values exist in the reference states, it results in the generation of a
positive BT. Consequently, most of the energy can be transferred from the reference states to initial errors,
facilitating their optimal growth. Therefore, by prioritizing additional observations in the area between two co‐
rotating eddies with an array displayed perpendicular to the line connecting the centers of the two interacting
eddies, the impact of initial errors, especially those growing rapidly during the optimization time (such
as CNOPs), on the forecast can be minimized, resulting in a more effective improvement in SSHA prediction
skills.

This research examines the accuracy of paired mesoscale eddies in relation to SSHA forecasting and holds
the potential to make a substantial contribution toward the initialization of paired mesoscale eddies,
consequently enhancing the precision of SSHA forecasts. We need to note that, in order to facilitate a
comparison between the present study and Jiang et al. (2022), this study is limited to being conducted in a
two‐layer QG model, especially with a focus on the surface flow associated with eddy interaction. The
CNOPs calculated in this study involve horizontal velocity shear of the background field, a characteristic
typically associated with barotropic instability rather than baroclinic instability in the context of horizontal
mean flow. A rational explanation for the position and structural characteristics of CNOPs between two co‐
rotating eddies is then provided from the perspective of barotropic instability. However, in practice, it is
essential to recognize that mesoscale eddies usually have a three‐dimensional structure (Zhang et al., 2019),
implying the coexistence of baroclinic and barotropic instability. This coexistence may significantly impact
the interaction between paired eddies. Hence, employing a more realistic model that includes pronounced
baroclinic instability to investigate the impact of accurately representing paired mesoscale eddies on SSHA
forecasts, and potentially other three‐dimensional oceanic variables like temperature and salinity fields,
becomes advantageous, especially considering the challenges of conducting observations below the sea
surface. Additionally, the specific sensitivity of the sensitive areas between eddies may be influenced by
factors such as the distance between eddies and the strength of the eddies. Further exploration of this issue
also calls for more practical models, enhancing the applicability of guidance for target observations in field
campaigns. It is essential to acknowledge the significant computational complexity involved in calculating
CNOPs in more realistic weather models, but some intelligent algorithms, such as Particle swarm optimi-
zation, genetic algorithm, etc., offer promising solutions for high‐dimensional optimization problems. These
algorithms operate without the need for gradient calculations, making them potentially applicable to models
of varying complexities. Thus, it is anticipated that these algorithms can be leveraged to compute CNOPs for
more realistic models, paving the way for further exploration of paired eddies sensitivity in future studies.
Furthermore, recent works have noted the significance of filamentary structures at the periphery of eddies
in material transport (Liu & Abernathey, 2023; Liu et al., 2019). The findings of this study may hold
important value for predicting material transport caused by eddies, presenting an interesting avenue for
further research.
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Data Availability Statement
Satellite altimetry data were sourced from the CMEMS website (https://marine.copernicus.eu). All scripts
employed for data analysis and figure generation were developed using NCL (https://www.ncl.ucar.edu) and
MATLAB (https://www.mathworks.com/products/matlab.html).
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