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ABSTRACT

Orthogonal conditional nonlinear optimal perturbations (O-CNOPs) have been used to generate ensemble forecasting
members  for  achieving  high  forecasting  skill  of  high-impact  weather  and  climate  events.  However,  highly  efficient
calculations for O-CNOPs are still challenging in the field of ensemble forecasting. In this study, we combine a gradient-
based iterative idea with the Gram‒Schmidt orthogonalization, and propose an iterative optimization method to compute O-
CNOPs. This method is different from the original sequential optimization method, and allows parallel computations of O-
CNOPs, thus saving a large amount of computational time. We evaluate this method by using the Lorenz-96 model on the
basis  of  the  ensemble  forecasting  ability  achieved  and  on  the  time  consumed  for  computing  O-CNOPs.  The  results
demonstrate  that  the  parallel  iterative  method  causes  O-CNOPs  to  yield  reliable  ensemble  members  and  to  achieve
ensemble forecasting skills similar to or even slightly higher than those produced by the sequential method. Moreover, the
parallel  method  significantly  reduces  the  computational  time  for  O-CNOPs.  Therefore,  the  parallel  iterative  method
provides a highly effective and efficient approach for calculating O-CNOPs for ensemble forecasts. Expectedly, it can play
an important  role in the application of  the O-CNOPs to realistic  ensemble forecasts  for  high-impact  weather  and climate
events.
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Article Highlights:
•  A parallel optimization method is proposed for highly efficient calculations of O-CNOPs in ensemble forecasting.

•  The method greatly increases the applicability of O-CNOPs in practical ensemble forecasting.

•  The O-CNOPs obtained by the new method provide reliable ensemble members with high efficiency.

•  Ensemble forecasting skills as high as those generated by the original method can be achieved.
 

  
 

1.    Introduction

In numerical weather prediction, errors are inherent due
to inaccurate initial conditions and deficient models. Relevant
atmospheric dynamical systems, because of their highly non-
linear and unstable nature, can quickly amplify these errors
and produce significant forecast errors (Lorenz, 1963; Toth
and  Kalnay,  1993; Mu  et al.,  2003; Buizza  et al.,  2005;
Yoden, 2007; Duan and Zhou, 2013). Ensemble forecasting
is  a  widely  used  method  for  quantifying  forecast  errors.
When model errors are sufficiently small and even negligi-

ble,  ensemble  forecasting can be  treated  as  an  initial  value
problem.  In  this  situation,  the  distribution  of  the  predicted
states  can  be  estimated  by  integrating  a  numerical  model
with uncorrelated initial perturbations (Leith, 1974), and the
forecast uncertainties can be evaluated by using the statistics
of these predicted states. The earliest method for producing
initial  perturbations  for  ensemble  forecasts  is  the  Monte
Carlo forecasting (MCF) method, which superimposes ran-
dom initial perturbations on the initial analysis field to predict
the  probability  distribution  of  the  forecasting  results
(Epstein,  1969; Leith,  1974).  Subsequently, Toth  and
Kalnay (1993, 1997) introduced breeding vectors (BVs) for
generating  initial  perturbations,  and  they  emphasized  that
ensemble forecasts benefit from the use of growing-type ini-
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tial  perturbations.  Another  method for  generating growing-
type perturbations is the singular vectors (SVs) method. The
SVs  method  has  been  utilized  at  the  European  Centre  for
Medium-Range Weather Forecasts (ECMWF) to construct ini-
tial perturbations for realistic weather forecasts, and demon-
strated  considerable  improvements  of  the  performance
(Buizza  et al.,  1993; Buizza  and  Palmer,  1995; Molteni
et al., 1996). The SVs method is thus far still one of the funda-
mental  ensemble  forecasting  methods  of  the  ECMWF (see
https://confluence.ecmwf.int/display/FUG/).

SVs can capture the unstable growth property of initial
analysis errors in the linearized regime, but they are unable
to fully describe the nonlinear nature of error growth (Ander-
son,  1997; Hamill  et al.,  2000). Mu  et al. (2003)  proposed
the  approach  of  conditional  nonlinear  optimal  perturbation
(CNOP), which yields initial perturbations that satisfy certain
physical constraints and that induces the largest nonlinear evo-
lution at prediction time. The CNOP is viewed as an extension
of the leading SV in the nonlinear regime. CNOP has been
widely used to reveal  the effect  of  nonlinearity on the pre-
dictability  of  atmosphere,  ocean,  air  quality,  and  related
high-impact weather and climate events [Duan et al.,  2004;
Mu et al.,  2007, 2009; Duan and Zhang, 2010; Duan et al.,
2018; Jiang et al., 2022, 2024; Yang et al., 2022, 2023; also
see the review of Duan et al. (2023a)]. In particular, Rivière
et al. (2008) extended the CNOP to study the predictability
of  atmospheric  moisture  processes; Terwisscha  van
Scheltinga  and  Dijkstra (2008)  used  the  CNOP  to  explore
the  predictability  of  oceanic  double  gyres.  Additionally,
Chen et al. (2021) adopted the CNOP to reveal the sensitive
area  for  targeted  observation  associated  with  forecasts  of
southwest  vortices  in  China.  Even  recently,  the  CNOP has
been utilized to identify sensitive areas for targeted observa-
tion in typhoon forecasting and oceanic state forecasting in
real  field  campaigns  (Liu  et al.,  2021; Feng  et al.,  2022;
Chan et al., 2023; Qin et al., 2023).

To account for the impact of nonlinear physical processes
on  ensemble  forecasts, Mu  and  Jiang (2008),  as  well  as
Jiang  and  Mu (2009),  substituted  the  leading  SV  with
CNOP and kept the other SVs unchanged for initial perturba-
tions of ensemble forecasts. This modification improved the
forecasting  capability  compared  to  that  of  using  pure  SVs.
To fully consider nonlinearities, Duan and Huo (2016) pro-
posed  the  orthogonal  CNOPs  (O-CNOPs;  also  see  section
2) method for generating mutually independent nonlinearly
optimal  initial  perturbations  for  ensemble  forecasts.  This
method has demonstrated superior ensemble forecasting abil-
ity  when  compared  to  that  of  the  MCF,  the  SVs,  and  the
BVs methods in typhoon track forecasting (Huo and Duan,
2019; Huo et al.,  2019; Duan et al.,  2023a, b; Zhang et al.,
2023a). Du et al. (2018) regarded O-CNOPs as an important
ensemble forecasting method and included O-CNOPs in com-
bination with other popular methods, such as BVs, SVs, and
ETKF in  the  Handbook  of  Hydrometeorological  Ensemble
Forecasting  (Duan  et al.,  2019).  Furthermore,  O-CNOPs
have been utilized in real forecasts of El Niño–Southern Oscil-

lation events and provide real-time forecast products for oper-
ational  departments,  revealing  good  forecasting  capability
[see Liu  et al. (2023)  as  well  as http://cmdp.ncc-
cma.net/pred/cn_cmme.php?Elem=CMME-ENSO,  and
https://soed.sio.org.cn/emsodm.html].

O-CNOPs perform very well in their existing ensemble
forecasting  applications.  However,  the  requisite  numerical
computation  is  still  a  fundamental  challenge.  Originally,
Duan and Huo (2016) had to calculate O-CNOPs by using a
sequential optimization method. That is, they first calculated
the leading CNOP by searching for the fastest-growing initial
perturbation  in  the  space  defined  by  the  constraint  condi-
tion. Then, they obtained the second CNOP in the subspace
orthogonal to the first CNOP, followed by the calculation of
the third CNOP in the subspace orthogonal to the first and sec-
ond CNOPs, and so on [also see Huo and Duan (2019), Huo
et al. (2019)  and Zhang  et al. (2023a)].  Each  CNOP  was
searched  along  the  descending  direction  of  the  gradient  of
the objective function with respect to the initial perturbations
by using an optimization solver named Spectral Projected Gra-
dient 2 (SPG2; Birgin et al., 2000).

The above discussion clearly shows that O-CNOPs origi-
nally require one-to-one solving,  thus consuming consider-
able computational time and limiting the timeliness of real-
time forecasts. Therefore, developing a highly efficient com-
putational  method  for  O-CNOPs  is  urgently  important.  In
the present study, we propose an alternative method to signifi-
cantly reduce the computational time and to greatly increase
the  timeliness  of  the  ensemble  forecasts  generated  by  O-
CNOPs.

In section 2, a new method for calculating O-CNOPs is
proposed,  and  in  section  3  the  advantages  of  the  new
method are revealed based on ensemble forecasting experi-
ments by using the Lorenz-96 model. Then, in section 4, we
mainly  provide  a  discussion  on  the  similarity  of  the  O-
CNOPs  generated  by  the  new  and  old  methods.  Finally,  a
summary is provided in section 5. 

2.    The new method to calculate O-CNOPs

In  this  section,  the  approach  of  the  O-CNOPs  is  first
briefly described and then the new method to calculate the
O-CNOPs is proposed.
 

2.1.    The O-CNOPs approach

Equation  (1)  represents  a  dynamical  system  of  atmo-
spheric and oceanic motions: 



∂U

∂t
= F (U (x, t))

U |t = 0 = U0

, in Ω× [0,T ] , (1)

U (x, t)

U0 F

(x, t) ∈Ω× [0,T ]

Ω

R
n

where  describes the evolution of an atmospheric or
oceanic state at a given time,  is its initial state, and  is
a  nonlinear  differential  operator. ,  where x
and t are the space coordinate and time, respectively, and 
and T represent  a  domain  in  and  the  prediction  period,
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U (x, t)

respectively.  If  Eq.  (1)  and  its  initial  state  are  known,  the
state  at time T can be given by 

U (x, t) = MT (U0) , (2)

MT

u0

uT

where  is the nonlinear propagator of Eq. (1). Assuming
that the model is perfect and that the initial perturbation 
represents  the initial  error,  the prediction error,  denoted by

, can be expressed as in Eq. (3): 

uT = MT (U0+u0)−MT (U0) . (3)

Based on Eq. (3), the O-CNOPs can be defined as fol-
lows: 

J
(
u∗0 j

)
= max

u0 j
∈Ω j

∥∥∥∥MT

(
U0+u0 j

)
−MT (U0)

∥∥∥∥
b
, (4)

where 

Ω j =



{
u0 j
∈ Rn
∣∣∣∣
∥∥∥u0 j

∥∥∥
a
⩽ δ

}
, j = 1 ,

{
u0 j
∈ Rn
∣∣∣∣
∥∥∥u0 j

∥∥∥
a
⩽δ,u0 j

⊥Ωk,k=1,2, · · · , j−1

}
, j>1 .

(5)

u0 j

Ω j( j = 1,2,3, · · · ) ∥ · ∥a ∥ · ∥b

δ

⊥

u∗
0 j

j = 1

u∗
01

J
(
u∗

01

)
> J
(
u∗

02

)
> · · · > J

(
u∗

0n

)
.

Here,  represents the initial perturbation in subspace
;  and  are the norms that measure

the amplitudes of the initial perturbations and their evolution
at prediction time T, respectively;  is the constraint radius
that indicates the scope of the initial perturbation amplitude;
the symbol “ ” denotes orthogonality; and the initial pertur-
bation  is the jth CNOP. For , the optimal initial per-
turbation  has the largest nonlinear evolution at prediction
time T in the whole phase space, which is the CNOP proposed
by Mu et al. (2003), and the jth CNOP has the largest nonlin-
ear  evolution  at  time T in  the  subspace  orthogonal  to  the
first j − 1 CNOPs. Moreover, their corresponding cost func-
tion values are ranked by 

The  O-CNOPs,  as  mentioned  in  the  Introduction,  are
often computed by tracing the descending direction of the gra-
dient  of  the  cost  function  with  respect  to  initial  perturba-
tions.  The derivation of  the gradient  can be found in Duan
and Huo (2016). Specifically, they provided the following for-
mula: 

∇J
(
u0 j

)
= 2M∗T

(
U0+u0 j

) (
MT

(
U0+u0 j

)
−MT (U0)

)
, (6)

M∗
Twhere  is the adjoint model of Eq. (1). Based on this gradi-

ent,  previous  researchers,  as  discussed  in  the  Introduction,
often utilized the SPG2 solver to calculate O-CNOPs one by
one.
 

2.2.    The new method for calculating O-CNOPs

Barkmeijer (1996)  introduced  an  iterative  method  to
solve the initial perturbation that possesses much larger pertur-
bation  growth  than  the  SV  in  a  nonlinear  model.  In  this
method, the SV is initially substituted to calculate the gradient

M∗
T

(
U0+u0 j

) (
MT

(
U0+u0 j

)
−MT (U0)

)

MT

.  Then,  along  the
direction  provided  by  this  gradient,  the  SV is  updated  at  a
given iterative step. After several iterative steps, a new initial
perturbation  can  be  obtained,  which  has  a  much  greater
growth in the nonlinear model featured by . It is believed
that  sufficient  iterative  steps  can approach to  the  nonlinear
optimal  perturbation,  i.e.,  the  first  CNOP  in  O-CNOPs.
From Barkmeijer (1996),  it  is  known  that  the  iterative
method allows multiple SVs to be simultaneously optimized
to obtain multiple nonlinear initial perturbations. In this situa-
tion, the relevant computations facilitate the implementation
of parallel computing. This approach results in a significant
reduction in computational time. Inspired by this, we extend
this  iterative method to  compute O-CNOPs simultaneously
rather than compute them sequentially.

The original iterative method cannot guarantee that the
resultant nonlinear initial perturbations are mutually orthogo-
nal  after  sufficient  iterations,  as  required  in  O-CNOPs,
although  it  can  output  them  simultaneously.  To  overcome
this limitation, we incorporate the Gram‒Schmidt orthogonal-
ization [see the review of Leon et al. (2013)] with an iterative
method, and we formulate a parallel iterative method for com-
puting O-CNOPs simultaneously. The specific steps are out-
lined below:

{
u

(k)

0 j
, j = 1,2, · · · ,N

}

{
u

(k)

0i
⊥ u

(k)

0 j
, i , j

}

k = 0,1,2,3, · · · .

k = 0{
u

(k)

0 j
, j = 1,2, · · · ,N

}

k = 1,2,3, · · · ,

Step 1. A group of mutually independent initial perturba-

tions, , are chosen, and a parallel opera-

tion is adopted to simultaneously compute the gradients [in
Eq.  (6)]  for  these  initial  perturbations,  where

 and N and k denote the number of initial per-

turbations  and  the  number  of  iterative  steps,  respectively.
The  value  of N is  chosen  according  to  the  given  ensemble
forecasting  problem,  and In  this  context,

 indicates  that  the  initial  perturbations

 are  the  initial  guess  values  for  O-

CNOPs and corresponding to the update initial
perturbations in Step 2.

{
u

(k)

0 j
, j = 1,2, · · · ,N

}
Step  2. The  gradients  in  Step  1  are  substituted  in  Eq.

(7),  and  a  group  of  updated  initial  perturbations

 are  derived,  which  is  inspired  by  the

approach as proposed in Barkmeijer (1996): 

u
(k)

0 j
= u

(k−1)

0 j
+

α∥∥∥∥∥∇J

(
u

(k−1)

0 j

)∥∥∥∥∥
∇J

(
u

(k−1)

0 j

)
, (7)

∇J ∥ · ∥

α

where  is  the  gradient  in  Eq.  (6),  represents  an  L2

norm, and  is a parameter used to adjust the iteration step
size.

u
(k)

0i
⊥ u

(k)

0 j
, i , j

Step  3. The  Gram‒Schmidt  orthogonalization  is  per-
formed  on  these  updated  initial  perturbations,  and

; the constraint condition in Eq. (5) is used to
scale the updated initial perturbations.

Repeating  steps  2  and  3,  final  O-CNOPs  can  be
obtained until little change occurs in the values of the objec-
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∇J ≈ 0tive  functions  (or  the  gradient )  with  an  increasing
number of iterative steps. To assist the reader, in Fig. 1, we
provide a schematic for  computing the O-CNOPs by using
the parallel iterative method.

From  the  above  steps,  although  the  Gram‒Schmidt
orthogonalization is introduced to realize the output of mutu-
ally orthogonal initial perturbations, the O-CNOPs generated
by the parallel iterative method (hereafter, Para-CNOPs) are
not necessarily the same as those produced by the sequential
optimization  method  of  a  traditional  optimization  solver
such as SPG2 (hereafter, SPG2-CNOPs). In ensemble fore-
casts, a growing-type initial perturbation is generally superim-
posed  on  the  control  forecast  to  offset  its  initial  analysis
error to achieve an ensemble forecasting member approaching
the truth run. However, one cannot obtain a growing-type ini-
tial perturbation that can exactly capture the growth behavior
of the initial analysis error. In this circumstance, one has to
calculate  the  achievable  initial  perturbations  for  optimal
growth,  such  as  SPG2-CNOPs.  SPG2-CNOPs  have  been

shown to result  in much higher ensemble forecasting skills
than those produced by the traditional SVs and BVs methods
in typhoon and ENSO forecasts (see Introduction). We subse-
quently  ask  whether  Para-CNOPs  can  achieve  similar  or
even higher ensemble forecasting skills than those of SPG2-
CNOPs.  Next,  we  demonstrate  the  advantages  of  Para-
CNOPs from two perspectives: comparisons of the ensemble
forecasting  skills  generated  by  Para-CNOPs  and  SPG2-
CNOPs  and  of  the  timeliness  of  Para-CNOPs  and  SPG2-
CNOPs for ensemble forecasts.
 

3.    Advantages of the Para-CNOPs

In  this  section,  we  examine  the  Para-CNOPs  by  using
the  conceptual  model  presented  in Lorenz (1996).  The
Lorenz-96 model describes the main characteristics of atmo-
spheric motions and has been widely applied in theoretical
studies on predictability associated with error growth dynam-
ics (Boffetta et al., 1998; Lorenz and Emanuel, 1998; Vannit-

 

(a)  Sequential optimization

SPG2 solver;

Constraint condition:  1st CNOP 
Initial guess 1

Initial guess 2

SPG2 solver;

Constraint condition: 
2nd CNOP 

Initial guess 3

SPG2 solver;

Constraint condition: 3rd CNOP 

Initial guess 

SPG2 solver;

Constraint condition: 
Nth CNOP 

(b)  Parallel optimization

mutually independent 

initial guesses Calculate the gradient 

Parallelly update , by

Gram-Schmidt orthogonalization;

Constraint condition: 

Stopping 

condition

( )

No

Yes
P-CNOPs

Step 1

Step 2

Step 3

 

Fig. 1. Diagrams for calculating (a) SPG2-CNOPs and (b) Para-CNOPs.
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sem  and  Toth,  2002; Orrell,  2003),  and  data  assimilation
(Anderson,  2001; Whitaker  and  Hamill,  2002; Hunt  et al.,
2004; Fertig et al., 2007). This model has also been used to
explore the usefulness of new methods for ensemble forecasts
(Descamps  and  Talagrand,  2007; Revelli  et al.,  2010; Bas-
narkov  and  Kocarev,  2012; Feng  et al.,  2014; Duan  and
Huo, 2016; Grudzien et al., 2020; Duan et al., 2022). In this
paper,  we  follow  these  researchers  and  also  adopt  the
Lorenz-96 model.

The Lorenz-96 model equation is as follows: 

dXl

dt
= (Xl+1−Xl−2 ) Xl−1−Xl+F , (8)

l = 1,2, · · · ,L L ∈ N

Xl

X−1 = XL−1,X0 = XL X1 = XL+1

where  (  is  the  dimension  of  the  state
space), and the variable  satisfies cyclic boundary condi-
tions,  i.e., ,  and ,  which  can
be thought of as representing nondimensional meteorological
quantities (e.g., temperature, pressure, vorticity, and gravita-
tional potential) that are equally spaced along a latitudinal cir-
cle. The linear term and constant term F describe the internal
dissipation of the atmosphere and the external forcing, respec-
tively.

L = 40 F = 8

Throughout the present study, the dimension and forcing
term  are  chosen  as  and ,  respectively;  the
model  is  integrated  by  using  a  fourth-order  Runge–Kutta
scheme with a nondimensional time step of 0.05 time units
(approximately  0.25  days).  With  this  configuration,  the
model solution reflects a chaotic dynamic, and is commonly
used to simulate atmospheric dynamics over a single latitudi-
nal circle, such as the dynamical behavior of vorticity, temper-
ature, and gravitational potential (Lorenz, 1996; Lorenz and
Emanuel, 1998).
 

3.1.    Experimental strategy

Xl(l = 1,2, · · · ,L)

Xl(l = 1,2, · · · ,L)

We evaluate the Para-CNOPs based on ensemble fore-
casts. The Lorenz-96 model is assumed to be perfect for pro-
ducing the “truth runs” to be predicted. After a spin-up run
of  14  600  time  steps  (i.e.,  10  model  years),  the  Lorenz-96
model is further integrated for 292 000 time steps, resulting
in  a  200-year  time  series  of  the  state  variable

.  Subsequently,  we  select  the  state  values
of  at  every  1460  time  steps  (i.e.,  one
model year) as the initial values, then integrate the model for-
ward at 40 time steps (i.e., 10 days). This process yields 200
“truth runs”.

N (0,1)

We generate the initial values of the forecasts by assimi-
lating observations. For the Lorenz-96 model, the correspond-
ing “observations” must be synthetic. Specifically, the “obser-
vations” here are generated by introducing random noise (as
observational errors), which is sampled from a standard nor-
mal distribution , on each of the 40 variables for the
truth runs at each time step. Then, the four-dimensional varia-
tional data assimilation (4D-Var) technique is applied to the
Lorenz-96 model to assimilate the “observations” and to gen-
erate  the  initial  analysis  fields  for  the  forecasts.  By  using
these initial analysis fields, the Lorenz-96 model is integrated

for a period of 10 days, producing the control forecasts for
the  200  truth  runs.  Due  to  the  presence  of  observational
errors,  initial  analysis  errors  are  inevitable  in  control  fore-
casts.

δ

δ = 0.8δa δa

O-CNOPs are generally superimposed on control fore-
casts  to  execute  ensemble  forecasts  [see Duan  and  Huo
(2016)]. The O-CNOPs of the control forecasts are calculated
in terms of their constraint radius (i.e., the positive constant
numbers )  and  optimization  time  periods  [0, T]  [see  Eqs.
(4)  and  (5)].  According  to Wang  and  Duan (2019),  when

 (  represents the amplitude of the initial analysis
error measured by the L2 norm), T = 4, and N = 21 (i.e., the
number  of  O-CNOPs),  the  highest  ensemble  forecasting
skills  are statistically obtained.  In this  study,  we adopt this
configuration  to  compute  the  O-CNOPs,  which,  together
with their negative patterns, are superimposed on the initial
analysis fields to produce 42 perturbed forecasts for each con-
trol  forecast.  These perturbed forecasts,  combined with the
control forecast itself, form a group of 43 members of ensem-
ble forecasts.

Several  metrics  are  adopted  to  evaluate  the  quality  of
the  ensemble  forecasts.  Specifically,  the  root-mean-square
error  (RMSE)  and  the  anomaly  correlation  coefficient
(ACC) are used to estimate the deterministic forecast  skill;
the Brier score (BS; Brier, 1950) and the relative operating
characteristic curve area (ROCA; Mason, 1982) are adopted
to  measure  the  probabilistic  forecast  skill.  The  RMSE  and
BS  are  negatively  oriented  (i.e.,  the  smaller  the  value,  the
higher  the  ensemble  forecast  skill),  while  the  ACC  and
ROCA are positively oriented (i.e., the larger the value, the
higher the ensemble forecast skill). The details of these four
skill  measurements  can  be  found  in  Appendix  A  [also  see
Duan and Huo (2016) and Duan et al. (2022)]. 

3.2.    Comparison  of  the  ensemble  forecasting  skills  of
Para-CNOPs and SPG2-CNOPs

α

0.8δa

With  the  strategy  from  the  last  section,  we  conducted
ensemble  forecasting  experiments  involving  200 truth  runs
for a duration of 10 days to evaluate the effectiveness of the
Para-CNOPs, where the hyperparameter  is experimentally
set to 0.05 and the maximum iteration number is limited to
300 [see section 2, Eq. (7)]. Then, we compared the forecast-
ing skills  achieved by the Para-CNOPs and SPG2-CNOPs.
Figure 2 plots the time-dependent RMSE and ACC for ensem-
ble mean forecasts, and BS and ROCA for probabilistic fore-
cast skills,  which are averaged for the 200 truth runs when
the  constraint  radius  is  (see  section  3.1).  The  results
demonstrate  that  the  ensemble  forecasting  skills  achieved
by  Para-CNOPs  are  almost  identical  to  those  achieved  by
SPG2-CNOPs.  This  result  implies  that  Para-CNOPs  can
achieve forecast  capabilities comparable to those of SPG2-
CNOPs at each forecasting time.

0.8δa

To  further  demonstrate  the  usefulness  of  the  Para-
CNOPs  approach,  we  calculate  the  RMSE,  ACC,  BS,  and
ROCA  values  averaged  across  all  the  truth  runs  and  lead
times ranging from 0 to 10 days (see Fig. 3), where the con-
straint radius of  is used (see section 3.1); and besides
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0.6δa 1.0δathis, the constraint radii of  and  are also adopted.
The  results  show that  the  ensemble  forecasts  generated  by
the Para-CNOPs possess slightly smaller RMSE and BS val-
ues, and slightly greater ACC and ROCA values than those
produced  by  the  SPG2-CNOPs.  This  means  that  the  Para-
CNOPs  achieve  slightly  higher  scores  compared  with  the
SPG2-CNOPs. It is known that growing-type initial perturba-
tions  are  necessary  in  ensemble  forecasts  to  estimate  the
growth  of  analysis  errors.  However,  it  is  impossible  to
obtain  initial  perturbations  that  exactly  capture  the  growth
behavior of analysis errors. Therefore, optimally growing ini-
tial  perturbations,  such  as  CNOPs,  have  to  be  calculated.
Although  Para-CNOPs  are  not  always  the  SPG2-CNOPs,
they  have  the  possibility  to  depict  the  growth  behavior  of
the analysis errors very well. This may explain why the Para-
CNOPs  achieve  slightly  higher  scores.  In  any  case,  the
scores  obtained by the  Para-CNOPs and SPG2-CNOPs are

of trivial difference despite the former being slightly larger,
suggesting that the Para-CNOPs have an almost equivalent
forecasting ability to the SPG2-CNOPs.

0.8δa

In  addition to  the ensemble forecast  skill  measured by
the above skill measurements, the reliability of the ensemble
members is also a key aspect that reflects the advantages of
a  new ensemble  forecasting method.  We therefore  proceed
to explore the reliability of the ensemble members generated
by  the  Para-CNOPs.  In  previous  studies,  researchers  have
shown  that  reliable  ensemble  members  should  exhibit  an
ensemble  spread  that  is  nearly  equal  to  the  RMSE  of  the
ensemble mean (see Appendix B; Bowler, 2006; Leutbecher
and  Palmer,  2008; Fortin  et al.,  2014; Hopson,  2014).  To
address this issue for Para-CNOPs, the ratios of the ensemble
spread to the RMSE for Para-CNOPs and SPG2-CNOPs are
presented in Fig. 4 for the constraint radius of . Let us
note  that Fig.  4a plots  the  temporal  variability  of  the  ratio
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0.8δa

Fig.  2. The  time-dependent  RMSE,  ACC,  BS  and  ROCA  of  the  ensemble  forecasts  generated  by  SPG2-CNOPs
(dashed line) and Para-CNOPs (solid line) averaged over 200 truth runs. The amplitude of the CNOPs is . The
black lines are the control forecasts.

6 CALCULATION OF OPTIMAL PERTURBATIONS FOR ENSEMBLE FORECASTS

 

  



averaged for all truth runs, while Fig. 4b gives the spatial vari-
ability of the ratio averaged for all truth runs and lead times.
The  ratios  for  both  Para-CNOPs  and  SPG2-CNOPs  are
almost  identical  and  close  to  1.  This  suggests  that  Para-
CNOPs  provide  ensemble  members  with  reliability  similar
to that of SPG2-CNOPs and indicates that Para-CNOPs can
offer  a  reasonable  estimation  of  forecast  uncertainties  in
both time and space by using their ensemble spread.

δ = 0.8δa

We have to acknowledge that neither the SPG2-CNOPs
and  Para-CNOPs  provide  a  flatter  ratio  of  the  ensemble
spread  to  the  RMSE  at  the  initial  stage  of  forecasts  (see
Fig. 4a). As discussed above, growing-type initial perturba-
tions are necessary in ensemble forecasts and achievable opti-
mally growing initial perturbations have to be calculated. In
Fig.  4,  both  SPG2-CNOPs and Para-CNOPs are  calculated
with ,  along with T = 4,  and N = 21,  to make the
ensemble forecasts generated by the CNOPs achieve the high-

δ = 0.8δa
δa

est  skill  averaged  over  the  whole  forecast  periods  for  all
truth runs (see section 3.1). However, the initial perturbation
amplitude, , tends to underestimate the initial analy-
sis  error  amplitude, ,  and  then  results  in  the  ratio  of  the
ensemble spread to the RMSE being less than 1 at the initial
time of forecasts. Despite these smaller CNOPs, they repre-
sent  the optimally growing initial  perturbations;  in  particu-
lar,  from Fig.  4a it  is  clear  that  the  ratio  of  the  ensemble
spread to the RMSE is larger than 1 at the optimization time
T =  4.  This  indicates  that  the  smaller  CNOPs  have  much
larger  growth  than  the  initial  analysis  errors  at T =  4,  and
cause  an  overestimation  of  the  analysis  error  at T =  4.  All
these  factors  may  explain  the  transition  of  the  ratio  from
being less than 1 to being larger than 1 at the initial stage of
the  forecasts,  as  shown  in Fig.  4a.  Nonetheless,  the  ratio
still remains within an acceptable range of [0.8, 1.2], indicat-
ing the reliability of the ensemble members.
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Fig.  3. Performances  of  the  ensemble  forecasts  generated  by  SPG2-CNOPs  (dashed  line)  and  Para-CNOPs  (solid
line)  averaged  over  200  truth  runs  and  all  lead  times.  The  horizontal  axis  denotes  the  constraint  radius,  and  the
vertical axis represents the RMSE, ACC, BS and ROCA values.
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Another measure of the reliability of ensemble members
is the Talagrand diagram (see Appendix B; Talagrand et al.,
1997; Candille and Talagrand, 2005). The flatter the relevant
histogram,  the  more  reliable  the  ensemble  members.
Figure  5 shows  the  Talagrand  diagrams  for  Para-CNOPs
and  SPG2-CNOPs  at  various  lead  times.  The  Para-CNOPs
exhibit a flat histogram almost identical to that of the SPG2-
CNOPs. This indicates that the Para-CNOPs provide ensem-
ble members as reliably as do the SPG2-CNOPs for ensemble
forecasts.

 

3.3.    Comparison  of  the  timeliness  of  computing  Para-
CNOPs and SPG2-CNOPs

The timely computation of optimal initial perturbations
is  frequently  challenging  in  ensemble  forecast  scenarios.
Therefore,  developing  a  highly  effective  and  efficient
method for solving the optimal initial perturbations for ensem-
ble forecasts is urgently important. In this section, we com-
pare  the  time  consumed  for  obtaining  Para-CNOPs  and
SPG2-CNOPs to validate the efficiency of Para-CNOPs. In
Fig. 6, we provide box-and-whisker plots for their respective

computation  times,  where  the  data  represent  the  computa-
tional times of 21 CNOPs for one truth run and are obtained
by  averaging  over  the  200  truth  runs.  The  calculations  are
based on Fortran Code and Intel(R) Xeon(R) CPU E7-4870
v2  @2.30  GHz.  The  results  show  that  calculating  SPG2-
CNOPs generally requires approximately 279.18 s.

For  the  Para-CNOPs,  since  the  calculation  allows  the
use of multiple computer cores to obtain O-CNOPs via a par-
allel method, we first examine the time consumed for calculat-
ing the Para-CNOPs by using varying numbers of computer
cores in parallel (see Fig. 7). The results show that parallel
computing can indeed effectively decrease the time consumed
for calculations. Nevertheless, we find that the time consumed
does not decay linearly with the increasing number of com-
puter cores. In fact, it is at 24 computer cores that the decay
of  the  time  consumed  for  computing  the  Para-CNOPs
reaches saturation. This indicates that the addition of fewer
computer  cores  can  help  parallel  iterative  methods  signifi-
cantly  increase  the  computational  efficiency  of  Para-
CNOPs,  even  under  practical  circumstances.  Specifically,
we adopt 24 computer cores for approximately 2.05 s for com-
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Fig.  4. The (a)  temporal  and (b)  spatial  variabilities  in  the  ratio  of  the  ensemble  spread to  the  RMSE obtained by
SPG2-CNOPs (dashed line) and Para-CNOPs (solid line), where the variabilities are calculated by averaging over the
200  truth  runs;  in  particular,  the  spatial  variabilities  are  obtained  through  further  averaging  over  the  lead  times
ranging from 0 to 10 days.
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Fig. 5. Talagrand diagrams for the ensemble forecasts made by SPG2-CNOPs (top row) and Para-CNOPs (bottom row) at lead
times of 2, 4, 6, 8 and 10 days.
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puting 21 CNOPs in one truth run (see Fig. 6). It is obvious
that the Para-CNOPs calculations greatly reduce the time con-
sumed by the SPG2-CNOPs and can be aggressively calcu-
lated with high efficiency. Furthermore, from section 3.2, it
is known that the Para-CNOPs can achieve an ensemble fore-
cast ability as high as that of the SPG2-CNOPs. Therefore,
Para-CNOPs  provide  a  method  that  can  highly  efficiently
yield  growing-type  initial  perturbations  for  ensemble  fore-
casting; and moreover, they achieve high ensemble forecast-
ing skill.
 

4.    Discussion

J (u0)

J (u0)

The  above  results  show  that  Para-CNOPs  can  provide
reliable ensemble members and can achieve ensemble fore-
casting skills  as  high as  those  of  SPG2-CNOPs.  In  fact,  in
numerical  experiments,  we  also  explore  the  magnitudes  of
the nonlinear evolution of Para-CNOPs, i.e., the value of the
cost  function ,  and  we  compare  them  with  those  of
SPG2-CNOPs. We find that the Para-CNOPs possess similar
dynamical growth as SPG2-CNOPs. Specifically, in Fig. 8,
we plot the values of the cost function  with respect to
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Fig. 6. Comparison of the computation times of the SPG2-CNOPs and Para-
CNOPs.  One  computing  core  is  used  for  SPG2-CNOPs,  and  24  computing
cores  are  used  for  Para-CNOPs.  The  box-and-whisker  plot  illustrates  the
distribution of the time consumed for computing the O-CNOPs of 200 truth
runs. Each data point in the figure represents the time needed to compute 21
O-CNOPs  for  one  truth  run.  The  box  extends  from  the  first  quartile  to  the
third  quartile,  with  the  solid  line  in  the  box  indicating  the  median  and  a
triangle marking the mean. The whiskers represent the range, reaching to the
farthest data point lying within 1.5 times the interquartile range from the box,
and further small circles beyond the whiskers are considered outliers. The left
and  right  vertical  axes  represent  the  times  consumed  for  computing  SPG2-
CNOPs and Para-CNOPs, respectively.
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Fig.  7. The  time  taken  to  compute  21  Para-CNOPs  of  one  truth  run  as  a
function  of  the  number  of  computer  cores,  obtained  by  averaging  the  200
truth runs.
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)the  Para-CNOPs.  Then,  we  find  that  they  have
 values, which are very similar

to those of SPG2-CNOPs; furthermore, their values are not
far  from  those  of  SPG2-CNOPs,  especially  for  the  latter-
order CNOPs. However, when we directly compare the Para-
CNOPs with  the  SPG2-CNOPs for  each truth  run,  we find
that  they  are  not  always  of  similar  patterns  due  to  their
solvers having different optimization capacities. The tool of
perturbation  versus  error  correlation  analysis  (PECA;  see
Appendix C) is further applied to examine the ability of the
Para-CNOPs  in  interpreting  the  analysis  errors,  and  the
results show that the PECA of Para-CNOPs matches that of
SPG2-CNOPs to  a  large  extent  (see Fig.  9).  This  indicates
that,  despite  the  Para-CNOPs  not  always  being  the  SPG2-
CNOPs, the ensemble generated by them can also approxi-
mately  describe  the  analysis  error.  In  this  situation,  we
regard  the  Para-CNOPs  as  an  approximation  of  the  SPG2-
CNOPs. This may explain why Para-CNOPs produce reliable

ensemble  members  similar  to  SPG2-CNOPs  and  can
achieve  high  ensemble  forecast  skill  comparable  to  that  of
SPG2-CNOPs.

δ = 0.8δa
δa

It is apparent that both SPG2-CNOPs and Para-CNOPs
adopt  to constrain their amplitudes with the initial
analysis  error  amplitude  as  a  reference.  It  should  be
noted that the initial amplitude of the analysis error in real-
time forecasting is typically unknown. It is therefore challeng-
ing to determine appropriate initial perturbation amplitudes
for ensemble forecasts. A prevalent approach is to use obser-
vations or reanalysis data as approximations of the true state
and compare these with the analysis field to provide a rough
estimation of initial analysis errors. This estimation is based
on statistics obtained from long-term hindcast experiments,
and the variance of the estimated analysis error is commonly
used as a reference for the generation and tuning of initial per-
turbations  in  operational  ensemble  forecasts  (Toth  and
Kalney,  1997; Leutbecher  and  Palmer,  2008; Yamaguchi
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Fig. 8. Values of the cost function for SPG2-CNOPs (dashed line) and Para-
CNOPs (solid line), which are averaged for 200 truth runs.
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Fig.  9. The  PECA  values  generated  by  SPG2-CNOPs  and  Para-CNOPs,
which are averaged for 200 truth runs.
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and Majumdar, 2010). However, the characteristics of analy-
sis  errors  are  not  static;  they vary with  the flow-dependent
weather regimes. Therefore, the generation of initial ensemble
perturbations  should  also  consider  such  variation  and  con-
straints.  Ensemble  data  assimilation  methods,  such  as  the
ensemble Kalman filter (EnKF), can provide an estimate of
flow-dependent analysis errors using the spread of a posterior
ensembles. Nonetheless, these a posterior ensembles heavily
rely on various empirical parameters set within the EnKF sys-
tem and may provide biased error estimation due to the limited
number  of  ensemble  members  (Li  et al.,  2009; Peña  and
Toth, 2014; Hoteit et al., 2015; Feng et al., 2017). Recently,
Feng et al. (2023) proposed the use of a Statistical Analysis
and Forecast Error method for quantifying analysis errors of
operational forecast systems. This process may provide effec-
tive  estimates  of  the  flow-dependent  analysis  errors,  and
then facilitate the recognition of more reasonable initial pertur-
bation amplitudes for ensemble forecasts. In any case, accu-
rately  estimating  analysis  errors,  particularly  those  that  are
flow-dependent, remains a significant challenge for refining
the generation of initial ensemble perturbations. 

5.    Summary

In this study, we propose a new iterative method for com-
puting O-CNOPs in an attempt to greatly reduce the computa-
tional time. This method incorporates a gradient-based itera-
tion  approach  with  Gram‒Schmidt  orthogonalization,  and
allows  the  use  of  a  parallel  algorithm  to  significantly
increase the timeliness of implementing O-CNOPs in ensem-
ble  forecasts.  In  fact,  when  we  compare  the  computation
time of computing O-CNOPs by using the original sequential
optimization  method  and  the  parallel  optimization  method
in  the  present  study,  the  latter  is  found  to  be  a  very  small
part of the former. Specifically, when we compute the 21 O-
CNOPs for one truth run requested by the ensemble forecasts
generated  by  the  Lorenz-96  model,  the  sequential  method
takes approximately 279 s using one computing core, while
the parallel method takes only approximately 2 s to run with
24 computing cores. Therefore, the parallel iterative optimiza-
tion  method  proposed  in  this  study  is  highly  efficient  and
can  greatly  increase  the  timeliness  of  implementing  O-
CNOPs in real ensemble forecasts.

In  comparison  to  sequentially  optimized  O-CNOPs
(SPG2-CNOPs),  parallelly  optimized  O-CNOPs  (Para-
CNOPs) have been shown to provide reliable ensemble mem-
bers with an ensemble forecasting ability comparable to that
of SPG2-CNOPs. This highlights the effectiveness of the pro-
posed approach in  obtaining ensemble  forecasting  skills  as
high as those of SPG2-CNOPs. For this purpose, we investi-
gate the evolution of Para- and SPG2-CNOPs. We find that
they  exhibit  highly  similar  dynamic  growths.  That  is,  the
amplitudes of Para-CNOPs growths are very close to those
of  SPG2-CNOPs;  furthermore,  they  are  ranked  with  the
same  sequence  as  SPG2-CNOPs.  Particularly,  the  Para-
CNOPs are demonstrated to provide an ensemble that is simi-
lar to that generated by the SPG2-CNOPs and can appropri-

ately  address  analysis  errors.  These  findings  may  explain
why the Para-CNOPs can produce reliable ensemble mem-
bers,  as  can  the  SPG2-CNOPs,  and  why  the  Para-CNOPs
achieve  high  ensemble  forecast  skill  comparable  to  that  of
the SPG2-CNOPs.

The high efficiency and effectiveness of implementing
Para-CNOPs  may  support  their  applicability  in  realistic
ensemble  forecasts.  Therefore,  in  subsequent  studies,  we
plan  to  extend  the  Para-CNOPs  to  more  realistic  weather
and climate models to investigate the applicability of Para-
CNOPs  in  ensemble  forecasts,  especially  for  high-impact
weather  and  climate  events.  It  is  conceivable  from  section
3.3 that we can compute the Para-CNOPs using a very small
part of the computation time for calculating SPG2-CNOPs.
Zhang et al. (2023a) showed that, for the Weather Research
and Forecasting (WRF) model with a horizontal grid spacing
of 60 km and a coarser vertical resolution of 15 vertical levels
with  the  top  level  at  50  hPa,  the  calculation  of  21  CNOPs
with  64  computing  cores  for  one  five-day  forecast  takes
nearly  2  h  when  the  CNOPs  are  calculated  one  by  one.
From  the  comparison  between  Para-CNOPs  and  SPG2-
CNOPs in section 3.3, it is indicated that the calculation of
the  21  Para-CNOPs  with  enough  computing  cores  for  one
forecast in the WRF model needs at most the time of calculat-
ing one of the SPG2-CNOPs using 64 computing cores [i.e.
about 6 min; also see Zhang et al. (2023a)]. Therefore, it is
expected that Para-CNOPs can be applied in realistic complex
models for efficiently conducting ensemble forecasts.

In  addition,  the  O-CNOPs  address  the  effect  of  initial
uncertainties.  In  practical  forecasts,  model  errors  that  limit
the  ensemble  forecasting  ability  are  also  important  factors.
Furthermore, model errors interact with initial errors to fur-
ther  amplify  forecast  uncertainties. Duan  et al. (2022)  pro-
posed  an  approach  with  nonlinear  forcing  singular  vectors
that combines initial and model perturbations (C-NFSVs) to
reveal  the  combined  effect  of  initial  and  model  errors.  C-
NFSVs  can  be  divided  into  two  special  cases:  O-CNOPs,
which  consider  only  initial  error  effects  (Duan  and  Huo,
2016);  and  orthogonal  NFSVs,  which  involve  only  model
error effects (O-NFSVs; Zhang et al.,  2023b).  Since the C-
NFSV and its special case of O-NFSV are both relevant to
model  errors  at  each  time  step  of  numerical  integration,
their optimizations are much more time-consuming for ensem-
ble forecasts. However, it is gratifying that the above parallel
iterative optimization method can be easily extended to calcu-
late C-NFSVs and O-NFSVs to greatly increase the timeliness
of implementing them in ensemble forecasts. Therefore, we
expect that these optimal perturbation methods can be effec-
tively implemented in  realistic  ensemble forecasts  with the
help of the parallel iterative optimization method.
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APPENDIX A
 

A1. Root-mean-square error of the ensemble mean

XlThe ensemble mean is calculated as follows. Let  be
the ensemble mean of the lth component of the N members: 

Xl =
1

N

∑N

n=1
X

(n)

l
, (A1)

X
(n)

l

l = 1,2, · · · ,L n = 1,2, · · · ,N.

Xl

Ol

where  represents the lth component of the nth ensemble
member  and  and  The  root-
mean-square error (RMSE) of the ensemble mean measures
the difference between the ensemble mean  and the obser-
vations  (i.e.,  the  truth  runs  in  the  present  study)  and  is
defined as follows: 

RMSE =
√

1

R

∑R

r=1

1

L

∑L

l=1

(
Xl,r −Ol,r

)
, (A2)

where R represents the number of realizations. 

A2. Anomaly correlation coefficient

The  anomaly  correlation  coefficient  (ACC)  is  used  to
measure  the  similarity  between  the  forecasted  and  the
observed anomalies. The ACC is calculated as follows: 

ACC =
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where  and   is  the  forecast
value;  is the observation;  is the model climatological
state;  is the observed climatological state;  is the fore-
casted anomaly; and  is the observed anomaly. The larger
the ACC, the higher the forecast skill. 

A3. Brier score

The Brier score (BS) is the mean-square error of the prob-
ability forecast and is defined as follows: 

BS =
1

R

∑R

r=1
( fr −or)

2 , (A4)

fr or

where R is the number of realizations of the prediction process
and  and  are the probability of the forecast and the obser-
vation,  respectively,  for  the rth  prediction  process.  A
smaller BS indicates a better probability forecast skill. 

A4. Relative operating characteristic curve area

The  relative  operating  characteristic  curve  area
(ROCA) is a measure of the resolution of a prediction sys-
tem. By considering whether  an event  occurs  at  every grid
point  and  checking  the  forecasts  against  the  observations,
we  can  construct  a  two-category  contingency  table  (see
Table A1), where a and b represent the number of hits and

false alarms, respectively, and c and d represent the number
of misses and correct rejections, respectively.

Then, the hit rate and the false alarm rate can be calcu-
lated as in Eq. (A5) and (A6), respectively: 

Hit rate : H =
a

(a+ c)
, (A5)

 

False alarm rate : F =
b

(b+d)
. (A6)

The ROC curve can be obtained by the pairs H and F,
and  the  area  under  the  ROC  curve  is  called  the  ROCA,
which decreases from 1 to 0 as more false alarm occur. The
ROCA is calculated as in Eq. (A7): 

ROCA =
∫ 1

0

H (x)dx =
∑K

k=1

1

2
(Hk+1+Hk) (Fk+1−Fk) ,

(A7)

where K is the number of categories relative to the probability
thresholds. A larger ROCA value indicates a better probabil-
ity forecast. When the ROCA is greater than 0.5, the forecast
can be regarded as skillful.
 

APPENDIX B
 

B1. Ensemble spread and the ratio of spread to RMSE

According to subsection A1 in Appendix A, the ensemble
spread is defined as follows: 

SPRD =
√

1

R

∑R

r=1

1

L

∑L

l=1

1

N −1

∑N

n=1

(
X

(n)

l,r
−Ol,r

)
, (B1)

where the representation of the characters is consistent with
Eq. (A1). The ratio of the ensemble spread to the RMSE can
be defined as follows: 

Ratio=
SPRD
RMSE

. (B2)

For a reliable ensemble, the ratio between the spread of
the  ensemble  members  and  the  RMSE  of  the  ensemble
mean approaches 1.
 

B2. Talagrand diagram

In  the  case  of  ensemble  forecasting  with N ensemble
members and L grid points, these N members are ranked in
ascending order, and N + 1 intervals can be divided on each

 

Table A1. Two-by-two contingency table of a binary event.

Forecast

Observation

Yes No Total

Yes a b a+b
No c d c+d

Total a+c b+d
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S k(k = 1,2, · · · ,N +1)

S = NL.

grid point. Observations (i.e., the truth runs in this study) on
corresponding grid  points  will  inevitably  fall  into  a  certain
interval,  and  the  numbers  of  observations  that  fall  into  the
kth  interval  can  be  accumulated  and  denoted  as

. For N ensemble members and L grid
points,  the  valid  samples  can be  defined as  Then,
the probability of observations falling in the kth interval is 

Pk =
S k

S
. (B3)

PkAccording to the distribution of probability , the Tala-
grand  diagram  can  be  drawn.  Theoretically,  observations
should fall with equal probability into each of the intervals
for  a  perfect  ensemble  forecast  system.  Therefore,  a  flatter
Talagrand diagram signifies a higher reliability of the ensem-
ble forecasting system. Additionally, when the Talagrand dia-
gram appears  concave,  the  ensemble  spread  is  small.  Con-
versely, a convex shape suggests excessive spread. An obvi-
ous asymmetry in the Talagrand diagram implies bias in the
ensemble.
 

APPENDIX C
 

C1. Perturbation versus error correlation analysis

Perturbation versus error correlation analysis (PECA) is
commonly used to evaluate the initial perturbations by mea-
suring their ability to explain forecast error variance, which
is an appropriate tool for the comparison of ensembles gener-
ated  by  different  schemes  (Wei  and  Toth,  2003; Buizza
et al., 2005). Ensemble perturbation is defined as the differ-
ence between perturbed forecasts and their corresponding con-
trol forecasts, which can be expressed by Eq. (C1): 

Pi (t) = Fi (t)−Fctrl (t) , (C1)

Pi (t) Fi (t) Fctrl (t)

E (t)

Fctrl (t)

F (t)

where , ,  represent the ith ensemble pertur-
bation, the ith ensemble forecast member, and the control fore-
cast,  respectively.  The  forecast  errors  are  defined  as
the difference between the control forecast  and the ver-
ifying analysis : 

E (t) = Fctrl (t)−F (t) . (C2)

The a posteriori optimal combination of N perturbations
is obtained by solving the least-squares problem: 

min

∥∥∥∥∥E−
∑N

i=1
αiPi

∥∥∥∥∥
2

2

. (C3)

αi α̂i

Popt

To solve this optimization problem, we obtain the opti-
mal estimate values of  denoted as , along with the combi-
nation vector  under the optimal estimation: 

Popt =

∑N

i=1
α̂iPi . (C4)

Then, the PECA can be calculated: 

PECA =
cov(Pi,E)

cov(Popt,Popt)
1/2cov(E,E)1/2

, (C5)

cov(·)where  is the covariance. The larger the PECA value,
the  greater  the  ability  of  the  ensemble  perturbations  to
explain the forecast error variances.
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