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Combined dynamical-deep learning ENSO
forecasts

Yipeng Chen 1,9, Yishuai Jin 1,2,9 , Zhengyu Liu 3 , Xingchen Shen 4,
Xianyao Chen 1,5, Xiaopei Lin 1,5, Rong-Hua Zhang 6, Jing-Jia Luo 6,
Wenjun Zhang 6, Wansuo Duan 7, Fei Zheng 7, Michael J. McPhaden 8 &
Lu Zhou 6

Improving the prediction skill of El Niño-Southern Oscillation (ENSO) is of
critical importance for society. Over the past half-century, significant
improvements have been made in ENSO prediction. Recent studies have
shown that deep learning (DL) models can substantially improve the predic-
tion skill of ENSO compared to individual dynamical models. However, effec-
tively integrating the strengths of both DL and dynamical models to further
improve ENSO prediction skill remains a critical topic for in-depth investiga-
tions. Here, we show that these DL forecasts, including those using the Con-
volutional Neural Networks and 3D-Geoformer, offer comparable ENSO
forecast skill to dynamical forecasts that are based on the dynamic-model
mean. More importantly, we introduce a combined dynamical-DL forecast, an
approach that integrates DL forecasts with dynamical model forecasts. Two
distinct combined dynamical-DL strategies are proposed, both of which sig-
nificantly outperform individual DL or dynamical forecasts. Our findings sug-
gest the skill of ENSO prediction can be further improved for a range of lead
times, with potentially far-reaching implications for climate forecasting.

El Niño-Southern Oscillation (ENSO) is the strongest interannual climate
variability onour planet1,2. It exerts strong impacts on regional climate and
society worldwide3–5 through atmospheric teleconnection6. The predic-
tion of ENSO has challenged the climate community for the last half
century. One major difficulty is the ENSO spring predictability barrier
(SPB), referring to a rapid decrease in prediction skill during the boreal
spring regardless of the different initial months7–11. Intensive efforts have
been made in improving ENSO prediction skill in two approaches: dyna-
micalmodeling and statisticalmodeling12–17. The dynamicalmodels, based
primarily on the physical equations of the ocean–atmosphere system,
range from simplified physics18,19 to state-of-the-art comprehensive fully

coupled general circulation models20. The statistical models, which have
been developed primarily using historical observational datasets, employ
statistical models from various forms of regression21–24 to nonlinear
machine learning strategies13,25. However, both approaches have defi-
ciencies. Dynamical prediction still suffers from problems in model sys-
tematic error and initialization,while statisticalmethods are limitedby the
length of observational data and the nature of the statistical model. As
such, for a long period before, dynamical forecasts and statistical fore-
casts tend to have comparable skills13,24,26.

Recently, more advanced deep learning (DL) models have been
developed for ENSO prediction27. In contrast to traditional statistical
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models that are mainly trained on the limited historical observation
only25,28, most DL models are trained on a dramatically larger data set
from the simulations of dozens of state-of-the-art dynamical climate
models and have demonstrated significantly enhanced prediction skill
overmost individual dynamicalmodels29–32. Meanwhile, a recent study
suggests that an extended nonlinear recharge oscillator model, a tra-
ditional statistical model interacting with climate dynamics, performs
better than several dynamical models and is comparable to most DL
models33. This implies that the integration of dynamical knowledge
and statistical algorithms plays a unique role in ENSO forecasting.
However, how to effectively combine the two to further enhance ENSO
prediction remains an important topic for future research.

Here, we demonstrate that ENSO prediction, including skill
improvement through the SPB, can be significantly enhanced across
various lead times by integrating DL forecasts with dynamical model
forecasts. This approach, referred to as the combined dynamical-DL
forecast—or simply, the Dynamical-DL Forecast—offers substantial
predictive benefits.

Results
DL forecasts vs dynamical forecasts
Previous studies showed that ENSO prediction skill is lower in most
individual dynamical models of the North American Multi-Model
Ensemble (NMME) than in recent DL models29–31. However, here, we
show that the dynamic-model mean of the forecast skill of NMME
models is comparable to that of DL forecasts. We reproduce the ENSO
forecasts in twoDLmodels (Convolutional NeuralNetworks (CNN) and
3D-Geoformer, see “Methods”) that are trained on Coupled Model
Intercomparison Project phase 6 (CMIP6) model simulations (see
“Methods”), as in previous studies29,31. Consistent with these studies,

the useful forecast skill threshold of 0.5, as represented by the
Anomaly Correlation Coefficients (ACC, see “Methods”) of the year-
round forecast Niño3.4 index of the two DL models, is extended to
about 16–18 lead months (Fig. 1a, thick red and pink lines). These DL-
derived year-round ACCs (Fig. 1a) and spring ACCs (Fig. 1b), when the
prediction is made duringMarch, are significantly higher than 75% and
62.5% of individual NMMEmodels, respectively. However, the forecast
skill of the dynamic-model mean (black line in Fig. 1a, b) is comparable
with that of the two DL forecasts for both the year-round forecast (red
and pink lines in Fig. 1a) and for crossing the SPB (Fig. 1b–e). Similar
features can also be identified when we use root mean square error
(RMSE; see “Methods”; the DL-derived spring RMSEs are significantly
lower than 62.5% of the NMME models) to assess ENSO predictability
(Supplementary Fig. 1). Moreover, an examination of the spatial dis-
tributionof springtimeACC reveals that thedynamic-modelmeanACC
is higher than that in the DL model of 3D-Geoformer (Supplementary
Fig. 2, note also that CNN does not predict spatial distribution),
especially for the central-eastern Pacific, although the DL ACCs
become somewhat higher than that of the dynamic-model mean at
longer leads (Supplementary Fig. 3).

The enhanced prediction skill of the dynamical forecast of the
dynamic model mean over more than 75% of individual models is well
known for weather and climate forecasts, as in the case of ENSO
forecasts in the NMME models34. The enhanced prediction skill is
contributed to, partly, by the suppression of model biases in the
dynamic-model mean35. Indeed, our further analysis of the forecast
errors across the NMMEmodels shows that a larger forecast error and
lower forecast skill tend to correlate with a greater tropical bias of the
model climatology. The dynamic-model mean shows the smallest
tropical bias and, in turn, the highest forecast skill, especially for

Fig. 1 | State of ENSO prediction skill for DL models and dynamical models.
a, b The ACC of DL models (thick red and pink lines) and dynamical models (black
and other colors lines) from 1982 to 2018 for year-round (a) and for the initial
month inMarch (b). c–eThe seasonality prediction skill with shading of ACCduring

1982-2018 for 3D-Geoformer (c), CNN (d), and dynamic-model mean (e) forecasts,
respectively. The shading around the lines denotes the 95% confidence interval,
based on the bootstrap method (see “Methods”). Note that the intervals of DL
models are relatively small, making them less visually apparent in the figures.
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crossing the SPB (Supplementary Discussion 1 and Supplementary
Figs. 4–9). Note that we define the model tropical bias as the mean of
the absolute climatology bias of the region 150° E–80° W, 5° S–5° N,
(black box in Supplementary Fig. 5) between observation and model
for the corresponding targeted month during 1982–2010.

It is interesting to see here that 6 out of 8models are inferior to an
advanced DL model forecast, but the dynamic-model mean forecast
can achieve forecast skill comparable to the advanced DL models. A
single dynamic model forecast does have the advantages of advanced
dynamics and a sophisticated initialization strategy. However, it also
has disadvantages in comparison with a single DLmodel, as well as the
ensemblemeandynamical forecast. Aside froma largermodel tropical
bias than the dynamic-model mean as discussed above, a single model
is limited in predictability information only to itself, while a DLmodel,
or a multi-dynamical model ensemble mean forecast, derives pre-
dictability information from multiple dynamic models. Moreover,
these sensitivity experiments (i.e., transfer learning) show that the
success of the twoDL forecastmodels in this study is duemainly to the
training from the information in the large amount of CMIP6 simula-
tions (historical simulations of 31models, SupplementaryTable 1), with
little contribution from observations (Supplementary Fig. 10). Note
here we do not perform transfer learning for the 3D-Geoformer,
because it leads to degradation of ENSO prediction31.

Further improving the ENSO forecast with combineddynamical-
DL forecasts
The comparable skills of the dynamic-model mean forecast with the
two DL forecasts suggest a distinct value of the dynamic-model mean
forecast independent of the DL forecasts. This leads us to hypothesize
that ENSO prediction skill can be further enhanced beyond a single DL
forecast or the dynamical multi-model mean forecast if the two types
of forecasts are combined into a combined dynamical-DL forecast. The
first dynamical-DL strategy, referred to as Strategy 1 here (blue lines in
Fig. 2, see “Methods”), is the simple average of the forecasts of the
NMME dynamic-model ensemblemean and the two DL forecasts from
CNN and 3D-Geoformer. This simplest of weighting strategies illus-
trates our general idea that climate forecasts can be further improved
by combining bothdynamical andDL forecasts. The optimalweighting
strategy is an interesting question for future study. The prediction skill
(ACC) of Strategy 1 is indeed increased significantly beyond the skills of
either the DL models or the dynamical multi-model mean, for year-
round forecasts except for 7–8 months lead months and for forecasts
across the SPB beyond 4 lead months (Fig. 2). For the different initial
months predictions, out of 132 total targets (11 lead months × 12 initial

months), “Strategy 1” achieves statistically significant ACC improve-
ments in 47 targets (35.6%) over the 3D-Geoformer, 68 targets (51.5%)
over the CNN, and 67 targets (50.8%) over the dynamical-model mean
(Supplementary Fig. 11). Moreover, for RMSE, Strategy 1 shows rela-
tively modest improvement (Supplementary Fig. 12). Specifically,
Strategy 1 decreases significantly over the CNN or 3D-Geoformer
beyond 3 leadmonths and over the dynamical-model mead except for
7–9 lead months for year-round forecasts (Supplementary Fig. 12a).
For forecasts across the SPB, Strategy 1 decreases significantly over the
CNN or 3D-Geoformer at 2–7 lead months and over the dynamical-
model mean at 4–6 months (Supplementary Fig. 12b). Although the
lead time of the available dynamical forecast and, in turn, of Strategy 1,
is limited to one year, it is conceivable that the improved forecast skill
should be extended to well beyond one year.

The second dynamical-DL forecast strategy, referred to as Strat-
egy 2, is designed to improve the dynamical forecast of both single and
multiple models, in contrast to Strategy 1, which only applies when
there are forecasts of multiple models. In Strategy 2, a DL forecast is
used as the “First-Guess” that is used to select a subset of initial con-
ditions for a single dynamical model to perform ensemble forecast36,37

(see “Methods”). This approach not only improves the initial condition
of the single dynamical model from the original set of a large number
of initial conditions but also enhances prediction skill across a range of
lead times. Theprediction skill of theDLmodels is higher than that of 6
out of 8 dynamical models, and maybe the DL models could help pick
more accurate initial conditions for the single dynamical models. The
subset thus selected represents a set ofmoreoptimal initial conditions
withwhich the dynamical-DL forecast should be improved. In addition,
the enhanced prediction skill is achieved by selecting ensemble
members that closely align with the superior performance of DL
models. This is indeed the case, as seen in the year-round forecast ACC
of Strategy 2. For 5 out of 8 individual models in NMME, Strategy 2
leads to a higher ACC forecast skill than the ensemblemean dynamical
forecast skill (significantly higher beyond the eight leadmonths)of this
model alone using the original large set of initial conditions (Fig. 3a–h,
thick dot lines for 3D-Geoformer and thick dashed lines for CNN
against solid lines for all initial condition ensemblemean). The forecast
ACC of Strategy 2 is, naturally, still below the upper limit that is pro-
duced by the hindcast that uses the “Truth” (i.e., observation; see
“Methods”) to select the subset of the initial condition for the indivi-
dual models (thin dash-dot lines in Fig. 3). For 5 out of 8 individual
NMME models at the longer lead times, similar ACC of Strategy 2 can
be seen in crossing the SPB as shown in the forecast initialized from
March (Supplementary Fig. 13). It is worth noting that similar

Fig. 2 | Strategy 1, dynamical-DL based on ensemble mean forecast. a The ACC
of 3D-Geoformer (red), CNN (pink), dynamical-model mean (black), and strategy 1
(blue) for year-round. b Same as (a), except for the initial month in March. c The
seasonality of the prediction skill with shading of ACC of Strategy 1 during

1982–2018. The shading around the lines denotes the 95% confidence interval,
based on the bootstrap method. Note that the intervals of DLmodels are relatively
small, making them less visually apparent in the figures.
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prediction improvement in year-round (Supplementary Fig. 14) and
initialized in March (Supplementary Fig. 15) of Strategy 2 can be seen
in RMSE.

Strategy 2 can also be applied to the dynamic-model mean and
improves the forecast over the pure dynamical multi-model mean.
Throughout the year, Strategy 2 significantly improves forecasts at the
10–11 lead months for both ACC (Fig. 3i) and RMSE (Supplementary
Fig. 14i). In March-initiated forecasts, Strategy 2 (CNN) outperforms
Strategy 2 (3D-Geoformer), significantly improving forecast skill
between 7-11 leadmonths (Supplementary Fig. 15i). But for the forecast
skill of CanCM4i, CanSIPS-IC3 and dynamic-model mean which using
3D-Geoformer as an indicator (Fig. 3a, b, c, and i), the improvement is
not as significant (smaller than 0.05) as for other individual model
because the similar forecast skill between them and DL models
(Fig. 1a). Notably, by using the “First-Guess” method, the final predic-
tion skills of ENSO in the dynamical models (5 out of 8) can be further
improved by Strategy 2, particularly beyond 8 months. Specifically,
whenweuseCNN to select a subset of the ensemble forecastof a single
dynamicalmodel (e.g., COLA-RSMAS-CCSM4 in Fig. 3e), the prediction
skill can be increased from 0.67 to 0.77 at about 9 lead months, sug-
gesting that the ability of the dynamical model in predicting ENSO is
underestimated. Note that, for short lead months, the results of
Strategy 2 are not sensitive to the threshold for the selection of the
subset (Supplementary Fig. 16a, b) at shorter lead times (<6 months),

but it exhibits significant sensitivity at longer lead times. To avoid
selecting too many or too few samples, we use the 50% threshold.

Overall, both combined dynamical-DL strategies demonstrate
improved forecast skill compared to either the dynamic-model mean
or individual DLmodels. This improvement is observed across various
lead times, both for year-round ACC (e.g., Supplementary Fig. 17) and
for ACC when the initial month is in spring (e.g., Supplementary
Fig. 18). However, for year-round forecasts, the improvement of
Strategy 2 over the dynamic-model mean is not significant at lead
times of 1–4 months and 8–9 months.

Discussion
In spite of the higher ENSO prediction skill of DL models than 75% of
single dynamical models, the skill of DL models is comparable to the
dynamic-model mean in NMME for both the year-round forecast and
the forecast through the SPB. This finding suggests that both dyna-
mical forecasts and DL forecasts are invaluable for further improve-
ment of the forecast skill, and an optimal forecast should utilize both
dynamical and DL methods. Here we proposed a simple, yet effective
strategy, the combined dynamical-DL forecast, and show it improves
the ENSO forecast. In particular, Strategy 1 improves ACC over either
the DL models or the dynamic-model mean for year-round forecasts,
except for 7–9 months leadmonths and across the SPB beyond 4 lead
months. Strategy 2 improves ACCover 5 out of 8 dynamicalmodels for

Fig. 3 | Strategy 2, dynamical-DL based on “First-Guess”. The colorful and black
lines indicate the prediction skill of each dynamical model (a–h) and the dynamic-
model mean (i) for the year-round ACC during 1982–2018. The solid lines indicate
the prediction skill of the all-ensemblemean. The thin dashed-dot lines indicate the
prediction skill basedonStrategy 2,where the “Truth” value (i.e., the observation) is

an indicator (sub-ensemble members are 50% of all-ensemble members). And the
dashed (CNN) and dot (3D-Geoformer) lines indicate the prediction skill based on
Strategy 2, where the results of DL models are used as indicators (sub-ensemble
members are 50% of all-ensemblemembers). The shading around the lines denotes
the 95% confidence interval, based on the bootstrap method.
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year-round and across the SPB beyond 8 lead months. Furthermore,
with improved climate models and more independent forecast stra-
tegies for both dynamical and DLmodels, our strategy opens the door
for further improvement of the ENSO forecast skill in the future.

It is important to note that while the two proposed strategies
enhance ENSO forecasting, they have certain limitations in real-time
forecasting. As shown in Supplementary Fig. 19, Strategy 2 improves
the prediction of ENSOevents in 1997/98, 1998/99, 2007/08, 2008/09,
2009/10, and2015/16by correcting forecast results for 1, 6, 1, 5, 2, and 5
NMME models, respectively (out of 8 models in total). However, DL
models systematically underestimate peak intensities of ENSO events,
a well-documented issue in previous studies29,30. Although ref. 38.
Improved ENSO peak intensity prediction by modifying seasonal-
independent parameters and loss functions in CNN, the under-
estimation issue persists. Fundamentally, this stems from two key
factors: (1) the network architecture may overly rely on a normal dis-
tribution assumption, leading to excessively smooth outputs, and (2)
the limited number of extreme ENSO events in the training dataset
reduces the DL model’s ability to capture peak intensities, potentially
constraining its operational forecasting capability.

Additionally, both proposed strategies rely on forecasts from
dynamicalmodels and DLmodels, posing a common challenge in real-
time forecasting39,40. The reliance of DL models on gridded reanalysis
datasets limits their real-time forecasting capability, which is limitedby
the update latency of reanalysis datasets; for instance, ORAS5 reana-
lysis datasets typically lag by half a month, preventing immediate
forecasting. In a real-world scenario, on March 15, only February’s
reanalysis datasets would be available, allowing for forecasts initialized
in February. Compared to forecasts initialized in March (Supplemen-
tary Fig. 19), Strategy 2 initialized in February improves predictions for
1, 5, 4, 5, 3, and 5 NMME models (out of 8, Supplementary Fig. 20).
Future research should address this by incorporating such as ref. 38,
which CNN modifications while integrating physical information into
DL models to mitigate the sample size limitation. Additionally, devel-
oping DL-based climate forecasting models that utilize scattered
observational data instead of reanalysis grids could reduce depen-
dence on the update latency, further optimizing the proposed strate-
gies and other DL models, improving their ability to simulate extreme
ENSO events and real-time forecasting.

Methods
Reanalysis and model outputs
Monthly sea surface temperature (SST) and sea surface height (SSH)
fields from 1982 to 2018 are obtained from the European Centre for
Medium‐Range Forecasts OceanReanalysis System5 (ORAS5),which is
the validation of ENSOprediction byDL anddynamicalmodels.Weuse
themonthly SST and SSHfields of 31 CMIP6 (Supplementary Table 1) in
historical simulations from 1900 to 2014 as the training data of DL
models. For the CNN model, we interpolate the training data and the
forecast data as 5° × 5°. For the 3D-Geoformer, these data are inter-
polated to regular grids with a resolution in the zonal direction of 2°
and in the meridional direction of (1°) 0.5° (out of) 5° S to 5° N. The
region of the data that DL models used is 0°–360°, 20° N–20° S. Note
here we do not add the observation to the training data as the
improvement of ENSO prediction skill is limited (Supplementary
Fig. 10 and Supplementary Discussion 1 in ref. 31).

In order to compare the prediction skill of ENSO between the
dynamical model with DL models, we use the historical ensemble
hindcast data from eight fully coupled models in the NMME. The
specific models are CanCM4i, CanSIPS-IC3, CanSIPSv2, COLA-RSMAS-
CCSM3, COLA-RSMAS-CCSM4, GFDL-CM2p5-FLOR-A06, GFDL-
CM2p5-FLOR-B01 and GFDL-CM2p5-aer04. The hindcast period is
from 1982–2018. More details can be seen in the ref. 20. Note here we
choose these eight models because they have the forecast data from
1982 to 2018, and the lead time is up to one year.

All monthly data are used in this study after the climatological
seasonal cycle and linear trends have been removed.

Convolutional neural network model
The CNN model we used for training is the model developed by the
ref. 29. and do not modify its architecture. Based on this architecture,
we only use SST and SSH fields from CMIP6 as the training data. We
then use this model to forecast the Niño3.4 index. The network
architecture of the CNN model consists of one input layer, three
convolutional layers, twopooling layers, one fully connected layer, and
one output layer. The maximum pooling process extracts the max-
imum value from each 2 × 2 grid. The third convolutional layer is
connected to the neurons of the fully connected layer, and the fully
connected layer is connected to thefinal output. The input data are the
SST and SSH fields for the previous three months with different lead
months for the target month, and the output data are the scalar
Niño3.4 index for the targetmonth. The total number of convolutional
filters and neurons in the fully connected layer is either 30 or 50. Thus,
a combinationof fourCNNmodels canbeobtained (C30H30,C30H50,
C50H30, C50H50, where the numbers after C and H denote the
number of convolutional filters (i.e., C) and neurons (i.e., H) in the fully
connected layer, respectively). We take the average of the final four
combinations as the result of the CNN model output, which also
reduces the model’s prediction error and makes the prediction more
accurate. The size of the mini batch for each epoch is set to 400, and
the number of epochs is 700 for the training using CMIP6 output.

3D-Geoformer model
The 3D-Geoformer model we used for training was developed by
ref. 31. We do not modify the architecture of this model. This 3D-
Geoformer model is built on an encoding-decoding strategy with
associated modules, which includes two data preprocessing modules,
encoding and decoding modules, and an output layer (more details in
ref. 31). In contrast to ref. 31, which used wind fields, SST, and upper-
ocean temperature anomalies fields (92°E-30°W, 20° S–20° N) as
training data, we use only SST and SSH (0°–360°, 20° S–20° N) of
CMIP6 for training, which are consistent with the training data in CNN.
Althoughweonly useSST and SSHdata for training, theprediction skill
of ENSO is similar to ref. 31. The 3D-Geoformer model takes 12 con-
secutive months of gridded SST and SSH fields as input data. The
output data are gridded SST and SSH fields for the next 20 lead
months.

Strategy 1
For the eight NMMEdynamicalmodels, wefind that the prediction skill
of the dynamic-model mean is higher than the prediction skill of any
singlemodel. Inspired by this, we get the final ENSO forecast results by
averaging the dynamical multi-model, 3D-Geoformer, and CNN fore-
casts. Then, we calculate the ACC of these forecast results, which we
designate as the ACC of Strategy 1.

Strategy 2
For a dynamical model, to avoid the perturbation of the initial field
data on the forecast results of the model, several initial fields are used
to form corresponding model members. We then average the simu-
lation results of these members to get the final forecast results. How-
ever, this simple ensemble averaging method may pull down the
prediction skill of the model36,37. Ref. 36 showed that the winter pre-
diction skill of the North Atlantic Oscillation can be significantly
improved by refining a dynamical ensemble through subsampling.
They develop an approach called “First-Guess”. Firstly, they propose a
statistical approach and make the winter prediction based on the
observed autumnfields as the “First-Guess” indicator. Then, they select
10 out of 30members of the dynamicalmodel, which are the closest to
the “First-Guess” prediction. They use a subsampling approach from
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all-ensemble members and get the sub-ensemble members based on
the “First-Guess” indicator. Similarly, ref. 37. Applied this method for
the North Atlantic Oscillation study. These can be found that the
forecast result of the sub-ensemble is significantly higher than that of
all ensemble means. Inspired by this study, we use the DL models'
prediction as the “First-Guess” indicator in ENSO prediction (Fig. 4a,
take the forecast starting inMarchasanexample).When thedynamical
model forecasts winter ENSO with the initial month in the spring, the
DL models also do the predictions with the same initial months and
lead months. The Niño3.4 index obtained from the DL models fore-
casts for the months of December, January, and February (DJF) is used
as the “First-Guess” indicator (noted as DLDJF). Similarly, we calculate
the DJF prediction of the Niño3.4 index for each member of the
dynamicalmodelsmade fromspring (noted asModelDJF). And then,we
use this subsampling approach to select fromall ensemblemembers to
obtain the sub-ensemble members according to the smallest differ-
encebetweenDLDJF andModelDJF. Note that for eachdynamicalmodel,
there is a different number of members, and we select 50% of
all members of each dynamical model whose ModelDJF is closest to
the DLDJF as the sub-ensemble member. We average the forecast
results of all-ensemble members and sub-ensemble members and
calculate their ACC, respectively (noted as Ensemble Mean and Strat-
egy 2 (Picked), brown dot and red dot in Fig. 4a, respectively). Simi-
larly, if we use the “Truth” (observations; black dot in Fig. 4a) value as a
“First-Guess” indicator, we can get the Best 50%Mean according to the
subsampling approachmentioned above. It is the upper predictability
limit (i.e., an upper limit, in practice, cannot be achieved but can be
asymptotically approached) of the prediction skill made by Strategy 2,
as we cannot know the future in advance. This method can also be
applied to the other seasons, such that we can calculate year-round
ACC (i.e., Fig. 3).

We use the “First-Guess” for one of the dynamicalmodels (Fig. 4b)
as anexample. Note thatweonly show the EnsembleMean (solid line in
Fig. 4b) and Strategy 2 (we use the corresponding months of the
observation as the indicator). We can find that the ACC of Strategy 2

(Truth) is significantly higher than the Ensemble Mean. Therefore,
there is still some room for using the “First-Guess” to improve the
prediction skill.

Definition of ACC and RMSE
In this study, the prediction skill is quantified using the ACC. ACC is
defined as the temporal anomaly correlation coefficient between the
ensemble mean forecast (Fi) and the corresponding “Truth” (Oi, i.e.,
observation). RMSE is defined as the root mean square error between
the ensemble mean forecast (Fi) and the corresponding “Truth” (Oi,
i.e., observation).

ACC =
<Fi,Oi>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

<Fi, Fi><Oi,Oi>
p ð1Þ

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

<Fi � Oi, Fi � Oi>
p

ð2Þ

where Fi is the ensemblemean forecast anomaly for forecastmonth or
year i, and Oi is the verifying observed anomaly. <> denotes the var-
iance over all the months or years in verifying time series.

Bootstrap
The confidence interval of the forecast skills for the DL, dynamical
models, Strategy 1, and Strategy 2 is calculated using the bootstrap
method. At first, we randomly select N ensemble members, where N
represents the number of ensemblemembers for each forecast system
(e.g., N is 10 for the COLA-RSMAS-CCSM4 model; Supplementary
Table 2). Overlapping is permitted during this random selection,
meaning a selected ensemble member can be chosenmore than once.
The forecast skill of the ensemble-averaged value is then calculated.
This procedure is repeated 1,000 times, and the 25th highest and
lowest forecast skill values are used to define the 95% confidence
interval.

Data availability
All data related to this paper canbedownloaded as follows: TheORAS5
data are available at https://cds.climate.copernicus.eu/cdsapp#
!/dataset/reanalysis-oras5?tab=form. The CMIP6 data can be down-
loaded online https://esgf-node.llnl.gov/projects/cmip6/. The SODA
version 2.2.4, https://climatedataguide.ucar.edu/climate-data/soda-
simple-ocean-data-assimilation. The NMME data are available at
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/. Source
data to reproduce the figures of this paper are available on https://doi.
org/10.5281/zenodo.15162425.

Code availability
Code for the main results is available on https://doi.org/10.5281/
zenodo.15162425.
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