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Abstract

In this study, we applied the conditional nonlinear optimal perturbation

(CNOP) method to generate nonlinear fast-growing initial perturbations for

ensemble forecasting, aiming to assess the effectiveness of the CNOP method

in improving the forecast skill of climate events. Our findings reveal a signifi-

cant improvement in the forecast skill of the Indian Ocean Dipole (IOD)

within the CNOP ensemble forecast, particularly at long lead times, thereby

extending the skilful forecast lead times. Notably, this improvement is more

prominent for strong IOD events, with skilful forecast lead times exceeding

12 months, outperforming many current state-of-the-art coupled models. The

high forecast skill of the CNOP method is primarily attributed to its ability to

capture the uncertainties in the wind anomaly field in the eastern Indian

Ocean (EIO) closely associated with IOD evolution. Consequently, CNOP

ensemble members exhibit significant deviations from the control forecast,

resulting in a large ensemble spread encompassing IOD evolution. Further-

more, a comparison with the climate-relevant singular vectors (CSV) method

in terms of IOD and El Niño–Southern Oscillation (ENSO) predictions reveals

the superior performance of the CNOP ensemble forecast. Despite the initial

perturbations for ensemble forecasting being generated aimed at improving

IOD forecast skill, the CNOP method significantly improves the forecast skill

of both IOD and ENSO events, with a greater improvement for ENSO. Addi-

tionally, the CNOP ensemble forecast system provides more reliable estimates

of forecast uncertainties and exhibits higher reliability with increasing lead

times. In conclusion, the CNOP method effectively captures the nonlinear

physical processes of climate events and improve the forecast skill.
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1 | INTRODUCTION

The Indian Ocean Dipole (IOD) is an important ocean–
atmosphere coupled phenomenon of interannual

timescale in the tropical Indian Ocean, which exhibits a
west–east seesaw pattern of sea surface temperature
anomalies (SSTAs) along with anomalous wind field at
the equator (Saji et al., 1999; Webster et al., 1999). Not
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only do IOD events cause severe natural disasters in
coastal regions (Ansell et al., 2000), they also influence
weather and climate in distant areas through planetary
atmospheric waves (Saji & Yamagata, 2003). With green-
house warming, the frequency of extreme IOD events is
on the rise (Cai et al., 2020; Huang et al., 2019; Hui &
Zheng, 2018). Previous studies have revealed that most
numerical models can skilfully predict IOD events only
up to one season in advance, extending to two seasons
for strong events (Luo et al., 2005, 2007; Shi et al., 2012;
Zhao & Hendon, 2009).

Ensemble forecasting is one important method for
reducing prediction uncertainties in weather and climate
events and improving forecast skill. The traditional
ensemble forecasting is an initial value problem, and the
ensemble forecast skill relies on the quality of initial per-
turbations (Du et al., 2019). Ensemble generation
methods can be generally distinguished used in numeri-
cal weather predcition (NWP) and climate/seasonal pre-
dictions. The sophisticated methods like singular vectors
(SVs; Leutbecher & Palmer, 2008; Lorenz, 1965) and bred
vectors (BVs; Toth & Kalnay, 1993), separately used by
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) and the National Centers for Environ-
mental Prediction (NCEP), are mostly adopted for NWP.
SVs method has clear dynamic significance, but adopts
linear approximation to numerical models, so the initial
perturbations generated by the SVs method cannot well
reflect the role of nonlinear physical processes in the
weather and climate systems (Anderson, 1997). BVs are
obtained from long-term model integrations before the
start of the prediction, which may not exhibit rapid
growth dynamics during the prediction period (Du
et al., 2019; Zhang et al., 2023). Furthermore, Ensemble
Kalman filter (ENKF; Evensen, 1994) and
Ensemble Transform Kalman filter (ETKF;
Houtekamer & Derome, 1994) assimilation methods are
also employed in NWP, but like BVs, they describe initial
perturbations obtained before the prediction start time,
and cannot guarantee the rapid growth dynamics needed
during the prediction period. In order to overcome the
linear limitation of SVs method, Duan and Huo (2016)
has developed the orthogonal conditional nonlinear opti-
mal perturbation (O-CNOP) ensemble forecast method,
which not only considers the effects of nonlinear physical
processes, but also characterizes the fast-growing initial
perturbations during the prediction period. The O-CNOP
method has been utilized in the ensemble forecast of
weather events (Duan & Huo, 2016; Huo & Duan, 2018;
Zhang et al., 2023). Using typhoons as an example, the
O-CNOP method has shown remarkable performance in
typhoon track ensemble forecasting, effectively reducing
prediction errors and exhibiting higher forecast skill in

predicting landing sites, landing times and track turning
compared to SVs and BVs (Duan et al., 2023; Huo &
Duan, 2018; Zhang et al., 2023).

So far, the methods mentioned above are mostly
adopted in NWP. Their applications in climate predic-
tions are limited or only partially applied in the atmo-
spheric component of a coupled system. For example, in
the ECMWF, SVs method was applied for its atmospheric
initial conditions, while perturbed ocean states are gener-
ated by random perturbations in its ocean data assimila-
tion analysis. Recognizing the crucial importance of
adequately sampling uncertainty in oceanic initial condi-
tions in climate predictions, numerous methods that take
into account structural uncertainty in oceanic initial con-
ditions have been developed and implemented in climate
predictions (Duan et al., 2024; Kleeman et al., 2003; Liu
et al., 2022; Zhu et al., 2013, 2015). In the NCEP, the Cli-
mate Forecast System version 2 (CFSv2) applies the
lagged ensemble (LE) approach which generates ensem-
ble members with initial conditions at different times
(Zhu et al., 2015). The LE method has the potential of
sampling the different phases of high-frequency phenom-
ena such as Madden–Julian oscillation (MJO) or Tropical
Instability Wave (TIW) which may have strong effect on
evolutions of climate modes (e.g., El Niño–Southern
Oscillation [ENSO], IOD) and thus their predictions.
Kleeman et al. (2003) introduced the climate-relevant SV
(CSV) method, which employs the ensemble method to
compute the SVs. Through the ensemble-mean method,
the weather-scale noise can be filtered out to retain the
fast growing mode of the climate scale. Liu et al. (2022)
applied this method in conducting ENSO ensemble fore-
cast, significantly improving ENSO forecast skill. To
expand the application of O-CNOP to climate predictions,
a novel approach called coupled CNOP (C-CNOP) has
been developed (Duan et al., 2024). While retaining the
advantage of the O-CNOP method in considering non-
linear unstable-growing initial perturbations, the
C-CNOP method can also depict initial coupling uncer-
tainties across different components of the earth system.
The C-CNOP method has been utilized in ENSO ensem-
ble forecasting, successfully capturing initial ocean–
atmosphere coupling uncertainties, even weak initial
coupling information for predictions initiated in the
spring and summer, thereby weakening the spring pre-
dictability barrier (SPB) and improving ENSO forecast
skill.

Although previous studies have utilized ensemble
forecasting strategies to discuss IOD predictions, the
methods adopted have significant limitations in terms of
dynamic significance and characterization of nonlinear
effects, resulting in low prediction skills for the IOD (Du
et al., 2020; Luo et al., 2007; Shi et al., 2012; Zhu
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et al., 2015). For instance, Zhu et al. (2015) utilized model
analysis fields at different times before the initial forecast
time to generate ensemble forecast members, with suc-
cessful prediction of IOD events less than one season in
advance. Stockdale et al. (2011) generated ensemble
members using the SVs method in the ECMWF seasonal
forecast system. However, due to the linear approxima-
tion of the SVs, the ensemble forecast system could not
effectively extend the lead time of skilful forecasting for
IOD events. Shi et al. (2012) further assessed the predic-
tion skills of four prediction systems that generated
ensemble members using the EnKF, SVs and other
methods, showing that these four ensemble forecast sys-
tems could only forecast IOD events about one season in
advance. Given these limitations, the C-CNOP method
will be employed in this study to improve the skill of IOD
ensemble forecasting. A comparison with the CSV
method is also conducted to further explore the advan-
tage of the C-CNOP method. Since the CSV method is
unable to describe initial coupling uncertainties, the
C-CNOP method will solely focus on ocean temperature
perturbations, which is referred as the CNOP method in
subsequent discussions. Several questions are addressed
in this paper: if the CNOP method is applied in IOD
ensemble forecasting, will it improve the IOD forecast
skill and extend the lead time of skilful forecast? Addi-
tionally, what are the advantages of the CNOP method
compared with the CSV method?

To address these issues, the paper is structured as fol-
lows. Section 2 introduces the CNOP method and the
model. Section 3 examines the application of the CNOP
method in IOD ensemble forecasting. The prediction
results of the CNOP and CSV methods are compared in
section 4. Finally, a summary and discussion are pre-
sented in section 5.

2 | MODEL, DATA AND METHOD

2.1 | Model and data

The Geophysical Fluid Dynamics Laboratory Climate
Model version 2p1 (GFDL CM2p1), an ocean-atmo-
sphere-ice-land coupled model, is utilized in this study.
The oceanic component is the Modular Ocean Model ver-
sion 4 (MOM4p1; Griffies, 2009), with a horizontal reso-
lution of 1 × 1 in most regions and a meridional
resolution reduced to 1/3 at the equator. There are a total
of 50 vertical levels with a 10-m resolution in the upper
225 m. The atmospheric model is the GFDL atmosphere
model, AM2p12b (GFDL Global Atmospheric Model
Development Team, 2004), with a horizontal resolution

of 2.5 × 2 and a total of 24 vertical levels. The different
model components are coupled and exchange fluxes
through the Flexible Modeling System. Previous studies
have demonstrated that the GFDL CM2p1 coupled model
effectively simulates the Indian Ocean climatology and
reproduces the basic characteristics of IOD events (Feng
et al., 2014; Song et al., 2008). Therefore, it is reasonable
to utilize this model for the study of IOD ensemble
forecast.

The ocean temperature data from the Simple Ocean
Data Assimilation (SODA 2.2.4; Carton & Giese, 2008)
was assimilated into the oceanic initial field in the GFDL
CM2p1 using the nudging data assimilation algorithm.
The assimilation area covers the global ocean horizon-
tally and extends to 500 m in the upper ocean vertically.
The assimilation period spans from 1969 to 2008. The ini-
tial field, with oceanic observations assimilated, exhibits
high correlation coefficients with observational datasets,
particularly in the upper tropical Pacific Ocean (figure
omitted). This indicates that the nudging algorithm effec-
tively assimilated oceanic temperature observations into
the model and produced an accurate initial field. The ini-
tial field is further used to run the GFDL CM2p1 from
1979 to 2008 and generate the control forecast (referred
to as the CTRL).

2.2 | The CNOP method

Feng et al. (2017) illustrated that the spatial patterns of
fast-growing initial errors are independent of IOD events,
but vary with the start months of IOD predictions. Conse-
quently, the phase-space bases of the fast growing initial
perturbations for ensemble forecast are derived from
these fast-growing initial errors at different start months,
which characterize the primary modes of initial perturba-
tions that exert a substantial influence on IOD predic-
tions. According to the amplitude characteristics of the
initial analysis errors in the CTRL, these bases are further
expanded into a nonlinear phase space that captures the
rapidly growing initial perturbations at the forecast start
month through vector linear combinations. Subse-
quently, an IOD ensemble forecast is conducted using
the initial perturbation samples within this space. In this
study, the initial errors that result in the largest predic-
tion uncertainties in IOD events were initially identified.
By obtaining fast-growing initial errors of various IOD
events, we established the basis of phase space of these
rapidly growing perturbations and then generated initial
perturbation samples for IOD ensemble forecast. A brief
introduction to the method is as follows, and for more
details, please refer to Duan et al. (2024).
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The variation of state vector Q can be written as

dQ
dt

=F Q, tð Þ+ f

Qjt=0=Q0

8<
: , inΩ× 0, T½ �, ð1Þ

where F is a nonlinear operator, t is time, t � 0, T½ �,
T<+∞, Q0 denotes the initial state of Q, f is the external
forcing, which is constant in the GFDL CM2p1 integra-
tion. Equation (1) can be rewritten as follows:

dQ=F Q, tð Þdt+ fdt: ð2Þ

Equation (2) is then integrated from times ta to tb
(ta<tb<T) and gets Equation (3),

Z tb

ta

dQ=
Z tb

ta

F Q, tð Þdt+
Z tb

ta

fdt=
Z tb

ta

F Q, tð Þdt+ f tb− tað Þ:

ð3Þ

Therefore, the predicted variable Qtb in the future
time tb can be stated as follows:

Qtb =Qta +
Z tb

ta

F Q, tð Þdt+ f tb− tað Þ: ð4Þ

According to Equation (4), if two time periods t01, t1½ �
and t02, t2½ � have the same length and are adopted from
the model output datasets, then their respective initial
states are Qt01 and Qt02 , and their final states Qt1 and Qt2

can be stated as follows:

Qt1 =
Z t1

t01

Fdt+Qt01 + f t1− t01ð Þ, ð5Þ

Qt2 =
Z t2

t02

Fdt+Qt02 + f t2− t02ð Þ: ð6Þ

As the two time periods have the same length,
Equation (6) minus Equation (5) gets Equation (7),

Qt2 −Qt1 =Qt02 −Qt01 +
Z t2

t02

Fdt−
Z t1

t01

Fdt

� �
: ð7Þ

Equation (7) can be rewritten as the same form as
Equations (5) and (6),

Qt2 −Qt1 =Qt02 −Qt01 +
Z
Σ
Ft02 −Ft01½ �dt, ð8Þ

where Ft02 (Ft01 ) represents the F in Equation (6)
(Equation (5)), and the Σ is the time period
t02, t2½ �( t01, t1½ �). Obviously, the difference between the Qt1

and Qt2 is caused by the initial difference between Qt01

and Qt02 . If the data series during the time period t01, t1½ �
is seen as the “observation,” and the data series corre-
sponding to the time period t02, t2½ � can be seen as the
“prediction” of the “observation.” The prediction errors
are only caused by the initial difference between Qt02

and Qt01 .
The GFDL CM2p1 was run for 150 years with external

forcings of land cover, insolation, aerosols and tracer gases
in 1990. The last 100 years of output data were analysed to
exclude the impact of initial adjustment process during the
first 50-year spin up. All 11 positive IOD events were
selected as “observations” from this 100-year dataset. For
each of the one-year “observation,” the other 99 1-year data
can be seen as the “predictions” corresponding to this
“observation.” Consequently, for every “observation,” there
were totally 99 “predictions.” The prediction errors were cal-
culated as the absolute difference in the Dipole Mode Index
(DMI) values between each “observation” and its corre-
sponding “prediction,” which are only caused by the initial
errors as stated above. The DMI here represents the SSTA
difference between the western Indian Ocean (WIO; 50�–
70�E, 10�S–10�N) and the eastern Indian Ocean (EIO; 90�–
110�E, 10�S–0�) as defined in Saji et al. (1999). The growth
rates of these prediction errors G are expressed as follows:

G=
∂Pt

∂t
≈
Pt2 −Pt1

t2− t1
, ð9Þ

where Pt2 and Pt1 denote the prediction errors at times t2
and t1, with a 1-month interval between them. The posi-
tive G signifies an increase in prediction errors, with
higher values indicating faster increase of prediction
errors; and vice versa for negative G. By summing the
G values over a season, the seasonal growth rates of pre-
diction errors can be derived. Consequently, initial errors
yielding the largest positive G values during boreal winter
or summer, which induce a significant winter or summer
predictability barrier, are chosen and deemed to have the
most significant influence on IOD predictability. There
are a large amount of “prediction” series which guarantee
the diversity and statistical significance. That is, these ini-
tial errors are chosen based on finite but statistically sig-
nificant “prediction” samples. As previously mentioned,
CNOP denotes the initial errors that yield the largest pre-
diction uncertainties at the prediction time under specific
constraint condition (Mu et al., 2003). Consequently,
when the finite but statistically significant “prediction”
samples are regarded as the constraint condition, the ini-
tial errors derived through this method are statistically
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optimal and denoted as CNOP. CNOP here signifies ini-
tial errors that have the most pronounced effect on pre-
diction uncertainty for IOD events within the GFDL
CM2p1 model.

Following the steps above, we calculated the CNOP
for forecasts starting from January, April, July and
October, each with a 12-month lead time. For every start-
ing month, a total of 11 CNOPs were derived correspond-
ing to 11 “observations.” Similarly, we identified initial
errors that led to the 2nd to 5th highest growth rates in
prediction errors during either the boreal winter or sum-
mer, considering them as the fast-growing initial errors.
Consequently, there are totally 55 fast-growing initial
errors for each start month, and collectively called the
CNOPs. The phase-space bases of rapidly growing initial
perturbations for ensemble forecasts are extracted from
the modes of these fast growing initial errors at the corre-
sponding forecast start month, and these bases can
describe the key modes of the initial errors that signifi-
cantly impact on IOD predictions for that specific predic-
tion start month. Then we expand these bases into a
nonlinear phase space that captures rapidly growing ini-
tial perturbations at the prediction start month through
vector linear combinations. Subsequently, an IOD ensem-
ble forecast is conducted using the initial perturbation
samples within this space. Based on above ideas, we
employ empirical orthogonal function (EOF) analysis on
the global ocean temperature within the upper 200 m of
the 55 CNOPs for every prediction start month to extract
the leading 30 modes, denoted as Ei (i= 1, 2, 3, …, 30, with
an explanatory variance exceeding 90%). By combining
these leading 30 modes linearly, we derive initial pertur-
bations, denoted by IP=α1E1+α2E2+ � � �+α30E30, and αi
is constant. Through the application of varying constant
coefficients, five initial perturbations (IPs) covering the
upper 200m of the global ocean are generated for each
starting month between 1979 and 2008. These perturba-
tions significantly influence the uncertainties in IOD pre-
dictions and serve as the fast growing initial
perturbations for IOD ensemble forecast. The magnitude
of these IPs is determined by the amplitude characteris-
tics of the initial analysis errors in the CTRL at the corre-
sponding prediction start month.

3 | UTILIZING THE CNOP
METHOD IN IOD ENSEMBLE
FORECAST

3.1 | The ensemble forecast skill of IOD
events utilizing the CNOP method

By adding and subtracting 5 IPs to and from the initial
field of the control forecast and subsequently running the

GFDL CM2p1 model for 12 months, we generated 10 per-
turbed predictions for each starting month of prediction.
These predictions, alongside the CTRL, results in a total
of 11 ensemble members. The ensemble forecasting is
conducted from January 1979 to December 2008, with
forecast starting from January, April, July and October of
each year.

Figure 1 illustrates the anomaly correlation coeffi-
cients (ACCs) and root-mean-square error (RMSE) values
for different experiments as functions of the lead time for
DMI, EIO and WIO. An ACC exceeding 0.5 typically sig-
nifies a skilful forecast (Luo et al., 2005). Initially, the
ACC of the DMI in the persistence forecast presents high
values within the first two lead months, then decreasing
rapidly, and achieving skilful forecasts solely at a
2-month lead time. The ACC in the CTRL experiment is
lower than that in the persistence forecast during the ini-
tial two lead months, but beats the persistence forecast in
the subsequent months. This suggests that through
assimilating observations into the GFDL CM2p1 model
to obtain a relatively accurate initial field, the CTRL
improves the forecast skill for IOD events. The ACC in
the CNOP ensemble-mean forecast is notably higher than
that in the CTRL, particularly at long lead times, marking
a significant improvement in IOD forecast skill. The
improvement, defined as the difference in forecast skill
between the two experiments, becomes more evident
with increasing lead times, ultimately extending the lead
times of skilful forecast. This improvement probably
results from the CNOP method's capability to capture the
nonlinear physical processes during IOD development
compared to the CTRL experiment. The CNOP
ensemble-mean forecast skilfully predict IOD events with
a lead time of 4 months, showing comparable, or even
superior performance to previous studies (Luo
et al., 2007; Shi et al., 2012). The enhanced skill of the
CNOP ensemble forecast is also reflected in forecasting
ocean temperature in the EIO and WIO. Specifically, the
EIO (WIO) achieves skilful forecasts within the initial
5-month (8-month) lead times, exhibiting higher forecast
skill compared to the CTRL, particularly at long lead
times. To further explore the advantages of the CNOP
method in IOD ensemble forecast, the ACC for strong
IOD events (i.e., those where the amplitude of the
observed DMI exceeds one standard deviation for at least
5 months) is also analysed. Remarkably, the ACC for
strong IOD events was higher than that for all events in
both the CTRL and CNOP ensemble-mean forecasts
in terms of the DMI, EIO and WIO. A comparison
between the CNOP ensemble-mean forecast and the
CTRL experiment revealed an improvement in forecast
skill for strong IOD events, with the improvement
becoming more obvious with increasing lead months.
Notably, this improvement was more significant for
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strong IOD events compared to that for all events. These
results confirm the CNOP method's ability to capture the
nonlinear physical progresses associated with IOD events
and improve forecast skill, particularly at long lead times.
The lead time for a skilful forecast of strong IOD events
exceeds 12 months in the CNOP ensemble-mean forecast,
outperforming many current state-of-the-art coupled
models (Luo et al., 2007; Shi et al., 2012). Most findings
for RMSE are consistent with those for the ACC, with
higher ACC values corresponding to lower RMSE values.
However, the RMSE for strong IOD events was greater
than that for all events in both the CTRL and CNOP
ensemble-mean forecasts, indicating that strong IOD
events may exhibit larger prediction errors compared to
all events.

The time evolution of both predicted and observed
DMI values at various lead times is represented in
Figure 2. Notably, at lead times of 1 and 4 months, most
IOD events are well predicted, with a more accurate
amplitude in the CNOP ensemble-mean forecast com-
pared to the CTRL. While the CTRL manages to capture
some strong IOD events up to 7 months in advance, it
fails to predict the strong IOD event in 1997 at a lead
time of 10 months. In contrast, the positive IOD event in

1997 is successfully predicted with an accurate amplitude
in the CNOP ensemble-mean forecast at a 10-month lead
time. By comparing correlation skills of the DMI in the
CNOP ensemble-mean forecast and the CTRL (reflected
in the values in the top right corner of each graph), the
CNOP ensemble-mean forecast has higher skill values
and greatly improved the IOD forecast skill, particularly
evident at longer lead times. This may be attributed to
the CNOP method' ability to consider rapidly growing
initial perturbations with nonlinear effects in the ensem-
ble forecast.

In the following discussions, we will further analyse
the horizontal distributions of the ACC at 1, 4, 7 and
10-month lead times in Figure 3. Although the initial per-
turbations in the CNOP ensemble forecast are primarily
generated aimed at improving IOD forecast skill, the
ACC in the tropical Pacific Ocean is also analysed. Our
findings reveal that the ACC exceeding 0.5 is mainly con-
centrated in the southeastern Indian Ocean at a 4-month
lead time in both the CTRL and CNOP ensemble-mean
forecast. While the regions with the ACC exceeding 0.5
are located in the central Pacific Ocean at a 7-month lead
time in the CTRL and at a 10-month lead time in the
CNOP ensemble-mean forecast. This indicates that

FIGURE 1 Evolution of ACC for (a) DMI, (b) EIO and (c) WIO during 1979–2008 with respect to lead months; (d)–(f) denote
corresponding RMSE values. Black dashed lines are for persistence forecast; blue and red solid lines are for all events in the CTRL and

CNOP ensemble-mean forecasts, respectively; while blue and red dashed lines are for strong IOD events in the CTRL and CNOP ensemble-

mean forecasts, respectively. [Colour figure can be viewed at wileyonlinelibrary.com]
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the high forecast skill is mainly concentrated in the cen-
tral Pacific Ocean even at a 10-month lead time in the
CNOP ensemble forecast, which is significantly larger
than that in the tropical Indian Ocean. The difference in
ACC between the two prediction experiments is almost
positive in both the tropical Indian and Pacific oceans,
and becomes obvious with the increasing lead times. This
indicates that the CNOP ensemble-mean forecast consid-
erably improves the prediction skill across the tropical
Indian and Pacific oceans with the improvement becom-
ing particularly pronounced as the lead time increases.
These findings support the view that the CNOP ensemble
forecasting members could better capture the nonlinear
physical processes of climate events in tropical oceans,
leading to higher forecast skill, particularly at longer lead
times. It is worth highlighting that although the CNOP
initial perturbations are generated focused on IOD
events, the ACC improvement in the tropical Pacific
Ocean is almost positive, notably in the central and east-
ern Pacific Ocean, thereby significantly improving the
ENSO forecast skill. As demonstrated in previous studies

(Shi et al., 2012; Wajsowicz, 2005), the WIO has a close
relation with ENSO; therefore, the improvement of
ENSO forecast skill, in turn, improves the forecast skill in
the WIO.

Similarly, we also analysed the RMSE in the tropical
oceans, as shown in Figure 4. The large values of RMSE
are mainly concentrated in the EIO and the equatorial
Pacific Ocean in the CTRL. That is, the prediction errors
in these regions are large and challenging to be predicted.
The RMSE difference between the CNOP ensemble-mean
forecast and the CTRL presents negative values across
most tropical oceans especially at longer lead times, with
large absolute values concentrated in the EIO and the
equatorial Pacific Ocean. This signifies a substantial
reduction in prediction errors within these regions by
conducting the CNOP ensemble forecasting, thereby
greatly improving the forecast skill of IOD and ENSO
events. Notably, this improvement becomes more obvious
with increasing lead times.

In addition to examining the spatial distribution char-
acteristics of forecast skill, a closer look at the seasonal var-
iability of forecast skill in different experiments was
conducted. As illustrated in Figure 5, the ACC skill of the
DMI in both the CTRL and CNOP ensemble-mean fore-
casts as a function of lead time and start month was ana-
lysed. Notably, the forecast skills in both the CTRL and
CNOP ensemble-mean forecasts show significant seasonal
dependence. Predictions initiated in January and April dis-
played lower skill, whereas forecasts initiated in July and
October presented higher skill. This seasonal variability
highlights a notable winter predictability barrier (WPB)
phenomenon, wherein forecast skill declines rapidly
throughout the boreal winter irrespective of the start
month (Feng et al., 2017; Luo et al., 2007). The CNOP
ensemble-mean forecast skill decreases more rapidly
throughout the boreal winter compared to the CTRL, sug-
gesting a stronger WPB phenomenon. Additionally, the
CNOP ensemble-mean forecast has a higher correlation
skill than the CTRL and greatly improves forecast skills,
particularly for predictions initiating in July and October.

3.2 | Why does the CNOP method
provide higher ensemble forecast skill?

The above section has demonstrated that the CNOP
ensemble-mean forecast exhibits higher skill compared to
the CTRL experiment. In this section, we use the IOD
event in 1997 as an example to delve into potential rea-
sons for this high forecast skill. The IOD in 1997 is pre-
dicted from January in Figure 6. The results show that
the CNOP ensemble-mean forecast successful predicts
the strong IOD event peaking in October, whereas a nor-
mal event is observed in the CTRL experiment.

FIGURE 2 Time series of the DMI in the observations, CTRL

and CNOP ensemble-mean forecast at a 1, 4, 7 and 10-month lead

time. The left (right) numbers in the top right corner describe the

correlation skill between the time series of observations and the

CTRL (the CNOP ensemble-mean forecast). [Colour figure can be

viewed at wileyonlinelibrary.com]
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The analysis of the evolution of SSTAs and sea surface
wind anomalies in the tropical Indian and Pacific oceans
in 1997 is conducted in Figure 7. In March, southeasterly
anomalies observed in the EIO in the observations pro-
mote offshore currents. This leads to the upwelling of the
cold water, resulting in negative SSTAs in the EIO. Then
under the Bjerknes feedback, a west–east dipole mode
appears in the tropical Indian Ocean and a positive IOD
event occurs. The crucial role of southeasterly anomalies
in the EIO in the development of IOD events has also
been highlighted in previous studies (Saji et al., 1999;
Webster et al., 1999). However, the CTRL experiment
fails to capture this key signal and instead shows

southwest wind anomalies in the EIO in March, causing
water piling up and leading to positive SSTAs. In con-
trast, the CNOP ensemble-mean forecast successfully
captures the southeasterly wind anomalies in the EIO
and predicts the positive IOD event in 1997. This under-
scores the sensitivity of IOD forecasts to uncertainties in
wind anomalies in the EIO. The zonal and meridional
wind components in the tropical Indian Ocean in the
CNOP ensemble forecast exhibit a large spread in the
EIO at different lead months, as shown in Figure 8, cap-
turing the uncertainty in wind anomalies in the EIO.
That is, the CNOP ensemble forecast effectively describes
the uncertainties in key processes influencing IOD

FIGURE 3 Horizontal distributions of correlation skill for DMI in the (a) CTRL, (b) CNOP ensemble-mean forecast and (c) correlation

skill difference between the CNOP ensemble-mean forecast and CTRL at a 1, 4, 7 and 10-month lead time, and the shaded areas in (a) and

(b) are above 0.5. The results were obtained for all of the forecasts made during the period 1979–2008 regardless of their starting months.

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 The same as in Figure 3, but for the RMSE (units:�C). [Colour figure can be viewed at wileyonlinelibrary.com]
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development, yielding ensemble members that diverge
substantially from the control forecast and provide a
large ensemble spread encompassing IOD development.
This may explain the higher skill caused by the CNOP
ensemble forecast for IOD events.

Moreover, although the southeasterly anomalies
eventually appear in the EIO in May in the CTRL experi-
ment, promoting the upwelling of cold water and the

subsequent emergence of negative SSTAs in the EIO in
July, the tropical Indian Ocean exhibits basin-wide nega-
tive SST anomalies in September instead of the expected
west–east dipole pattern. This deviation is primarily
attributed to the cooling influence of longwave and latent
heat flux anomalies in the western Indian Ocean (figure
omitted). Therefore, the absence of the anticipated posi-
tive IOD event in 1997 in the CTRL experiment can be
largely attributed to the inaccurate forecast of both the
wind anomaly field and the heat flux anomalies in the
tropical Indian Ocean. It can be inferred that accurate
predictions of these crucial factors are essential for
improving the forecast skill of IOD events.

4 | COMPARISON OF ENSEMBLE
FORECAST SKILLS WITH THE CSV
METHOD

4.1 | Forecast skill of IOD and ENSO
events

In the introduction, the CSV method, developed by Klee-
man et al. (2003), is introduced for computing singular
vectors in the absence of the adjoint model. In this

FIGURE 5 ACC skill of the DMI as a function of the lead time and start month initiated on 1 January, 1 April, 1 July and 1 October in

the (a) CTRL, (b) CNOP ensemble forecast and (c) CSV ensemble forecast. The coloured areas denoted ACC above 0.5. [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 6 Time series of the DMI in 1997 predicted from

January in the observation, CTRL and CNOP ensemble-mean

forecast. [Colour figure can be viewed at wileyonlinelibrary.com]
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section, a comparison between the CNOP and CSV
methods in IOD ensemble forecasting is conducted. The
CSV initial perturbations, with the same magnitude as

the CNOP initial perturbations, are applied to perturb
global ocean temperatures at depths above 200 m. By
adding and subtracting five CSV initial perturbations to

FIGURE 7 Evolutions of SSTA (units:�C) and sea surface wind anomalies (units: m�s−1) over the tropical Indian and Pacific oceans in

1997 in the (a) observation, (b) CTRL and (c) CNOP ensemble-mean forecast. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Horizontal distributions of the wind spread (unit: m�s−1) in the tropical Indian and Pacific oceans generated by the CNOP

ensemble forecast for (a) zonal component and (b) meridional component at different lead months. The results are obtained for all of the

predictions that were made during the period 1979–2008 regardless of their starting month. [Colour figure can be viewed at

wileyonlinelibrary.com]
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and from the initial analysis field of the control forecast,
the GFDL CM2p1 model is run for 12 months starting
from four different months, together with the CTRL,
resulting in a total of 11 ensemble members.

Given that IOD events typically peak during boreal
autumn, the forecast skill for the target season SON
(September–November) is examined in Figure 9. Predic-
tions with lead times of 1, 4, 7 and 10 months were initi-
ated in October, July, April and January, respectively.
The analysis reveals that the ACC of the DMI for the
CNOP ensemble-mean forecast is larger than that of
the CSV method at lead times of 1 and 4 months, with
the degree of improvement being 6.7% and 5.8%, respec-
tively (Figure 10). The degree of improvement is calcu-
lated as the difference in forecast skill values between the
CNOP and CSV experiments divided by the CSV forecast
skill. That is, the CNOP ensemble-mean forecast displays
higher skill compared to the CSV method for predictions
starting from July and October. Conversely, the CNOP
method for predictions starting from January and April
presents a similar or slightly lower skill than the CSV
method. From Figure 11, it is evident that the prediction
errors in the CTRL exhibit large values at the initial time
and maintain the large values before the SON in predic-
tions initiated in July and October. These large errors
motivate the strong nonlinear effects. And then, when
the CNOP method, which fully considers the nonlinear

physical processes, is utilized in ensemble forecasts for
these IOD predictions, the resulting ensemble forecasting
members are able to better capture the nonlinear charac-
teristics of error evolution compared to those made by
the CSV method and achieve a higher ensemble forecast
skill. In contrast, prediction errors are small before SON
in the CTRL forecast initiated in April, and the nonlinear
effects are weak; in this situation, the CSV method is suf-
ficient to generate ensemble forecasting members that
depict the weak nonlinear evolution of prediction errors,
while the CNOP ensemble members, owing to their
strong nonlinearity, may overestimate prediction errors
and consequently yield a slightly lower forecast skill. Dif-
ferent from above start months, predictions errors initi-
ated in January are small initially, which then
significantly increase after July. Then, in the initial stage,
the CNOP ensemble members tend to overestimate pre-
diction error evolution, resulting in lower forecast skill.
However, after July, they gradually demonstrate superior
performance by considering nonlinear physical processes
and increase the forecast skill, ultimately catching up
with the forecast skill of the CSV method at the target
season. Previous research has indicated that when initial
perturbations are sufficiently small, the CNOP approach
can be approximated by the SV method (Mu et al., 2003,
2006). This suggests that the aforementioned overestima-
tion of prediction error evolution with the CNOP method

FIGURE 9 The ACCs for the target season SON at different lead months in CNOP and CSV ensemble-mean forecasts for the (a) DMI,

(b) EIO and (c) WIO; (d)–(f) corresponding RMSE values. [Colour figure can be viewed at wileyonlinelibrary.com]
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may be attributed to the large constraint bounds exerted
on initial perturbations. Consequently, if CNOP initial
perturbations of appropriate magnitudes are adopted in
predictions starting from January, they probably yield
forecast skill comparable to the CSV method initially,
with subsequent improvements after July leading to supe-
rior forecast skill. This hypothesis should be further
investigation in future studies.

The analysis of the ACC in the EIO yields results that
are consistent with those found in the DMI. The lower
forecast skill in the CNOP method with a lead time of
7 months (i.e., initiated in April) can likely be attributed
to the overestimation of error evolution due to the exces-
sively large initial perturbations. Conversely, the ACC in
the WIO in the CNOP ensemble-mean forecast is signifi-
cantly larger than that in the CSV ensemble-mean fore-
cast, showing significant improvements at all lead
months, particularly notable at a 7-month lead time with
the degree of improvement exceeding 200%. This suggests
that the low correlation skill of IOD events in predictions
starting from April is mainly due to the low forecast skill

in the EIO. Similarly, the RMSE in these experiments are
also analysed and similar conclusions are drawn from the
analysis.

Further analysis of the seasonal variability of forecast
skill in both the CSV and CNOP ensemble forecasts is
conducted (see Figure 5b,c). It is worth noting that the
forecast skills in both the CNOP and CSV ensemble fore-
casts exhibit a significant seasonal dependence, empha-
sizing the presence of a WPB phenomenon. Specifically,
the CNOP ensemble forecast skill decreases more rapidly
throughout the boreal winter compared to the CSV
ensemble forecast, suggesting a stronger WPB phenome-
non. Additionally, the CNOP ensemble forecast has a
higher correlation skill for predictions initiating in July
and October, while showing a slightly lower or compara-
ble forecast skill for those initiating in January and April,
which is consistent with the results in Figure 9.

Although the CNOP-type initial perturbations are
generated aimed at improving IOD ensemble forecast
skill, they also lead to improved ACC skill in the tropical
Pacific Ocean compared to the CTRL experiment as

FIGURE 10 (a) Degree of

correlation skill improvement of CNOP

ensemble-mean forecast to the CSV

ensemble-mean forecast at different lead

months for the DMI, EIO and WIO;

(b) corresponding RMSE values. [Colour

figure can be viewed at

wileyonlinelibrary.com]

FIGURE 11 Time variation

of the DMI in observation

(black) and the CTRL (green)

for predictions starting from

(a) January, (b) April, (c) July

and (d) October; the red lines

represent the prediction errors

(i.e., the absolute values of the

DMI difference between the

CTRL and observation) in the

CTRL; the grey bars signify the

target season SON. [Colour

figure can be viewed at

wileyonlinelibrary.com]
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analysed in section 3. In this section, the ACC of Niño3.4
is further analysed to assess the ENSO forecast skill in
different experiments (Figure 12). Specifically, the CNOP
ensemble forecast outperforms the CSV ensemble fore-
cast, particularly at long lead times, thus greatly prolong-
ing the lead time of skilful forecast. Notably, the CNOP
ensemble forecast exhibits the degree of improvement
increasing to 7.4% over the CSV ensemble forecast. This
further verifies its ability to capture the nonlinear evolu-
tion of ENSO and greatly improve forecast skill. As the
close relation between the WIO and ENSO, the enhanced
forecast skill of ENSO in the CNOP ensemble forecast,
may contribute to the significant skill improvement in
the WIO. Furthermore, the forecast skill improvement of
the CNOP ensemble forecast for ENSO compared with
the CSV method is significant at most lead months, with
a 2.6% annual-mean improvement degree, which is larger
than that for IOD. These findings from the ACC analysis
are supported by similar conclusions drawn from the
RMSE analysis.

4.2 | Reliability of the ensemble forecast

Previous studies have highlighted the importance of the
ensemble spread being close to its RMSE for a reliable

ensemble forecast system (Buizza et al., 2005). The ratio
of the ensemble spread to RMSE serves as a measure of
the reliability of the ensemble forecast system, with a
ratio closer to 1 indicating higher reliability. Figure 13
illustrates the temporal variability of the ratio (spread/
RMSE) for the DMI in both the CNOP and CSV ensemble

FIGURE 12 ACC (a) and RMSE

(b) of the Niño3.4 SSTAs for the CNOP

and CSV ensemble forecast as functions

of the lead time; ACC (c) and RMSE

(d) improvement degree of CNOP

ensemble forecast compared with the

CSV method as functions of the lead

time. The results are obtained for all of

the predictions that were made during

the period 1979–2008 regardless of their
starting month. [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 13 Evolution of the ratio (which is defined as spread/

RMSE) values of the CNOP (red line) and CSV (blue line) ensemble

forecast systems for the DMI as a function of the lead month.

[Colour figure can be viewed at wileyonlinelibrary.com]
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forecasts. It is evident that the ratio is closer to 1 in the
CNOP ensemble forecast at most lead months, confirm-
ing the higher reliability of the CNOP ensemble forecast
system, which increases with increasing lead times. This
indicates that the ensemble spread in the CNOP ensem-
ble forecast system could better represent the prediction
errors measured by the RMSE. Furthermore, the spatial
distribution of the ratio in the tropical Indian and Pacific
oceans is shown for both ensemble forecast systems in
Figure 14. The ratios are close to 1 (i.e., 0.7 < ratio < 1.3)
in the central-western Indian Ocean, as well as in the
northern and equatorial Pacific Ocean in the CNOP
ensemble forecast system, while these areas largely
reduce in the CSV ensemble forecast system. This dis-
crepancy implies that the CNOP ensemble forecast sys-
tem has higher reliability and provides a more reliable
estimate of prediction uncertainties. In contrast, the
ratios exceed 1 in the eastern Indian Ocean and southern
Pacific Ocean in both ensemble forecast systems, espe-
cially in the CSV ensemble forecast system, indicating
presence of an underconfidence phenomenon. The cause
of this underconfidence is not fully understood. Notably,
despite the superior forecast skill exhibited by the CNOP
method compared to the CSV method, the underconfi-
dence phenomenon is still not overcome. Recent research
by Duan et al. (2024) has demonstrated that the C-CNOP
method can generate dynamically coordinated coupled
initial perturbations, yielding more reliable ensemble
members. This advancement could potentially narrow

the gap between the ensemble spread and RMSE in
ensemble forecasts. Consequently, further implementa-
tion of the C-CNOP method in the ensemble forecast
may potentially overcome the underconfidence phenom-
enon and enhance the overall reliability of the forecast
system.

5 | SUMMARY AND
CONCLUSIONS

In the current study, by applying the CNOP method in
generating initial perturbations and superimposing them
on the initial field of the CTRL experiment, we conducted
a 30-year ensemble forecast using the GFDL CM2p1
coupled model to examine the forecast skill of climate
events.

First, the CNOP ensemble-mean forecast significantly
improves the forecast skill of IOD events, particularly at
longer lead times. Notably, a skilful forecast was achieved
at a 4-month lead time, which is comparable with, or
even better than, previous research findings. Further-
more, the advantage of the CNOP method is also
reflected in the predictions for the WIO and EIO, with a
skilful forecast at an 8- (5-) month lead time for the WIO
(EIO). Additionally, we analysed the ACC for strong IOD
events, revealing a skilful forecast at a 12-month lead
time, outperforming many current state-of-the-art
coupled models. The improvement of the CNOP method
for strong IOD events becomes obvious at a long lead
time, and this improvement is larger than that for all
events. The findings regarding the RMSE were largely
consistent with these conclusions.

The spatial patterns of ACC and RMSE are further
examined, revealing that the CNOP ensemble-mean fore-
cast significantly improves correlation skill and reduces
prediction errors across the tropical Indian and Pacific
oceans compared to the CTRL. This improvement
becomes significant with the increasing lead time.
Although the CNOP initial perturbations are generated
aimed at improving IOD forecast skill, there is a notable
enhancement in ENSO forecast skill as well. Moreover,
the analysis of seasonal variation in forecast skill high-
lights a significant WPB in the CNOP ensemble forecast.
Specifically, the CNOP ensemble-mean forecast shows a
significantly greater improvement over the CTRL for pre-
dictions initiated in July and October.

Through an analysis of SSTAs and surface wind
anomalies in different experiments, we delve into the
mechanisms resulting in a higher forecast skill of
the CNOP ensemble forecast. Our findings reveal that the
CNOP ensemble forecast could better depict southeast-
erly wind anomalies in the EIO in March, which favours

FIGURE 14 The spatial distribution of the ratio (which is

defined as spread/RMSE) for the DMI in the tropical Indian and

Pacific oceans in the (a) CNOP, and (b) CSV ensemble forecast

systems. The shaded area is above 1.3 or below 0.7, and the

remaining areas represent values near 1. The results are obtained

for all of the predictions that were made during the period 1979–
2008 regardless of their starting month. [Colour figure can be

viewed at wileyonlinelibrary.com]
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the emergence of IOD event precursors. Additionally, the
ensemble spread of zonal and meridional wind compo-
nents in the CNOP ensemble forecast exhibits large
values in the EIO, indicating its ability to capture the
uncertainty of wind anomalies in this region, thereby
providing more chances to capture IOD occurrences. Fur-
thermore, in addition to surface wind anomalies, accu-
rate predictions of heat flux fields are also crucial for
improving the forecast skill of IOD events.

Second, the comparison of forecast skill between the
CNOP and CSV ensemble forecasts is conducted with a
focus on IOD and ENSO events. The findings reveal that
the CNOP ensemble forecasts exhibit higher forecast skill
for IOD predictions starting from July and October and
show similar or slightly lower skill for predictions initiat-
ing in January and April. The CNOP method, which con-
siders nonlinear physical processes, generates ensemble
forecasting members that could better capture the non-
linear dynamic characteristics of error evolution for pre-
dictions starting from July and October with strong
nonlinear effects, thereby achieving a higher forecast
skill. Conversely, for predictions starting from April with
weak nonlinear effects, the CSV-type initial perturbations
are sufficient to generate ensemble forecasting members
that depict the weak nonlinear evolution of prediction
errors, while the ensemble members generated by the
CNOP method tend to overestimate error evolution,
resulting in a slightly lower forecast skill. Different from
above start months, for predictions initiating in January,
the CNOP ensemble members initially overestimate error
evolution, leading to lower forecast skill in the early
months; however, it gradually adjusts to capture the non-
linear error evolution after July, eventually catching up
with the CSV ensemble forecast skill. Moreover, the
ENSO forecast skill in the CNOP ensemble forecast is
higher than that with the CSV method, particularly at
longer lead times, with a more significant improvement
compared to IOD events. Evaluation of the reliability of
two ensemble forecast systems in terms of temporal and
spatial variability indicates that the CNOP ensemble fore-
cast system demonstrates higher reliability than the CSV
ensemble forecast system, offering a more reliable esti-
mate of prediction uncertainties. Notably, the ratios in
the eastern Indian Ocean and southern Pacific Ocean are
larger than 1, indicating the existence of an underconfi-
dence phenomenon. By implementing the C-CNOP
method and generating dynamically coordinated coupled
initial perturbations, this underconfidence phenomenon
might be overcome.

Based on above discussions, the CNOP method has
significantly improved the forecast skill of climate events.
It is important to note that, for convenience to compare
with the CSV method, only the ocean temperature was

perturbed to generate initial perturbations. The C-CNOP
method, as proposed in Duan et al. (2024), could consider
initial coupling effects among different components, cap-
turing the initial coupling uncertainty information and
greatly improving forecast skill, even when the coupling
is at its weakest. Consequently, the potential application
of the C-CNOP method incorporating additional compo-
nents such as wind and salinity in IOD predictions, could
lead to further improvement in IOD prediction skills.
Additionally, to briefly validate the rationality of CNOP
method in IOD ensemble forecasting and largely save the
computer resources, a reduced number 5 IPs were uti-
lized in the ensemble forecast. To determine the optimal
sample size for achieving higher ensemble forecast skill
and to assess whether the CNOP method maintains a sig-
nificant advantage over other ensemble forecast methods
under these conditions, further investigations are needed
in the near future.

AUTHOR CONTRIBUTIONS
Rong Feng: Investigation; formal analysis;
writing – original draft; validation; writing – review and
editing. Wansuo Duan: Methodology; formal analysis;
writing – review and editing; supervision. Lei Hu: Inves-
tigation; formal analysis. Ting Liu: Formal analysis.

ACKNOWLEDGEMENTS
This work was supported by the National Natural Science
Foundation of China (Grant No. 42330111) and the
National Key Scientific and Technological Infrastructure
project “Earth System Numerical Simulation Facility”
(EarthLab).

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are avail-
able from the corresponding author upon reasonable
request.

ORCID
Wansuo Duan https://orcid.org/0000-0002-0122-2794

REFERENCES
Anderson, J.L. (1997) The impact of dynamical constraints on the

selection of initial conditions for ensemble predictions: low-
order perfect model results. Monthly Weather Review, 125(11),
2969–2983.

Ansell, T., Reason, C.J.C. & Meyers, G. (2000) Variability in the
tropical southeast Indian Ocean and links with southeast
Australian winter rainfall. Geophysical Research Letters, 27(24),
3977–3980.

FENG ET AL. 15

https://orcid.org/0000-0002-0122-2794
https://orcid.org/0000-0002-0122-2794


Buizza, R., Houtekamer, P.L., Pellerin, G., Toth, Z., Zhu, Y. &
Wei, M. (2005) A comparison of the ECMWF, MSC, and NCEP
global ensemble prediction systems. Monthly Weather Review,
133, 1076–1097. Available from: https://doi.org/10.1175/
MWR2905.1

Cai, W., Yang, K., Wu, L., Huang, G., Santoso, A., Ng, B. et al.
(2020) Opposite response of strong and moderate positive
Indian Ocean Dipole to global warming. Nature Climate
Change, 11, 27–32. Available from: https://doi.org/10.1038/
s41558-020-00943-1

Carton, J.A. & Giese, B.S. (2008) A reanalysis of ocean climate using
Simple Ocean Data Assimilation (SODA). Monthly Weather
Review, 136(8), 2999–3017. Available from: https://doi.org/10.
1175/2007MWR1978.1

Du, J., Zhou, B. & Levit, J. (2019) Measure of forecast challenge and
predictability horizon diagram index for ensemble models.
Weather and Forecasting, 34, 603–615.

Du, Y., Zhang, Y., Zhang, L., Tozuka, T., Ng, B. & Cai, W. (2020)
Thermocline warming induced extreme Indian Ocean Dipole
in 2019. Geophysical Research Letters, 47(18), e2020GL090079.
Available from: https://doi.org/10.1029/2020GL090079

Duan, W.S., Hu, L. & Feng, R. (2024) Coupled conditional non-
linear optimal perturbations and their application to ENSO
ensemble forecasts. Science China Earth Sciences, 67, 826–842.
Available from: https://doi.org/10.1007/s11430-023-1273-1

Duan, W.S. & Huo, Z.H. (2016) An approach to generating mutu-
ally independent initial perturbations for ensemble forecasts:
orthogonal conditional nonlinear optimal perturbations. Jour-
nal of the Atmospheric Sciences, 73(3), 997–1014.

Duan, W.S., Yang, L., Xu, Z. & Chen, J. (2023) Conditional non-
linear optimal perturbation: applications to ensemble forecast-
ing of high-impact weather systems. In: Park, S.K. (Ed.)
Numerical weather prediction: East Asian perspectives.
Switzerland: Springer.

Evensen, G. (1994) Sequential data assimilation with a nonlinear
quasigeostrophic model using Monte Carlo methods to forecast
error statistics. Journal of Geophysical Research, 99(C5), 10143–
10162. Available from: https://doi.org/10.1029/94JC00572

Feng, R., Duan, W.S. & Mu, M. (2014) The “winter predictability
barrier” for IOD events and its error growth dynamics: results
from a fully coupled GCM. Journal of Geophysical Research:
Oceans, 119, 8688–8708. Available from: https://doi.org/10.
1002/2014JC10473

Feng, R., Duan, W.S. & Mu, M. (2017) Estimating observing loca-
tions for advancing beyond the winter predictability barrier of
Indian Ocean dipole event predictions. Climate Dynamics, 48,
1173–1185.

GFDL Global Atmospheric Model Development Team. (2004) The
new GFDL global atmosphere and land model AM2-LM2: eval-
uation with prescribed SST simulations. Journal of Climate, 17,
4641–4673.

Griffies, S.M. (2009) Elements of MOM4p1: GFDL Ocean Group.
Princeton, NJ: NOAA/Geophysical Fluid Dynamics Laboratory.
Technical report: 6.

Houtekamer, P.L. & Derome, J. (1994) Prediction experiments with
twomember ensembles. Monthly Weather Review, 122(9), 2179–
2191.

Huang, P., Zheng, X.T. & Ying, J. (2019) Disentangling the changes
in the Indian Ocean Dipole-related SST and rainfall variability
under global warming in CMIP5 modes. Journal of Climate,
32(13), 3803–3818.

Hui, C. & Zheng, X.T. (2018) Uncertainty in Indian Ocean Dipole
response to global warming: the role of internal variability. Cli-
mate Dynamics, 51, 3597–3611. Available from: https://doi.org/
10.1007/s00382-018-4098-2

Huo, Z. & Duan, W. (2018) The application of the orthogonal condi-
tional nonlinear optimal perturbations method to typhoon
track ensemble forecasts. Science China Earth Sciences, 2,
376–388.

Kleeman, R., Tang, Y. & Moore, A. (2003) The calculation of climat-
ically relevant singular vectors in the presence of weather
noise. Journal of the Atmospheric Sciences, 60, 2856–2868.

Leutbecher, M. & Palmer, T.N. (2008) Ensemble forecasting. Jour-
nal of Computational Physics, 227(7), 3515–3539. Available
from: https://doi.org/10.1016/j.jcp.2007.02.014

Liu, T., Song, X., Tang, Y., Shen, Z. & Tan, X. (2022) ENSO predict-
ability over the past 137 years based on a CESM ensemble pre-
diction system. Journal of Climate, 35, 763–777.

Lorenz, E.N. (1965) A study of the predictability of a 28-variable
atmospheric model. Tellus, 17(3), 321–333.

Luo, J.J., Masson, S., Behera, S., Shingu, S. & Yamagata, T. (2005)
Seasonal climate predictability in a coupled OAGCM using a
different approach for ensemble forecasts. Journal of Climate,
18(21), 4474–4497.

Luo, J.J., Masson, S., Behera, S. & Yamagata, T. (2007) Experimen-
tal forecasts of the Indian Ocean Dipole using a coupled
OAGCM. Journal of Climate, 20(10), 2178–2190. Available
from: https://doi.org/10.1175/JCLI4132.1

Mu, M., Duan, W. & Wang, B. (2003) Conditional nonlinear opti-
mal perturbation and its applications. Nonlinear Processes in
Geophysics, 10, 493–501.

Mu, M., Duan, W., Xu, H. & Wang, B. (2006) Applications of condi-
tional nonlinear opimal perturbation in predictability study
and sensitivity analysis of weather and climate. Advance in
Atmospheric Sciences, 23(6), 992–1002.

Saji, N.H., Goswami, B.N., Vinayachandran, P.N. & Yamagata, T.
(1999) A dipole mode in the tropical Indian Ocean. Nature,
401(6751), 360–363.

Saji, N.H. & Yamagata, T. (2003) Interference of teleconnection pat-
terns generated from the tropical Indian and Pacific Oceans.
Climate Research, 25, 151–169.

Shi, L., Hendon, H.H., Alves, O., Luo, J.J., Balmaseda, M. &
Anderson, D. (2012) How predictable is the Indian Ocean
Dipole? Monthly Weather Review, 140(12), 3867–3884. Available
from: https://doi.org/10.1175/MWR-D-12-00001.1

Song, Q., Vecchi, G.A. & Rosati, A.J. (2008) Predictability of Indian
Ocean sea surface temperature anomalies in the GFDL coupled
model. Geophysical Research Letters, 35(2), L02701. Available
from: https://doi.org/10.1029/2007GL031966

Stockdale, T.N., Anderson, D., Balmaseda, M.A., Doblas-Reyes, F.,
Ferranti, L., Mogensen, K. et al. (2011) ECMWF seasonal fore-
cast system 3 and its prediction of sea surface temperature. Cli-
mate Dynamics, 37(3–4), 455–471.

Toth, Z. & Kalnay, E. (1993) Ensemble forecasting at NMC: the gen-
eration of perturbations. Bulletin of the American Meteorological
Society, 74(12), 2317–2330.

Wajsowicz, R.C. (2005) Potential predictability of tropical Indian
Ocean SST anomalies. Geophysical Research Letters, 32(24),
L24702. Available from: https://doi.org/10.1029/2005GL024169

Webster, P.J., Moore, A.M., Loschnigg, J.P. & Leben, R.R. (1999)
Coupled ocean–atmosphere dynamics in the Indian Ocean dur-
ing 1997–98. Nature, 401(6751), 356–360.

16 FENG ET AL.

https://doi.org/10.1175/MWR2905.1
https://doi.org/10.1175/MWR2905.1
https://doi.org/10.1038/s41558-020-00943-1
https://doi.org/10.1038/s41558-020-00943-1
https://doi.org/10.1175/2007MWR1978.1
https://doi.org/10.1175/2007MWR1978.1
https://doi.org/10.1029/2020GL090079
https://doi.org/10.1007/s11430-023-1273-1
https://doi.org/10.1029/94JC00572
https://doi.org/10.1002/2014JC10473
https://doi.org/10.1002/2014JC10473
https://doi.org/10.1007/s00382-018-4098-2
https://doi.org/10.1007/s00382-018-4098-2
https://doi.org/10.1016/j.jcp.2007.02.014
https://doi.org/10.1175/JCLI4132.1
https://doi.org/10.1175/MWR-D-12-00001.1
https://doi.org/10.1029/2007GL031966
https://doi.org/10.1029/2005GL024169


Zhang, H., Duan, W.S. & Zhang, Y. (2023) Using the orthogonal
conditional nonlinear optimal perturbations approach to
address the uncertainties of tropical cyclone track forecasts gen-
erated by the WRF model. Weather and Forecasting, 38, 1907–
1933.

Zhao, M. & Hendon, H.H. (2009) Representation and prediction of
the Indian Ocean dipole in the POAMA seasonal forecast
model. Quarterly Journal of the Royal Meteorological Society,
135(639), 337–352. Available from: https://doi.org/10.1002/
qj.370

Zhu, J., Huang, B., Balmaseda, M.A., Kinter, J.L., III, Peng, P.,
Hu, Z.Z. et al. (2013) Improved reliability of ENSO hindcasts
with nulti-ocean analyses ensemble initialization. Climate
Dynamics, 41, 2785–2795.

Zhu, J., Huang, B., Kumar, A. & Kinter, J.L. (2015) Seasonality in
prediction skill and predictable pattern of tropical Indian
Ocean SST. Journal of Climate, 28(20), 7962–7984. Available
from: https://doi.org/10.1175/JCLI-D-15-0067.1

How to cite this article: Feng, R., Duan, W., Hu,
L., & Liu, T. (2024). Ensemble forecasting of Indian
Ocean Dipole events generated by conditional
nonlinear optimal perturbation method.
International Journal of Climatology, 1–17. https://
doi.org/10.1002/joc.8627

FENG ET AL. 17

https://doi.org/10.1002/qj.370
https://doi.org/10.1002/qj.370
https://doi.org/10.1175/JCLI-D-15-0067.1
https://doi.org/10.1002/joc.8627
https://doi.org/10.1002/joc.8627

	Ensemble forecasting of Indian Ocean Dipole events generated by conditional nonlinear optimal perturbation method
	1  INTRODUCTION
	2  MODEL, DATA AND METHOD
	2.1  Model and data
	2.2  The CNOP method

	3  UTILIZING THE CNOP METHOD IN IOD ENSEMBLE FORECAST
	3.1  The ensemble forecast skill of IOD events utilizing the CNOP method
	3.2  Why does the CNOP method provide higher ensemble forecast skill?

	4  COMPARISON OF ENSEMBLE FORECAST SKILLS WITH THE CSV METHOD
	4.1  Forecast skill of IOD and ENSO events
	4.2  Reliability of the ensemble forecast

	5  SUMMARY AND CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES


