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A B S T R A C T   

The typhoon intensity forecasts are much more affected by nonlinear processes than track forecasts. Recent 
developments in models and nonlinear data assimilation methods have opened the way for the target observation 
strategy of improving intensity forecasts. Based on the offline outputs of ensemble forecasts, the nonlinear 
particle filter (PF) assimilation method which is not limited to Gaussian distribution, is used to investigate the 
sensitive areas of target observation for typhoon intensity in the western North Pacific. The results show that 
sensitive areas of zonal wind, meridional wind and geopotential height in most cases are mainly distributed in 
the steering flow regions where typhoon interacts with western North Pacific subtropical high, and the regions 
associated with the mid-latitude trough that has a strong influence on typhoon. In contrast, the distributions of 
sensitive areas for relative humidity and temperature are more dispersed and case-dependent. It is further shown 
that the sensitive areas of zonal wind, meridional wind and relative humidity in most cases are effective for the 
improvement of typhoon intensity forecasts, especially for the long-term forecasts, and thus these variables are 
relatively sensitive. This result provides a scientific guidance for actual typhoon intensity forecasts, i.e., if target 
observation is utilized to obtain target data within sensitive areas of sensitive variables, it is very likely that the 
prediction skills can be improved to a larger extent at a smaller economic cost.   

1. Introduction 

Typhoon is a kind of catastrophic weather system. The accompa-
nying occurrences of strong winds, heavy rainfall and other disasters, 
especially storm surge, can pose a serious threat to human lives and 
cause huge economic losses (Feng et al., 2023). Accordingly, accurate 
and timely forecasts of typhoon intensity and track are of great signifi-
cance for disaster prevention and mitigation (Yao et al., 2021). 

The skills of typhoon track forecasting in the northwest Pacific have 
been greatly improved in the last few decades through the continuous 
exploration of the previous scientists. In contrast, the prediction of 

typhoon intensity still presents a huge challenge (DeMaria et al., 2014; 
Mu et al., 2015; Emanuel and Zhang, 2016). This is because the changes 
of typhoon intensity and track are caused by the interactions of multiple 
scale processes (Montgomery and Smith, 2017; Yao et al., 2021). The 
typhoon track is mainly determined by large-scale kinematic environ-
ment. However, typhoon intensity is not only regulated by large-scale 
environmental factors such as vertical wind shear, but also strongly 
depends on mesoscale/microscale nonlinear and chaotic processes (e.g., 
moist convection). Therefore, the forecasts of typhoon intensity are 
more difficult than that of the track. Moreover, many studies have 
shown that typhoon intensity may increase as the climate continues to 
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warm, making typhoon forecasting more difficult (Sobel et al., 2016; 
Emanuel, 2017; Duan et al., 2019). 

Currently, numerical weather prediction has been the main way for 
typhoon forecasting, while the typhoon intensity forecasts are influ-
enced by several errors, including initial errors (Emanuel and Zhang, 
2016), sea surface temperature errors (Yao et al., 2021), track errors 
(Kieu et al., 2021), and parameter uncertainties (Parker et al., 2017), 
etc. Among them, the impact of initial-condition errors on typhoon in-
tensity forecasts cannot be ignored, especially in the first few days 
(Emanuel and Zhang, 2016). Assimilating observations is an effective 
method to reduce the initial-condition errors and thus improve the skills 
of typhoon intensity forecasting (Nystrom and Zhang, 2019). Since situ 
observations are costly and never be dense enough to fully cover the 
entire space of the studied events, especially over the ocean. Previous 
studies proposed the “target observation” that can help to design 
effective observation strategy, also known as “adaptive observation”, in 
which limited number of observations placed in some critical areas are 
expected to yield significant improvements on forecast skills (Morss 
et al., 2001; Mu, 2013). The basic idea of target observation is to 
maximize the forecasting skills in a focused area (verification area) at a 
future time t1 (verification time), additional observations are deployed 
in some critical areas (sensitive areas) at a future time t2 (target time, 
t2 < t1). In this way, we can assimilate these additional observations to 
form a more accurate initial field, minimizing the forecasting errors in 
the verification area (Mu, 2013; Mu et al., 2015; Qin et al., 2023). 

In 2003, The Observing System Research and Predictability Experi-
ment (THORPEX) was established at the 14th session of the World 
Meteorological Organization (WMO). THORPEX is a 10-year interna-
tional research and development programme to accelerate improve-
ments in the accuracy of one-day to two-week high impact weather 
forecasts for the benefit of society, the economy and the environment 
(Shapiro and Thorpe, 2004). Targeted observation is one of the main 
research components of THORPEX and has played a key role in 
numerous field campaigns and subsequent forecasts (Majumdar, 2016; 
Feng and Wang, 2019; Qin et al., 2023). However, many studies of target 
observation have focused on the typhoon track forecasting during the 
THORPEX era (e.g., Burpee et al., 1996; Aberson, 2010; Wu et al., 2005; 
Chou et al., 2011; Weissmann et al., 2011), with the average improve-
ment of around 10% in the track forecasting (Majumdar, 2016). There 
are fewer studies on target observation for intensity forecasting. Mu 
et al. (2009) identified sensitive areas in target observation of typhoon 
using the conditional nonlinear optimal perturbation method, which 
included a discussion of typhoon intensity, and in general assimilated 
observations within sensitive areas to be effective for improving fore-
casts. Qin and Mu (2014) investigated the effect of target observation on 
the improvement of typhoon intensity forecasts by conducting Obser-
vation System Simulation Experiments (OSSEs), and the OSSEs results 
showed that intensity forecasts in 15 out of 20 typhoon cases were 
improved but the improvements were much less than that in track 
forecasts. Therefore, they concluded that improving numerical models, 
using higher resolutions etc., are more urgent than increasing observa-
tions for an accurate typhoon intensity forecast when the models are not 
sufficiently advanced. 

Until now, with the continuous improvements in models and data 
assimilation methods, researchers have started to focus more attention 
on the impact of assimilated observations on typhoon intensity. Zhang 
and Weng (2015) provide the first comprehensive demonstration that 
typhoon intensity prediction may be improved by a combination of an 
advanced data assimilation technique capable of efficiently ingesting 
high-resolution observations, the most scientific forecast models that 
can resolve dynamics, and sufficient computing resources to perform 
ensemble-based probabilistic analysis and prediction. Poterjoy and 
Zhang (2016) and Ito et al. (2018) also showed that assimilating ob-
servations has a positive impact on the prediction of typhoon intensity. 
In fact, upper-air measurements of wind, temperature, humidity and 
pressure inside and around typhoon are lacking, which limits the 

analysis of the intensity and circulation of typhoons as well as prediction 
using NWP models (Chan et al., 2023). Thus, during typhoon Mulan 
between 8 and 10 August 2022, China conducted the first-ever multi- 
element ground–space–sky observing system experiment, an important 
moment in the history of target observation. In the future, for further 
development of typhoon forecasts, more such target observation field 
campaigns may be conducted (Qin et al., 2023). Therefore, with the 
continuous development of science and technology, it is necessary to 
carry out studies of target observation corresponding to basic meteo-
rological elements at upper-air in most typhoon cases. 

The key issue of target observation is to determine the sensitive 
areas. The common methods of determination can be broadly classified 
into two categories (Duan et al., 2018; Zhang et al., 2021). One is to first 
calculate the initial errors that have the greatest impacts on the pre-
diction, and then identify the areas with large and concentrated errors as 
sensitive areas from the perspective of the initial errors, e.g., breeding 
vector method (BV; Lorenz and Emanuel, 1998), linear singular vector 
method (SV; Palmer et al., 1998), and conditional nonlinear optimal 
perturbation method (CNOP; Mu et al., 2003; Duan and Mu, 2009), etc. 
Most of these methods require running numerical models with accom-
panying systems, and the obtained sensitive areas have some dynamical 
significance but are computationally expensive. Another is to directly 
reduce the uncertainties of the prediction by examining where the 
assimilation regions can minimize the uncertainties, the regions are 
deemed sensitive areas of target observation. The commonly used 
assimilation methods are ensemble Kalman filter (EnKF; Liu and Kalnay, 
2008) and ensemble transform kalman filter (ETKF; Majumdar et al., 
2011), which use ensemble dispersion to measure the sensitivity of the 
forecast errors comparing to the initial errors. The EnKF and its variants 
(e.g., ETKF) are currently popular data assimilation methods. However, 
due to scientific and technological advances, three significant de-
velopments have occurred over the last decade in several geoscientific 
applications, which limit the use of EnKF and its variants (Vetra-Car-
valho et al., 2018). Firstly, dynamic models have become increasingly 
nonlinear. Secondly, the estimation of bounded variables or parameters 
requires data assimilation methods that can handle non-Gaussian dis-
tributions. Thirdly, the observation operators that connect the model 
states to observations from the newly added observational network are 
nonlinear, again asking for non-Gaussian methods. These developments 
amplify the limitations of the EnKF and its variants, because they are 
based on linear and/or Gaussian assumptions. Particle filter (PF; Van 
Leeuwen, 2009), as a new data assimilation method, has the prospect of 
fully nonlinear data assimilation and is not limited to Gaussian distri-
bution (Van Leeuwen et al., 2019). In addition, it is worth mentioning 
that the PF method can be implemented offline based on the outputs of 
the run-completed ensemble forecasts. This offline approach does not 
require model forward integration to update the weights of the particles 
(or ensembles), that is, the particles after assimilation are not adjusted 
which do not destroy the dynamical balances (Van Leeuwen, 2009; 
Kumar and Shukla, 2019; Hou et al., 2023). Therefore, this offline 
method also has the advantages of easy operation and less model 
dependence. With such development backgrounds and application 
prospects, the PF method has started to develop rapidly in the geo-
sciences. Meteorologists have applied PF method to identify sensitive 
areas of target observation for ENSO and Kuroshio Extension (Kramer 
et al., 2012; Kramer and Dijkstra, 2013; Duan et al., 2018; Zhang et al., 
2021). Preliminary experiments have shown that the PF method can be 
competitive to current methods for NWP and will become mainstream 
soon (Van Leeuwen et al., 2019). 

As previously discussed, the accuracy of typhoon intensity forecasts 
is much lower than that of track, a major reason being that the neglect of 
nonlinear processes has a greater impact on typhoon intensity forecasts. 
With the continuous development of models and nonlinear data assim-
ilation methods, the use of target observation to improve typhoon in-
tensity forecasts is very worthy of in-depth study. Under these 
circumstances, we use the nonlinear PF method that is not limited to 
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Gaussian distribution to carry out target observation for typhoon in-
tensity and try to answer the following questions. What are the distri-
bution characteristics of sensitive areas determined by PF method? Are 
assimilated observations within sensitive areas effective in improving 
typhoon intensity forecasts? If so, how long does the effectiveness last? 

This paper is organized as follows. Section 2 introduces data and PF 
method. Section 3 details the experimental procedure for conducting 
target observation and demonstrates theoretically why the ensemble 
mean can be used instead of observations to determine sensitive areas. 
Section 4 analyses the characteristics of sensitive areas for each variable. 
Section 5 further validates the validity of sensitive areas and its persis-
tence. Finally, Section 6 comprises the summary and discussion. 

2. Typhoon cases, data and PF method 

2.1. Typhoon cases 

Based on the best track data from the China Meteorological 
Administration (CMA), typhoon cases that originated in the western 
North Pacific during 2016, 2017 and 2018 are examined (Lu et al., 
2021). We chose 16 cases for the research objects of the study according 
to the following selection criteria. First, typhoons that cross the 48-h 
warning line of China are selected. Then, experiment procedure for 
target observation is designed for each case (see Section 3 for details), 
where the decision time roughly coincides with the moment when 
typhoon is located at the 48-h warning line. Considering that model 
forecasts are difficult for tropical cyclone generation, we select typhoons 
whose actual generation time exceeds initialization time of ensemble 
forecast by 12 h or more. 

2.2. Data 

We use the European Centre for Medium-Range Weather Forecasts 
(ECMWF) Ensemble Prediction System global forecast and China T639 
Ensemble Forecast System global ensemble forecast to form a combined 
ensemble comprising 117 independent members. The variables (zonal 
wind, meridional wind, geopotential height, relative humidity, tem-
perature and sea level pressure) adopted here are uniformly interpolated 
onto 0.5◦ × 0.5◦ the grids. 

Due to the actual field campaigns are not conducted, we carry out the 
simple OSSEs to validate the effectiveness of sensitive areas by taking 
the advantage that the PF assimilation method can be implemented 
offline. The “simulated observations” in OSSEs are replaced by hourly 
high-resolution reanalysis data from ERA5 (ECMWF Reanalysis v5), 
with same selected variables as ensemble forecast data. 

2.3. PF method 

The PF is a data assimilation method that uses Monte Carlo algorithm 
to implement Bayes theorem (Duan et al., 2018). The core of PF method 
is to capture the weight of particles (i.e., ensemble members) by using 
Sequential Importance Sampling (SIS). When observation yk is available 
at t = tk, the change of weight ωi

k follows Bayes theorem, as shown in Eq. 
(1): 

ωi
k =

p
(
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⃒
⃒xi

k

)
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k− 1 (1) 
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Where H is the observation operator, which means that state vector 
space is projected to observation space. The weight ωi

k can be calculated 
from Eq. (1) and (2). Also, if several observations at different grids (j =

1, 2,…m) are assimilated simultaneously, the weight ωi
k is updated as 

follows: 
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The advantage of SIS is that assimilating observation changes the 
weight but leaves the particle itself unchanged, thus the dynamical 
equilibrium of forecasts is not disturbed (Kramer and Dijkstra, 2013). 
Hence, we can use the run-completed ensemble (i.e., offline members) to 
determine sensitive areas for target observation in advance of the real- 
time field campaign, which is the advantage of using PF method to 
determine sensitive areas. A major problem of SIS is the degeneracy of 
particles, which refers to the concentration of weights on a small number 
of particles after a number of observations. This study weakens the de-
generacy by incorporating a simple resampling technique (Van Leeu-
wen, 2015). The basic principle of resampling is to copy particles with 
large weight and discard particles with small weight. Furthermore, 
setting the proper magnitude of the error covariance is also important to 
avoid degeneracy. If the observation error is set too small, only particles 
that are close to the observation remain, which will cause large de-
generacy. However, it will be unrealistic if we set the observation error 
too large. In this study, after tuning experiments, the observation error is 
set to 0.3δori, where δori is the standard deviation of ensemble forecasts 
before assimilation for each variable. For more specific details on PF 
method, please refer to Van Leeuwen et al. (2019). 

This study uses the Predictive Power (PP), an entropy-based metrics, 
to measure sensitive areas determined by PF method (Schneider and 
Griffies, 1999). Kramer and Dijkstra (2013) pointed out that working 
with the PDF of the full state vector x is cumbersome and unnecessary. 
We are only interested in predicting typhoon intensity, so the definition 
of the PP index can be simplified as 

PP = 1 −
σ2

p

σ2
q

(4) 

Where σ2
q and σ2

p are the variance of the typhoon intensity index 
before assimilating observations and after assimilating observations, 
respectively. The intensity of typhoons is measured by their lifetime 
minimum sea level pressure (MSLP). In fact, the PP index measures the 
reduction degree of ensemble forecast uncertainties before and after 
assimilating observations at target time, that is, it measures the 
improvement degree of predition skills (Kramer and Dijkstra, 2013). The 
PP index has a range from zero to one. When the skill improvement is 
larger, PP is closer to one (Duan et al., 2018). The goal of target 
observation is to improve forecast skills at verification time, so we 
calculate the PP index at this moment. The regions with large PP index 
represent these areas where observations deployed at target time can 
significantly improve the prediction skill at verification time. Therefore, 
the regions with high PP are determined as sensitive areas of target 
observation. 

3. Experimental procedure 

Based on the common forecast case scenario (Majumdar, 2016), we 
design an experimental process that is as realistic as possible (Fig. 1). 
The two timelines in Fig. 1 are experimental procedure designed for 
each typhoon case in this study. The first one is the process to determine 
sensitive areas of target observation (Fig. 1a), and the second one is the 
process to verify the effectiveness of sensitive areas (Fig. 1b). 
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Firstly, for the ensemble forecasts initialized at time t1
i , a decision on 

whether and where to deploy observations is issued at the decision time 
td. The time interval between t1i and td is set to 60 h considering the 
operation time of model and calculation time of sensitive areas. Because 
of mission planning involved after the decision, the target time ta was set 
24 h after the decision time. The purpose of target observation is to 
improve the forecasting skills at the verification time tv. The time in-
terval between the verification time and the target time is 12 h. Based on 
such a target observation process, we assimilate observations at each 
grid point using the PF method and then determine sensitive areas by 
calculating the PP values. 

In the second process, we further verify the effectiveness of sensitive 
areas and its persistence (Fig. 1b). For the ensemble forecasts initialized 
at time t2i , which exceeds the target time ta in the first process by 48 h, 
we analyze the improvement of prediction skills at four verification 
times t1

v (i.e. tv in the first process), t2v , t3v and t4v with interval 12 h by 
assimilating observations in the sensitive areas at the target time ta. The 
first verification time t1v is the same as the verification time tv in the first 
process. Therefore, we select the sensitive areas directly based on points 
with large values of PP, which correspond to the grid points that may 
have a relatively large impact on forecast at the first verification time t1v . 

Since it is not possible to obtain future observations in advance in the 
actual target observation, the observations assimilated in the first pro-
cess are replaced by ensemble mean of ensemble forecasts initialized at 
time t1i . According to the theoretical study of Brankovic et al. (1990), the 

mean squared error (e2) and the mean squared spread (Δ2) of ensemble 
members can be defined by the following two equations: 

e2 =
1
N

∑N

i=1
|Fi − A|2 (5)  

Δ2 =
1
N

∑N

i=1
|Fi − F|2 (6) 

Where Fi is one member of the ensemble (i = 1,…,N). F = 1
N

∑N
i=1Fi 

represents the average of the N ensemble forecast fields. Let A be the 
analyzed field which verifies each Fi. 

As shown in Fig. 2, if the observation is the actual analyzed field, the 
ensemble members after assimilating the observation must be theoreti-
cally close to the analyzed field. According to Eq. (5), it can be deter-
mined that the more sensitive the assimilated area is, the smaller the e2 

of ensemble forecast after assimilating the analyzed field. For a 
reasonable ensemble forecast system, there is a positive correlation 
between e2 and Δ2 (Brankovic et al., 1990; Buckingham et al., 2010). 
Likewise, if the ensemble mean replaces the analyzed field, the ensemble 
members after assimilating the mean must also be close to it in theory. In 
this way it can be decided directly from Eq. (6) that the more sensitive 
the area of assimilation the smaller the Δ2 is. Considering the practical 
meaning and the variance formula of Eq. (4), the variance σ2

q is actually 
the Δ2 before assimilating the “observation” (denoted Δ2

ori), the variance 
σ2

p is actually the Δ2 after assimilating the “observation” (denoted Δ2
assi). 

Therefore, regardless of whether we assimilate the analyzed field or the 
ensemble mean, the Δ2

assi is smaller for the more sensitive area, and the 
corresponding PP value will be larger in the region. In practice, it is also 
found through simple experimental tests that the locations of sensitive 
areas determined by the PP method are basically similar regardless of 
assimilating actual observations or ensemble mean. In summary, we 
conclude that the approach of using ensemble mean instead of actual 
observation to determine the sensitive areas of target observation is 
feasible in this study. 

4. The characteristics of sensitive areas 

The typhoon system itself is complex. As a result, the large variation 
among typhoon cases makes the characteristics of sensitive areas case- 

Fig. 1. Typical timeline for (a) preparation of target observation and (b) 
verifying the effectiveness of sensitive areas, using ensembles initialized at time 
t1
i and t2

i , respectively. The red dot marks the target time. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 2. Theoretical schematic of ensemble mean replacing observations.  
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dependent, but there are still some patterns to follow. Because typhoons 
are strongly influenced by various weather systems around them, such 
as western North Pacific subtropical high (WNPSH), mid-latitude 
troughs and jet stream. Next, we take one of the typical cases as an 
example, and analyze its characteristics of sensitive areas from the 
perspective of synoptic meteorology through the circulation field and 
other variable fields. 

The identified sensitive areas for zonal wind and meridional wind are 
shown in Fig. 3, which mainly covers two target regions. The center of 
the typical case from the low-level to 500 hPa is the dominant target 
[Fig. 3 (c–f)], due to the influence of the typhoon system. Another target 
corresponds to the trough axis areas of the East Asian Trough (EAT) 
running from the low-level to 500 hPa, and the sensitive variable is 
mainly meridional wind. The EAT is a mid-latitude trough, so the dis-
tributions of this target confirm the influence of the mid-latitude trough 
on typhoon. Besides, since Tropical Easterly Jet stream (TEJ) may 
enhance the upper-level dispersion to some extent, there are also some 
sensitive areas at 100 hPa. The geopotential height field has a good 
matching relationship with the wind field, so the target areas of the 
geopotential height are similar to that of the horizontal wind (Figure is 
omitted). The sensitive areas of temperature are basically located in the 
regions where significant coolings occur in the eastern Asia, throughout 
from the low-level to 200 hPa [Fig. 4 (b–f)]. This may be due to the 
northwesterly airflow behind the EAT guiding the southward intrusion 
of cold air from the north, which causes a wide range of obvious cooling 
in East Asia, and further the cold air in the region is likely to influence 
the typhoon intensity by the circulation. 

Referring to the description of dry air by Browning and Golding 
(1995), this study characterized dry air with relative humidity <50%. 
Fig. 5 shows that the sensitive areas of relative humidity are mainly 
distributed at 500 hPa and below, with a little at 200 hPa. The sensitive 
areas are correlated with the South Asian High (SAH), EAT and the 
distributions of dry air. At 200 hPa, the strong northeasterly flow on the 
eastern side of the SAH guides the dry air from the north to move 
southward, and the target areas exist at the junction of the wet air and 
the southward dry air (Fig. 5a). At 500 hPa and 700 hPa, there are large 
dry air masses distributed on the west side of the EAT, and the target 

areas are located at the junction of dry and wet air in the trough axis 
areas [Fig. 5 (c, d)]. While at 850 hPa and 925 hPa, the above dry air 
masses weaken or even disappear, and the sensitive areas are more 
scattered in the eastern fringes of the dry air masses on the east side of 
the EAT adjacent to typhoon [Fig. 5 (e, f)]. This may be due to the strong 
wind field which has a great influence on the distributions of dry air in 
the north, and further if the dry air on the periphery of the typhoon 
invades its interior, it will play a suppressive role on the typhoon in-
tensity (Wang et al., 2018). 

Similar to the above analysis for all cases, the following character-
istics of sensitive areas can be summarized. First, the steering flow of 
typhoon interacting with the WNPSH and the mid-latitude trough have a 
large influence on typhoon intensity, so the sensitive areas corre-
sponding to zonal wind, meridional wind and geopotential height of 
most cases are mainly distributed in the regions associated with these 
weather systems. Second, the distributions of dry air around typhoon in 
conjunction with the wind field will also have an impact on the typhoon 
intensity, whose relevant areas mainly correspond to the sensitive areas 
of relative humidity in some cases. Third, the cold and warm air 
advection caused by the configuration of temperature and wind fields 
will also have some influence on the typhoon, which is related to the 
distribution of sensitive areas for temperature in a certain extent. 
Fourth, the characteristics of sensitive areas for relative humidity and 
temperature are more dispersed and case-dependent than that of zonal 
wind, meridional wind and geopotential height. It is worth noting that 
although some of sensitive areas are distributed in the centre of ty-
phoons, more sensitive areas are located away from the centre. Why do 
remote targets have the ability to influence the intensity of typhoons? In 
fact, some common physical explanations of such targets do exist 
(Majumdar et al., 2011; Chen et al., 2009; Wu et al., 2009; Ren et al., 
2007; Wang et al., 2018; Zhang et al., 2013). Overall, the WNPSH and 
the mid-latitude upstream trough mentioned in the previous analysis, as 
well as the dry-cold air transported in the flow of these weather systems, 
will gradually move towards the typhoons over time, resulting in 
interactions. 

The vertical distributions of sensitive areas corresponding to basic 
meteorological elements are shown in Fig. 6. The sensitive areas of zonal 

Fig. 3. The green (zonal wind) and red (meridional wind) dotted areas are the locations of the first 200 grid points of the maximum PP index over (a) 100 hPa, (b) 
200 hPa, (c) 500 hPa, (d) 700 hPa, (e) 850 hPa and (f) 925 hPa at the target time for the typical typhoon. The vector wind fields correspond to the ensemble mean. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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wind, meridional wind and geopotential height are generally distributed 
from the low-level to 500 hPa, while the vertical distributions of relative 
humidity and temperature are more case-dependent. Overall in some 
cases, the sensitive areas for temperature are mainly distributed at 925 
hPa, 850 hPa and 200 hPa, and that for relative humidity are mainly at 
850 hPa to 700 hPa. Anyway, the sensitivities (PP value) for each var-
iable are higher at the levels where the sensitive areas are concentrated. 

5. The validity of sensitive areas and its persistence 

Conducting the simple OSSEs based on the PF method implemented 
offline is actually similar to the ensemble forecast adjustment (EFA) 
technique in previous studies, which can be used to rapidly evaluate the 
impact of target observations on short-term forecasts (Madaus and 
Hakim, 2015; Dong and Zhang, 2016). In the four-dimensional (4D) 

Fig. 4. Same as Fig. 3 but for the sensitive areas of temperature (green dots). The fill colors are the temperature change (shaded; ◦C) at the target time compared to 
the previous time. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Same as Fig. 3 but for the sensitive areas of relative humidity (green dots). The fill colors are the distributions of dry air (shaded; %) at the target time. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ensemble Kalman filter (4D-EnKF), observations can be assimilated to 
update past and present states. Then, the EFA technique can be thought 
of as a 4D-EnKF with an “open-ended” assimilation window extending 
into the future. The essence of both the PF assimilation method and the 
EFA is to obtain a subset of ensemble members that are closer to ob-
servations (Qi et al., 2013; Ancell, 2016). Differently, nonlinear forecast 
evolution will eventually limit the effectiveness of EFA, whereas the PF 
is a nonlinear data assimilation method. Therefore, we still use the PF 
method to assimilate actual observations (replaced by reanalysis data) 
to verify the effectiveness of sensitive areas. We select the first 20 grid 
points of the maximum PP index for each variable as the sensitive areas 
of each variable. For each variable, repeat the PF assimilation procedure 
and examine the improvement degree of prediction skills for the 
typhoon intensity index (i.e., MSLP index). 

The improvement degree (η) in this study is defined as 

η =
eori − eassi

eori
× 100% (7) 

Here, eori is the root mean squared error (RMSE) of the ensemble 
members for the MSLP index before assimilating observations, and eassi is 
the RMSE of the ensemble members for the MSLP index after assimila-
tion. The RMSE of the ensemble members can be calculated according to 
Eq. (5). In addition, the observation error is increased to 0.9δori to 
diminish the degeneracy of particles. In fact, in addition to updating the 
ensemble mean, the PF assimilation can adjust future forecast uncer-
tainty using the spread-reducing properties of the ensemble data 
assimilation. 

As society continues to progress, the demand for operational fore-
casting is becoming more and more widespread and is no longer limited 
to a single deterministic forecast. Titley et al. (2020) indicated that 
potential value and prediction skill would be gained if operational 
tropical cyclone forecasting can continue to migrate away from a 
deterministic-focused forecasting environment to one that incorporates 
the probabilistic situation-based uncertainty information into opera-
tional forecasts and warnings. The e in Eq. (7) is calculated as the root of 
the average of the squared errors between all ensemble members and 
observations for a given grid point. A larger e indicates that the ensemble 
members are more likely to deviate from the observations, and 
conversely most of the ensemble members are closer to the observations. 
Therefore, e reflects the probabilistic information. 

Fig. 7 shows the improvement degree of typhoon intensity forecasts 
at the first verification time after assimilating observations. After 
assimilating observations in the sensitive areas of each variable, the 
intensity forecasts are improved overall, with 9 or more of the 16 cases 
there were improvements, where the improvement degree is generally 
greater for meridional wind. In addition, we calculate the effective 
sample size of ensemble members after assimilating observations in 
sensitive areas. The average effective sample size after assimilation is 
about 8, which is sufficient for PF assimilation with only 117 particles. 
Meanwhile, the resampling step is taken after the assimilation step, 
which can further alleviate degeneracy. 

As shown in Fig. 7, the typhoon intensity forecast after assimilating 
the zonal wind observations for typhoon case 9 is significantly worse. 
Therefore, we use this typhoon as a typical case for further analysis. The 
ensemble forecasts of the MSLP index for the typical case, which are 
obtained by assimilating sensitive observations of each variable, are 
shown in Fig. 8. We found that compared to before assimilation, the 
spread of the MSLP ensemble decreases significantly when simulta-
neously assimilating sensitive observations. In particular, the de-
generacy of ensemble members after assimilating the zonal wind is more 
severe and the residual particles deviate significantly from the obser-
vations. Similarly, all other cases are analyzed (not shown). The 
comprehensive conclusion is that the poor improvements for some cases 
may be due to the severe degeneracy of ensemble particles after 
assimilating observations and the significant deviation of the remaining 
particles from observations. Moreover, at four verification time for most 
cases, the ensemble members after assimilating the zonal wind, merid-
ional wind and relative humidity observations are mainly distributed on 
both sides of the observation and the ensemble mean is closer to the 
observation. 

It is worth noting that the improvement in prediction skills after 
assimilating observations from some regions does not fully indicate that 
these areas are the most sensitive. It is possible that assimilation of 
observations from other regions can also lead to improved forecasts with 
greater improvement. Therefore, we conduct further examination using 
a random experimental strategy. Randomly choose 20 grid points as a 
random array 50 times (noted as the contrast areas) and repeat the PF 
assimilation procedure and ensemble prediction. Fig. 9 shows the 
average improvement degree and the percentage of improved cases on 
typhoon intensity forecasts at four verification time for 16 cases after 

Fig. 6. Vertical profiles of the first 200 grid points for the maximum PP index corresponding to (a) zonal wind, (b) meridional wind, (c) geopotential height, (d) 
temperature and (e) relative humidity. The colored thin lines represent the number of grid points in each case, and the red thick line represents the average of the 
number of grid points for all cases (the bottom X axis). The blue thick line represents the average of the maximum PP value of the first 200 grid points for all cases 
(the top X axis). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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assimilating observations in the sensitive areas and contrast areas, 
respectively. On average, the typhoon intensity forecast of each variable 
is improved overall at the first verification time by assimilating obser-
vations in the sensitive areas, and the forecast improvements continue 
for at least 36 h after the first verification time. Specifically, the average 
improvement degree is more pronounced in zonal wind (Fig. 9a), 
meridional wind (Fig. 9b) and relative humidity (Fig. 9e), especially in 
the latter two verification time. The percentage of improved cases is 
>60% overall. In conclusion, the average improvement degree and the 
percentage of improved cases for all meteorological elements are basi-
cally increasing over time, which indicates that the assimilated obser-
vations in sensitive areas mainly improve the long-term forecasts of 
typhoon intensity, reflecting the advantages of the nonlinear PF method. 
Further validation by comparison with random experiments shows that 
for zonal wind, meridional wind and relative humidity, the improve-
ment degree of intensity forecasts after assimilating observations in the 
sensitive areas is generally greater than that in the contrast areas. The 
above results demonstrate that zonal wind, meridional wind and relative 

humidity are more sensitive variables for typhoon intensity forecasts. 
Physically, the typhoon itself is a cyclonic circulation system. The 

developments of other circulation systems around the typhoon (e.g., the 
WNPSH, the mid-latitude trough, etc.) are bound to have direct impacts 
on it (Ren et al., 2007; Wang et al., 2013). Therefore, the sensitive areas 
of zonal wind and meridional wind have the most significant influences 
on the predictions for typhoon intensity. In addition, the water vapour in 
the atmosphere also has direct impacts on the evolution of typhoon. For 
example, high humidity is the foundation that promotes the formation 
and development of convection, while convective activity is the basic 
driving force for typhoon development (Fritz and Wang, 2014). There-
fore, the sensitive areas of relative humidity reflect the remote dry air 
targets that may have direct influences on the future development for 
typhoon intensity. Further, the nonlinear process such as the circulation 
will then wrap the dry air gradually into the typhoon's interior, can be 
well captured by the nonlinear PF method. As a result, the sensitivity of 
relative humidity is especially prominent in the later stages of the pre-
diction (Fig. 9e 24 h, 36 h, 48 h). However, the change of geopotential 

Fig. 7. The improvement degree (η) of typhoon intensity forecasts at the first verification time for each case after assimilating observations of (a) zonal wind, (b) 
meridional wind, (c) geopotential height, (d) temperature and (e) relative humidity in the sensitive areas. The red (blue) bars indicate that improvement degree is 
positive (negative). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Ensemble forecasts of MSLP index for the typical typhoon (case 9): (a) the origin ensemble prediction before assimilation; (b-f) new ensemble prediction after 
assimilating sensitive observations of each variable at four verification time (12 h, 24 h, 36 h and 48 h from the target time). Red lines represent the observed MSLP 
index. Black lines represent the ensemble mean. The areas shaded in blue represent the probability distributions of ensemble forecasts, with the darker blue indi-
cating the areas with the highest probability. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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height first affects the wind field, such that larger gradient of geo-
potential height may lead to stronger wind field. Hence, compared to the 
wind field and relative humidity that directly affect the typhoon, the 
sensitivity of geopotential height is weaker. Moreover, Majumdar et al. 
(2011) pointed out that remote mid-latitude targets for temperature 
may be spurious and the wind sensitivity is superior to the temperature 
sensitivity. Most of the temperature targets identified in this study are 
also remote and dispersed, and case-dependent. Therefore, the sensi-
tivity of temperature is overall poor. In summary, we should first ensure 
the target observation for the above more sensitive variables (zonal 
wind, meridional wind and relative humidity) in the actual field 
experiment, which may be more effective for the prediction improve-
ments of typhoon intensity. 

6. Summary and discussion 

This study analyzes the intensity of 16 typhoon cases in the North-
west Pacific. The characteristics of sensitive areas for target observation 
corresponding to the basic meteorological elements are investigated 
using the PF assimilation method to improve the probabilistic forecasts 
of typhoon intensity. 

The results show that the steering flow regions where the typhoon 
interacts with the WNPSH, as well as the regions associated with the 
mid-latitude trough, can have an impact on the environmental flow of 
the typhoon, which consequently can affect the intensity of the typhoon. 
These sensitive areas run through the low-level to 500 hPa. Therefore, 
the sensitive areas of zonal wind, meridional wind and geopotential 
height in most cases are mainly distributed in the above related regions. 
In contrast, the characteristics of sensitive areas for relative humidity 
and temperature are more dispersed and case-dependent than that of 
zonal wind, meridional wind and geopotential height. The sensitive 
areas of relative humidity in some cases are mainly distributed in the 
regions associated with dry air. The dry air in the periphery of the 
typhoon enters typhoon's interior under the action of the wind field and 
thus affects the intensity of the typhoon. The vertical distributions show 
that the target areas for relative humidity are mainly at 850 hPa to 700 
hPa. Similarly, the distributions of sensitive areas for temperature are 
somewhat correlated with the cold and warm air advection, with 

vertical distributions mainly at 925 hPa, 850 hPa and 200 hPa. 
After identifying the sensitive areas of each meteorological element, 

we further verify the validity of these targets and the persistence of the 
validity. It is found that whether we only analyze the improvement 
degree of typhoon intensity forecasts after assimilating observations 
within target areas or comparatively analyze the results of the target 
areas and control areas, the effectiveness conclusions are generally 
consistent. That is, the ensemble forecasts of typhoon intensity after 
assimilating the zonal wind, meridional wind and relative humidity 
observations are closer to the observed intensity in most cases. On 
average, the effectiveness of sensitive areas of zonal wind, meridional 
wind and relative humidity still persists for at least 36 h after the first 
verification time, which means that the validity can last for at least 48 h. 
Especially, the improvement degree of meridional wind is consistently 
greater in four verification time. The percentage of improved cases for 
any variable at any verification time is >60%. Moreover, from the 
perspective of forecasts persistence, assimilating observations of each 
basic meteorological element in the sensitive areas identified by the PF 
method can bring forecasts continuously closer to observations. This 
leads to significant improvements to the long-term forecasts of typhoon 
intensity, reflecting the advantages of the nonlinear PF method. 

In the comprehensive analysis, this study suggests that the zonal 
wind, meridional wind and relative humidity are more sensitive vari-
ables in the target observation of typhoon intensity, especially meridi-
onal wind. If we can obtain observations in the sensitive areas of 
sensitive variables by means of target observation, and assimilate these 
observations using data assimilation methods. Then, in carrying out 
actual forecasts of typhoon intensity, it is possible to improve the pre-
diction skills of typhoon intensity to a larger extent with less economic 
cost. 

As mentioned in the PF method, this study reduces the degeneracy of 
particles by incorporating a simple resampling technique. In fact, a 
growing number of scientists have conducted some research specifically 
on the degeneracy of particles and have proposed many more improved 
particle filter methods (Vetra-Carvalho et al., 2018; Van Leeuwen et al., 
2019). For the later work, we consider using more targeted advanced 
methods for different study subjects to achieve better forecast 
improvement. In addition, this study discusses the characteristics of 

Fig. 9. The averaged improvement degree (bar charts; left Y axis) and the percentage of improved cases (line graph; right Y-axis) on typhoon intensity forecasts for 
16 cases after assimilating observations of (a) zonal wind, (b) meridional wind, (c) geopotential height, (d) temperature and (e) relative humidity in the sensitive 
areas (red bars; red lines) and the contrast areas (gray bars) at four verification time (12 h, 24 h, 36 h and 48 h from the target time), respectively. The black dashed 
line represents the reference line where the percentage of improved cases reaches 50%. The error bars denote the standard deviation among all 50 random ex-
periments. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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sensitive areas for basic meteorological elements, with the aim of more 
clearly and specifically analyzing the synoptic meteorology of sensitive 
areas of each variable, and providing basic guidance for actual target 
observation. 

However, considering various factors such as manpower, material 
and financial resources in the actual field campaigns, it will not deploy 
observations for only one variable in a region but observe several ele-
ments at the same time. We hence need to determine the common sen-
sitive areas of several variables. In fact, based on the idea of the CNOP 
method, the PF method can be used to determine the combined sensitive 
areas from the perspective of energy, which deserves a more in-depth 
exploration. 
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