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Abstract The artificial intelligence (AI)‐based weather forecasting model named FuXi and its data
assimilation (DA) system FuXi‐En4DVar has been developed for high‐efficiently forecasting high‐impact
weather events such as tropical cyclones (TCs). Besides conventional observations, target observations are
essential to further improve initial field accuracy and then increasing high‐impact weather event forecasting
skills. The identification of the sensitive area, where the additional observations should be deployed, is the key
to implementing target observations. In this paper, a sensitive area identification system is established for the
FuXi model on the basis of FuXi‐En4DVar, based on the fully nonlinear method of conditional nonlinear
optimal perturbation (CNOP). The CNOP represents the optimally growing initial perturbation and can be
calculated by using the adjoint of numerical models in numerical forecast models, but in the AI‐based FuXi
model, it is solved by directly using the automatic differential algorithm embedded in the FuXi model. Such an
approach of calculating CNOP significantly increases the computational efficiency. Applying this system to the
forecasts of 11 TCs demonstrates that the additional target observations can significantly improve TC track
forecast skills, as compared with the other additional observations. Moreover, a small number of additional
target observations can be expected to achieve the forecast skill comparable to, or even surpassing to, that
obtained by tens of times more observations. This validation shows the potential of applying dynamical CNOP
to AI‐based model for highly effectively identifying the sensitive area for target observations associated with
TC forecasting.

Plain Language Summary This study developed a conditional nonlinear optimal perturbation
(CNOP)‐based sensitive area identification system for the AI model, FuXi, to enhance the quality of the initial
fields and lead to more reliable forecasts. By conducting observing system simulation experiments on tropical
cyclones (TCs), we assimilate observations in the CNOP sensitive areas using the FuXi‐En4DVar system and
forecast with FuXi. The results show that assimilating observations within CNOP sensitive areas leads to better
TC track predictions than observations elsewhere. This end‐to‐end process—ranging from sensitive area
identification to observation assimilation and forecasting—is fully AI‐driven and offers a promising approach
for advancing future numerical weather prediction systems.

1. Introduction
Accurate weather forecasting plays a crucial role in many aspects of society. Currently, the vast majority of
operational forecasting centers rely on traditional numerical models, known as numerical weather prediction
(NWP), for weather forecasting. These numerical models are built upon the physical principles governing at-
mospheric dynamic. Running an NWP model depends on high‐performance computing systems, but limited
computational resources have constrained its development (Brotzge et al., 2023). Alternatively, artificial intel-
ligence (AI)‐based weather forecasting models offer promising alternatives with enhanced computational effi-
ciency, several orders of magnitude faster than traditional NWP models. Currently, AI‐based weather forecasting
models have made significant progress, with examples including FourCastNet (2022) (Pathak et al., 2022),
GraphCast (2023) (Lam et al., 2023), NowcastNet (2023) (Y. Zhang et al., 2023), Pangu‐Weather (2023) (Bi
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et al., 2023), Fengwu (2023) (K. Chen et al., 2023), FuXi (2023) (L. Chen et al., 2023), and AIFS (2024) (Lang
et al., 2024). These models have demonstrated remarkable advantages and great potential in improving fore-
casting accuracy, which match or even surpass traditional NWPmodels such as the Integrated Forecasting System
(IFS) from the European Centre for Medium‐Range Weather Forecasts (ECMWF). For instance, FuXi has
demonstrated forecast performance comparable to the ensemble mean of ECMWF in 15‐day forecasts.

The aforementioned AI‐based models focus on short‐ to medium‐term weather forecasting, particularly in pre-
dicting synoptic‐scale systems, where the primary source of forecast errors originates from initial condition errors
(Ek, 2018), which is the predictability problem of the first kind (Lorenz, 1975). In the past, AI‐based weather
forecasting models often directly used ECMWF Reanalysis v5 (ERA5) data (Hersbach et al., 2020) to reduce
initial condition errors. Alternatively, forecast fields from operational forecasting centers are used as initial
conditions to drive the AI‐based models, which would lead to greater initial errors. To enable AI models to
gradually reduce dependence on traditional NWP analysis fields and improve the accuracy of the initial condi-
tions, FuXi‐En4DVar (Y. Li, Han, Li, et al., 2024), FengWu‐4DVar (Xiao et al., 2023), and FuXi‐DA (Xu
et al., 2024) have made preliminary progress, enabling the assimilation of observational data, which enhances the
accuracy of the initial conditions.

As data assimilation (DA) techniques continue to advance and the observational capabilities of Earth observation
systems rapidly improve, new opportunities arise to enhance the quality of initial conditions in both numerical
forecasting and AI‐based weather forecasting models. However, the data obtained from existing systems remain
sparse relative to model resolution and are unevenly distributed, especially in oceanic regions. Consequently, the
efficient use of limited observations has become a critical focus. This is where the concept of targeted obser-
vations proposed by meteorologists (Bergot, 1999; Emanuel et al., 1997; Rabier et al., 1996; Snyder, 1996), also
known as adaptive observations, comes into play. Targeted observation involves identifying sensitive areas at
decision time (td) through objective methods to improve the quality of weather forecasts for specific times
(verification times tv) and areas (verification areas). Enhanced observations, using tools such as satellites,
airborne radars, and dropsondes, are conducted in these sensitive areas and then assimilated at analysis time (ta)
to reduce forecast errors at verification time (tv) (Figure 1). It has been employed in various field observation
experiments, such as The Fronts and Atlantic Storm‐Track Experiment (FASTEX) (Joly et al., 1997), the North
Pacific experiment (NORPEX) (Langland et al., 1999), the 2000 Winter Storm Reconnaissance (WSR00)
(Szunyogh et al., 2002), and the Dropsonde Observations for Typhoon Surveillance near the Taiwan Region
(DOTSTAR) (C.‐C. Wu et al., 2005, 2007), recently, several field experiments focusing on targeted observations
of tropical cyclones (TCs) have been conducted (Feng et al., 2022; Qin et al., 2023).

In the past, identifying sensitive areas for targeted observations was typically done using traditional NWP (Phase
1–3 in Figure 1) with the calculation of these sensitive areas dependent on models. Thus, the sensitive areas
identified by NWP are not suitable for AI models. To further improve the accuracy of the initial conditions in AI‐
based models, an effective sensitive area identification system for AI‐based models is crucial. In this study, we
construct such a system based on the FuXi model and use FuXi‐En4DVar (Y. Li, Han, Li, et al., 2024) for the
assimilation of observations, thereby improving forecasting skills of high‐impact weather (Phase 4 in Figure 1).
This approach realizes the entire chain of targeted observations using AI‐based models—from the initial design of
the observation array to the final forecast—entirely driven by AI. Currently, the methods for identifying these
sensitive areas can be broadly categorized into two types. The first type focuses on the dynamics of error growth,
identifying initial errors with rapid growth or calculating the gradient of an objective function with respect to the
initial state to identify sensitive areas. Examples include the leading singular vector (LSV) method (Palmer
et al., 1998), conditional nonlinear optimal perturbation (CNOP) method (Duan et al., 2018; Duan & Huo, 2016;
Mu et al., 2003, 2009), breeding vector (BV) method (Toth & Kalnay, 1997), and adjoint sensitivity (ADS)
method (Ancell &Mass, 2006; Baker &Daley, 2000; Kim et al., 2004). The second type involves ensemble‐based
methods, such as ensemble sensitivity analysis (ESA) (Torn & Hakim, 2008), ensemble Kalman filter (ENKF)
(Hamill & Snyder, 2002), and ensemble transform Kalman filter (ETKF) (Bishop et al., 2001). Each method has
its own strengths and weaknesses. For instance, the ESA, ENKF, ETKF, LSV, and ADV are linear approaches
that cannot describe well the nonlinear growth of error, while BV, though nonlinear, lacks a solid theoretical
foundation. CNOP, on the other hand, is a nonlinear method with significant theoretical advantages (Duan
et al., 2004; Duan &Mu, 2009; Mu et al., 2003, 2007), though its computation is costly in traditional NWP. In AI‐
based weather forecasting models, the issue of slow CNOP computation can be mitigated by avoiding the
execution of tangent linear and adjoint models. In this work, a CNOP‐based targeted observation system will be
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developed for the FuXi model, and its effectiveness is validated through multiple TC cases. A chain from the AI‐
based FuXi model and its DA system to greatly improve TC forecast skills is connected through the CNOP
sensitive area identification system.

The structure of the article is organized as follows: Section 2 introduces the development of the CNOP‐based
sensitive area identification system for the FuXi model. Section 3 describes the experimental design, while the
results of the experiments are presented in Section 4. Finally, Section 5 provides the conclusions and discussions.

2. Method
2.1. The Model and Assimilating System

The FuXiModel (L. Chen et al., 2023), developed by the Artificial Intelligence Innovation and Incubation Institute
at Fudan University, features a cascaded architecture designed to provide a 15‐day global forecast with a temporal
resolution of 6 hr and a spatial resolution of 0.25°. It incorporates 70 weather variables, utilizing the input data
combining both current and previous time steps with dimensions of 2 × 70 × 721 × 1440. This model is
developed utilizing a 39‐year ERA5 reanalysis data set. Forecast performance is evaluated using latitude‐weighted
root mean square error (RMSE) and anomaly correlation coefficient (ACC). Notably, its 15‐day forecasts are
comparable to those of the ECMWF ensemble mean, making it the first AI‐based model to achieve such accuracy.

The FuXi‐En4DVar (Y. Li, Han, Li, et al., 2024) system, built upon the FuXi model, employs a 6‐hr assimilation
window, considering observations only at the current time and 6 hr later. Unlike traditional systems, this
assimilation process does not rely on tangent linear and adjoint models to compute the gradient of the objective
function. Instead, it uses automatic differentiation to calculate the gradient. The background error covariance
matrix is generated through ensemble calculations, taking advantage of the ability of the AI‐based model to

Figure 1. Four development phases of targeted observation. “NWP” refers to the use of the traditional numerical weather
prediction model at a stage of targeted observations, while “AI” represents the application of the AI‐based meteorological
forecasting model.
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quickly produce a substantial number of samples. The analysis increments produced by this system satisfy basic
physical constraints and exhibit flow‐dependent characteristics. When assimilating observations with this system,
the analysis field shows reduced errors compared to the background field.

2.2. The CNOP Method

Assuming the state vector is denoted as x, representing variables in the model, the evolution of the state vector can
be described by the following system of nonlinear partial differential equations:

⎧⎨

⎩

∂x
∂t
= F(x)

x∣t=0 = x0
(1)

where F is a nonlinear differential operator, and x0 represents the initial state. Therefore, at time τ, the solution to
the system of Equation 1 can be expressed as follows:

xτ = Mτ (x0) (2)

whereMτ is a nonlinear propagation operator (In this paper,M is the FuXi model). Thus, at the forecast time, the
forecast error δxτ caused by the initial error δx0 can be calculated by the following equation:

δxτ = Mτ (x0 + δx0) − Mτ (x0) (3)

According to the above equation defining CNOP, it represents all initial perturbations that satisfy given physical
constraints and cause the maximum forecast error within the optimization period. In other words, the initial
perturbation δx∗

0 is referred to as CNOP if and only if

J(δx∗
0) = max

‖δx0‖C2 ≤ ϵ
‖Mτ (x0 + δx0) − Mτ (x0)‖C1 (4)

where ‖‖C2 is the norm measuring the magnitude of the initial perturbation, ‖δx0‖C2 ≤ ϵ represents the constraint
condition on the initial perturbation (where ϵ is a constant), and ‖‖C1 is the norm measuring the forecast error
magnitude at the forecast time (i.e., the objective function), with τ being the optimization duration.

In this study, the initial perturbation δx0 is composed of u 0́,v 0́,T 0́,p ś0, which are the perturbed zonal and
meridional wind components, temperature, and mean sea level pressure, respectively, at the initial time. ‖‖C2 and
‖‖C1 represent the norm of total dry energy and kinetic energy, respectively. The reason for choosing kinetic
energy as the objective function is that the TC track is mainly determined by the momentum field. The continuous
form is expressed as follows:

‖δx0‖2C2 =
1
D2
∫
σ
∫
D
[uʹ2

0 + vʹ2
0 +

cp
Tr
Tʹ2
0 + RaTr (

pś0
pr
)

2

] dD2dσ, (5)

and

J =
1
D1
∫
σ
∫
D1
[uʹ2

τ + vʹ2
τ ] dD1dσ, (6)

where cp and Ra are the specific heat at constant pressure and the gas constant of air, respectively (with numerical
values of 1,005.7 J kg− 1 K− 1 and 287.04 J kg− 1 K− 1). The reference parameters are the following. Tr = 270 K
and pr = 1000 hPa. J is the cost function defined as the kinetic energy over the verification area D1. Here, u τ́ and
v τ́ are components of the state vector δxτ, which is the nonlinear development of δx0 at time τ. The integration
extends over the full domain D2 and the vertical direction σ. The initial constraint value ϵ is chosen as 0.3 J kg− 1,
and the optimization time τ is 1 day.
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2.3. CNOP Calculation Process

According to Equation 4, the calculation framework of CNOP is established based on the FuXi model. The flow
chart of CNOP calculation is as shown in Figure 2. It is worth nothing that the calculation of CNOP based on the
FuXi model does not rely on tangential linearity and the adjoint model but through the automatic differential
solution gradient (Paszke et al., 2017), which reduces the engineering amount of scripting and improves the
computational efficiency. And the optimization algorithm is projected gradient descent (PGD). The termination
condition in Figure 2 is if the number of iterations reaches 50 or the gradient maximum is less than 10− 6.

2.4. Definition of Sensitive Areas

In previous studies, the horizontal sensitive areas were defined by vertically integrating the total dry energy
(Buizza et al., 2007; Zhou & Mu, 2012). This integration was performed using the following equation:

f (i, j) =∫
1

0
Ed(i, j,σ)dσ, (7)

where Ed(i, j,σ) is the total dry energy of the perturbation at the grid point (i, j,σ). The horizontal grid points where
the value f (i, j) is larger than a certain value c are defined as the sensitive areas. Ed(i, j,σ) can be changed ac-
cording to the specific problem, not necessarily the total dry energy. In this study, Ed(i, j,σ) represents the total dry
energy and the threshold of the sensitive areas c is determined to be 10 J kg− 1.

3. Experiment Design
To validate the effectiveness of the CNOP‐identified sensitive areas based on the FuXi model, 11 TC cases are
selected for analysis, as detailed in Table 1 (The atmospheric circulation of the 11 TCs is presented in Supple-
mentary Information (SI) Figures S1–S4 in Supporting Information S1). All these cases meet rigorous selection
criteria: They exhibited severe typhoon strength during the forecast period and remained within China's 48‐hr alert
window. Besides, these TC cases are intentionally outside the temporal scope of the FuXimodel's training data set,
which is much realistic and helpful for examining the performance of the FuXi model in predicting the TCs except
for those in the training period. In this study, the verification areas are designed with a proper size according to the
location of each TC at prediction time by consulting the simulations from the FuXi model and the tropical TC data
released by China Meteorological Administration. The TC tracking algorithm employed in this study is sourced
from ECMWF (Der Grijn, 2002). Zhou andMu (2011) studied the impact of different verification areas on CNOP

Figure 2. Calculation process of conditional nonlinear optimal perturbation based on the FuXi model.
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and its identified sensitive areas. Their findings indicated that once the general
positions of the verification areas were determined, minor variations in size or
position had minimal influence on the results.

To assess the impact of assimilating observations from the sensitive area onTC
analysis and prediction, six experiments are designed for comparison for each
TC case. Since the sensitive areas for TCs are mostly over the ocean, where
observations are sparse, an observing system simulation experiment is con-
ducted to simulate observations and evaluate the forecasts. The simulated
observations are based on ERA5 data, including temperature, specific hu-
midity, u‐wind, and v‐wind at the 150, 200, 250, 300, 500, 700, 850, and
1,000 hPa levels, similar to the dropsonde observation. To reflect real‐world
observational uncertainties, Gaussian noise with a mean of 0 and a variance
equal to 0.001 times the standard deviation of observation errors is added to the
ERA5 data. These observations are recorded every 6 hr, aligning with the
temporal resolution of the FuXi model.

The six experiments are as follows (see Table 2 for detail). Nature Run
(hereafter called “NR”): ERA5 data are directly used as the truth. Control
experiment (hereafter called “CTRL”): A forecast of the FuXi model is

initiated using the ERA5 analysis from 2 days before the initial time as the initial condition. This forecast field
serves as the initial condition at the initial time and there are no observations for assimilation. Large‐scale
observation experiment (hereafter called “ALL”): Observations are arranged at 1°intervals within the region
(10°N–60°N, 105°E–145°E). The FuXi‐En4DVar (Y. Li, Han, Li, et al., 2024) system is then used to assimilate
the observations and forecast. CNOP experiment (hereafter called “EXP_CNOP”): Observations are placed at 1°
intervals within the CNOP‐sensitive area. If the sensitive area extended beyond 10°N–60°N and 105°E–145°E,
observations outside this region are excluded. Random experiment (hereafter called “RAN”): Observations are
randomly distributed within 10°N–60°N and 105°E–145°E with the number of observations matching that of the
EXP_CNOP. No sensitive area random experiment (hereafter called “NoSA_RAN”): Similar to the RAN, but the
random observations are placed within 10°N–60°N and 105°E–145°E, excluding the CNOP‐sensitive areas with
the same number of observations as in the EXP_CNOP.

4. Results
4.1. Sensitive Areas for Each Cases

Using the above framework to calculate CNOP, we can identify the sensitive areas for each case, as shown in
Figure 3. For all cases, the CNOP‐sensitive areas are primarily concentrated around the verification areas and near
the TC itself. When this type of error is reduced, the accuracy of the initial fields for the TC and its surrounding
areas improves, leading to better TC track forecasts one day later. This partly explains why reducing CNOP‐type

Table 1
Tropical Cyclone Cases

Cases TC Verification areas Analysis time

Case_I Maysak 26°N–31°N, 124°E–129°E 0000 UTC 01 Sep 2020

Case_II In‐fa 21°N–26°N, 126°E–132°E 0000 UTC 20 July 2021

Case_III 22°N–27°N, 124°E–129°E 0000 UTC 22 July 2021

Case_IV Chanthu 20°N–25°N, 120°E–125°E 0000 UTC 11 Sep 2021

Case_V 23°N–30°N, 121°E–126°E 0000 UTC 12 Sep 2021

Case_VI 28°N–33°N, 121°E–126°E 0000 UTC 13 Sep 2021

Case_VII 28°N–33°N, 122°E–127°E 0000 UTC 14 Sep 2021

Case_VIII Khanun 18°N–23°N, 130°E–135°E 0000 UTC 30 July 2023

Case_IX 21°N–26°N, 128°E–133°E 0000 UTC 31 July 2023

Case_X 23°N–28°N, 125°E–133°E 0000 UTC 01 Aug 2023

Case_XI 24°N–29°N, 123°E–128°E 0000 UTC 02 Aug 2023

Table 2
Experiment Setup

Experiment names Observations assimilated Forecast length (days)

NR ERA5 data as “truth” 3

CTRL No observations 3

EXP_CNOP Assimilating the observation of the intersection of the CNOP‐ sensitive areas and (10°N–60°N,
105°E–145°E), where the observation is placed at 1°interval

3

RAN Assimilating random observations in (10°N–60°N, 105°E–145°E), where the number of
observations is consistent with the number observed in the EXP_CNOP

3

NoSA_RAN Assimilating random observations in specific areas, where specific areas are (10°N–60°N,
105°E–145°E) subtracting the CNOP‐sensitive areas, and the number of observations is
consistent with the number observed in the EXP_CNOP

3

ALL Assimilating observations in (10°N–60°N, 105°E–145°E), where the observation is placed at
1°interval

3
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Figure 3. Conditional nonlinear optimal perturbation (CNOP) sensitive areas. In the figure, the shaded areas represent the CNOP sensitive areas, while the black dashed
box indicates the verification areas. The red box represents the observation areas for the ALL, and green x‐mark denotes the observation points for the RAN, and the
brown square symbols denote the observation points for the NoSA_RAN. The observation points in EXP_CNOP correspond to the intersection between the shaded area
and the red box. The light blue lines represent the contour of the geopotential height and the thick blue line represents the 5,880 gpm contour at the 500 hPa. The label
“Num” in the upper left corner shows the percentage of observation points in the EXP_CNOP relative to the observation points in the ALL (For more details, see Table S1
in Supporting Information S1). Figures (a)–(k) correspond to cases I‐XI in Table 1. The energy values have been normalized.
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initial errors can reduce TC forecast errors after one day. It also underscores that, with a one‐day optimization
period, the accuracy of the TC's core physical state is a critical factor influencing the forecast accuracy for the
following day, consistent with previous studies (G. Chen et al., 2018; Qin et al., 2020; Wang et al., 2025). And
except for case III (For detailed information, please refer to Figure S2 in Supporting Information S1), the
movement of TCs in the other cases is mainly guided by the subtropical high (thick blue solid line).

4.2. Track Forecasting

TC track forecasting is a critical metric for evaluating TC forecasting skills. It is important to highlight that, on
average, the number of observations in EXP_CNOP, RAN, and NoSA_RAN accounts for only 5.9% of those in
ALL across the 11 cases, as shown in Figure 3. Figures 4a–4k and 5a–5k compare the TC track forecasts from
EXP_CNOP, RAN, NoSA_RAN, CTRL, and NR for the 11 cases. Overall, CTRL produces the poorest track
forecasts compared to the other experiments that assimilate observations. Except for cases I and IV (Figures 4a,
4d, 5a, and 5d), the experiments with assimilated observations show similar forecasting skills to the CTRL,
possibly due to dynamic inconsistencies in the adjusted analysis field caused by an imperfect assimilation system
in this cases. For most cases, the ALL yielded the best track forecasts. Notably, in case VIII (Figures 4h and 5h),
EXP_CNOP provided the most accurate track forecast, demonstrating that reducing perturbations in the sensitive
areas not only have the greatest impact on improving the forecast after one day but also remained effective for
later forecast. When observations are not located in the sensitive areas, as in NoSA_RAN, the forecast results are
worse than those from EXP_CNOP, ALL, and RAN, especially for cases VII‐VIII (Figures 4g–4h and 5g–5h),
where the initial forecast even deteriorated compared to the CTRL, leading to generally poor subsequent fore-
casts. In RAN, the results are consistently poorer than those of EXP_CNOP for the first 24 hr. However, in the
later forecast, the gap between RAN and EXP_CNOP narrows or even reverses (e.g., in cases II, VI, and X,

Figure 4. The forecasts of the tropical cyclone (TC) track. The black line represents the NR TC track, and the blue, yellow,
green, brown, and red lines represent CTRL, EXP_CNOP, RAN, NoSA_RAN, and ALL TC track forecasts, respectively.
Figures (a)–(k) correspond to cases I‐XI in Table 1. The forecast initialization time is indicated at the top of each figure.
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Figures 4b, 4f, 4j, 5b, 5f, and 5j). Nonetheless, over the entire forecast period, RAN performs worse than
EXP_CNOP.

Averaging the results across the 11 cases (Figures 6a and 6b), it becomes evident that CTRL yields the poorest
forecasts, directly demonstrating the effectiveness of the FuXi‐En4Var assimilation system. Following CTRL,
NoSA_RAN produces the next poorest results, with RAN performing slightly better. Notably, EXP_CNOP
exhibited highest forecasting skills compared to other experiments during the first 24 hr, with an average
improvement of 55.92% for EXP_CNOP, outperforming ALL at 52.69%, RAN at 45.67%, and NoSA_RAN at
26.67%. This difference is particularly pronounced at the 12‐hr forecast mark, where EXP_CNOP achieved a
72.04% improvement. It noted that the optimization time is 24 hr. Beyond 24 hr, ALL maintains the highest
forecasting skill among all experiments, but the performance of EXP_CNOP is only marginally lower with an
average difference in the improvement percentage of about 6.49%. In contrast, NoSA_RAN and RAN exhibit a
more significant gap, with average differences of 15.18% and 10.95%, respectively. Given that the number of
observations in EXP_CNOP accounted for only 5.91% of those in ALL, these results suggest that reducing errors
in CNOP‐sensitive areas can significantly decrease forecast errors, achieving forecasting skills comparable to that
of large‐scale observations.

It can be observed that at the 54‐hr forecast (Figure 6a), EXP_CNOP underperforms compared to RAN. This
reason may be that EXP_CNOP is focused solely on reducing forecast errors in the verification area 24 hr ahead.
In contrast, RAN may include some observations in sensitive areas over a 54‐hr optimization period, leading to
slightly better results for RAN compared to EXP_CNOP.

Figure 5. Tropical cyclone track forecast errors (unit: km) for CTRL (blue), EXP_CNOP (yellow), RAN (green), NoSA_RAN (brown), and ALL (red) verified against
the NR track for the 11 cases. Figures (a)–(k) correspond to cases I‐XI in Table 1. The forecast initialization time is indicated at the top of each figure.
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4.3. Mechanism Analysis

The differences in the TC track forecasting results among EXP_CNOP, RAN, and NoSA_RAN can be attributed
to the strategic placement of observations with an equal number of observation points in each case. The deter-
mination of both the observation locations and their quantity is guided by the CNOP‐sensitive areas. From the
previous section, EXP_CNOP almost consistently outperforms RAN and NoSA_RAN. To understand why ob-
servations placed in CNOP‐sensitive areas are more effective than random placements, it is essential to analyze
the rationale behind the CNOP‐sensitive area's structure and its advantages.

To illustrate this, we will examine case V, where intensified observations in the sensitive area had a notable
impact. This case will be analyzed to uncover why perturbations with a CNOP structure are prone to rapid
development and how assimilating observations in these sensitive areas enhances track forecasts.

4.3.1. The Structure of CNOP‐Sensitive Areas

Figure 7 shows the distribution of total dry energy for CNOP. Horizontally, the high values of total dry energy are
primarily concentrated in regions with large horizontal pressure gradients, specifically near the TC. This indicates
that in the vicinity of the TC, perturbations are more likely to draw energy from the basic flow. Vertically, the high
values are mainly concentrated in the mid‐to‐lower troposphere, which aligns with previous studies (Torn
et al., 2018; H. Zhang et al., 2023).

Figure 6. Figure (a) shows the average track error across the 11 cases with different colors corresponding to different
experiments, consistent with Figure 5. Figure (b) displays the percent of improvement in the track error for EXP_CNOP
(yellow), RAN (green), NoSA_RAN (brown), and ALL (red) compared to the CTRL. Improvent = 100 ∗ ( (Trackerr)CTRL
− (Trackerr)xa)/ (Trackerr)CTRL, where (Trackerr)xa is the track error of the experiment that assimilates observation.
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Different perturbation variables exhibit distinct structures, leading to varying patterns of development. To further
analyze this, the dry total energy is decomposed into kinetic and full potential energy, as illustrated in Figure 8.
For kinetic energy (Figure 8a), the concentration is mainly in the mid‐to‐upper troposphere near the TC, aligning
with the warm‐core height (Figure 8b). The strong horizontal temperature gradients associated with the warm‐
core height enhance atmospheric baroclinicity. The background field releases available potential energy via
baroclinic conversion, which is transformed into kinetic energy. Specifically, the perturbation kinetic energy
continuously extracts energy from the baroclinic processes, enabling the rapid growth of the disturbance. From
another perspective, the altitude of maximum kinetic energy is also closely associated with the upper‐level
divergence of the TC, with the location of the divergence center providing a key indication of the TC's posi-
tion. The upper‐level divergence center of TC is situated at the edge of the subtropical high, and its position can
indirectly influence the TC's movement trajectory by adjusting the direction of the surrounding steering flow
(Webster, 2020). Specifically, perturbation structures such as CNOP can affect the TC track forecast by altering
the upper‐level wind field. This underscores the importance of accurately capturing these upper‐level wind errors
to enhance the reliability of TC track forecasts.

Regarding full potential energy (Figure 8c), high values are mainly concentrated in the mid‐to‐lower troposphere
near the TC center. In fact, within the boundary layer of a TC, there are pronounced inflow and Ekman pumping
phenomena, which accelerate the vertical transport of moist air in the TC's core region (T.‐H. Li &Wang, 2021).
Moreover, there is a strong coupling between the vertical redistribution of absolute angular momentum near the
TC center and the release of latent heat. Deep convection, particularly in the eyewall region, lifts high‐angular‐
momentum and high‐entropy air from the lower levels to the upper troposphere (Peng et al., 2019). During these
processes, a significant amount of latent heat is released, and then the total energy of CNOP gains energy and

Figure 7. The dry total energy for conditional nonlinear optimal perturbation (CNOP) for case V. The upper figure represents
the zonal integral of the dry total energy for CNOP, while the lower figure depicts the vertical integral of the dry total energy,
as given by Equation 5. And the black line in the lower figure is the geopotential height of 500 hPa, and the thick black line is
the contours of the geopotential height of 5,880 gpm. All energy values have been normalized.
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grows rapidly. This energy growth process has a good correspondence with the position of TC changes, which is
of great significance for understanding the variability of TC tracks.

The above analysis partially explains why perturbations with CNOP structures develop rapidly, highlighting the
reason behind identifying such sensitive areas based on the FuXi model.

4.3.2. Assimilation Analysis

Next, we analyze how assimilating different observations impacts the TC track. Effective assimilation should
make the analysis closer to the truth or independent verifying observations relative to the background. We
compared the fitting of the background before assimilation and the analysis after assimilation to the observation
because there are no independent observations for verification. Due to the limitations of the assimilation system,
which cannot assimilate unconventional variables, we opted to use gridded data as observations. Therefore, the
above mentioned fitting method employed is a simple interpolation approach.

Figure 8. Figures (a) and (b) are similar to Figure 7 and also focus on case V, but with differences in the displayed quantities.
Figure (a) shows the kinetic energy, while Figure (c) presents the full potential energy. Figure (b) illustrates the radius‐height
cross‐sections of the azimuthally averaged temperature anomaly field (unit: °C), centered on the tropical cyclone.
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Figure 9 shows the probability density function (PDF) of observations minus background (OMB) and observa-
tions minus analysis (OMA) for v‐wind (Figures 9a and 9d), u‐wind (Figures 9b and 9e), and temperature var-
iables at 500 hPa (Figures 9c and 9f) in case V for the EXP_CNOP. It is evident that both at the start (Figures 9a–
9c) and the end (Figures 9d–9f) of the assimilation window, the mean and standard deviations of OMA have
significantly decreased compared to OMB. The distribution of OMA is closer to a Gaussian distribution with a
mean of zero and smaller uncertainty. Quantitatively, the absolute mean of OMA reduces compared to the ab-
solute mean of OMB: for v‐wind (V500), the average reduces to 73.67%, for u‐wind (U500), the average reduces
to 81.25%, and for temperature (T500), the average reduces to 91.26%. The standard deviation has slightly
decreased with reductions of 42.15%, 51.48%, and 30.97% for V500, U500, and T500, respectively. Overall, the
analysis field is more aligned with the observations after assimilation, demonstrating that the assimilation system
enhances the accuracy of the initial conditions by incorporating observations.

Assimilated observations effectively convey observational information to the background field, resulting in
analysis increments that improve the accuracy of the background field. Figure 10 illustrates the analysis in-
crements for V500 and Z500 in the EXP_CNOP (Figures 10a and 10e), RAN (Figures 10b and 10f), NoSA_RAN
(Figures 10c and 10g), and ALL (Figures 10d and 10h). For EXP_CNOP, the regions of large analysis increments
are primarily concentrated near the TC. For RAN, large analysis increments are found not only near the TC but
also in the surrounding trough and ridge systems. In the NoSA_RAN, the large analysis increments are not
concentrated around the TC, while in the ALL, they are found both near the TC and in regions such as the
subtropical high and westerly troughs. It is important to note that the Z500 analysis increments are influenced by
changes in other variables, as observations do not include geopotential. Analysis increments of EXP_CNOP for
V500 and Z500 near the TC are more similar to those of the ALL compared to RAN and NoSA_RAN.
Furthermore, the Z500 analysis increments from EXP_CNOP (Figure 10e) and ALL (Figure 10h) result in a
slower northward movement of the TC, more akin to NR, whereas RAN and NoSA_RAN do not affect the TC's
northward movement. This leads to better forecast results for EXP_CNOP and ALL compared to RAN and
NoSA_RAN.

Figure 9. The probability density function of observations minus background (OMB) and observations minus analysis
(OMA) are shown. These represent the OMB and OMA for the EXP_CNOP of case V. Specifically, Figures (a) and (d) show
the radial wind at 500 hPa (V500, units: m/s), Figures (b) and (e) depict the zonal wind at 500 hPa (U500, unit: m/s), and
Figures (c) and (f) illustrate the temperature at 500 hPa (T500, unit: °C). Figures (a)–(c) correspond to the initial time of the
assimilation window, while Figures (d)–(f) represent the end of the assimilation window.
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4.3.3. Steering Flow

It is well known that the motion of TC is mainly controlled by steering flow in the middle and lower atmosphere.
The steering flow is generally defined as the average wind vector in the TC environment within a certain radius in
the mid‐troposphere. The steering flow is calculated by averaging the wind vectors with a TC as the center and a
radius of 1,000 km (T.‐C. Wu et al., 2014). To better understand how does assimilating observations in sensitive
areas affect TC track forecasts, it is essential to study how the momentum field responds to the increment in the
initial field.

Figure 11 displays the steering flow at various levels under different lead times of CTRL (blue arrows) and
experiment assimilating observations (orange arrows) for case V along with their difference in steering flow (red
arrows). At the initial time (the left side of each plot in Figure 11), EXP_CNOP (Figure 11a), RAN (Figure 11b),
NoSA_RAN (Figure 11c), and ALL (Figure 11d) show a westerly steering flow in the mid‐to‐lower troposphere
(500–700 hPa) compared to CTRL, indicating that all experiments correct CTRL toward NR (Figure 4e).
However, EXP_CNOP and ALL show a southerly steering flow compared to the CTRL, which helps to slow
down the northward movement of the TC and aligns more closely with NR. In contrast, RAN and NoSA_RAN
exhibit a northward steering flow compared to CTRL, leading to a northward bias in the subsequent TC track
forecasts (the right side of each plot in Figure 11), resulting in larger track forecasting errors.

5. Conclusion and Discussion
In recent years, AI‐based weather forecasting models have rapidly developed and demonstrated significant
effectiveness. There have been successful implementations of AI‐based assimilation systems, showing that AI
models have the potential to operate independently from traditional assimilation systems and perform cyclical
forecasting on their own. However, due to the limitations in the spatial and temporal resolution of current ob-
servations, targeted observation remains essential for further improving the accuracy of initial fields, especially
for high‐impact weather events. In this study, we developed a CNOP‐sensitive area identification system based on
the FuXi model and applied it to 11 TC cases. This approach allows the FuXi model to enhance the accuracy of
initial fields as much as possible, even with limited observations, thereby improving forecasting skills. It is
important to note that in the process of calculating CNOP, the gradient is calculated through automatic differ-
entiation rather than relying on tangent linear and adjoint models, which increases the computational efficiency.

Figure 10. Analysis increments of case V. Figures (a) and (e) represent the analysis increments for EXP_CNOP, Figures (b) and (f) show the analysis increments for
RAN, Figures (c) and (g) display the analysis increments for NoSA_RAN, and Figures (d) and (h) display the analysis increments for ALL. Figures (a)–(d) depict V500
(unit: m/s), while Figures (e)–(h) illustrate the geopotential at 500 hPa (Z500, unit: m2/ s2). The black dots represent the observation points.
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The development of this system marks a significant step forward, connecting from the AI‐based FuXi model and
its DA system to greatly improve TC forecast skills through the AI‐based sensitive area identification system
(Phase 4 in Figure 1).

The main results indicate that enhancing and assimilating observations in sensitive areas (EXP_CNOP) signif-
icantly improves TC track forecasting skill compared to the CTRL. To further evaluate the effectiveness of
observations in these sensitive areas, three sensitivity experiments were conducted (RAN, NoSA_RAN, and
ALL). In these experiments, the number of observations for EXP_CNOP, RAN, and NoSA_RAN accounted for
only 5.91% of those used in the ALL with observation points of three experiments located within the ALL
observation range. The averaged results across cases showed that EXP_CNOP had the highest forecasting skill
during the first 24 hr, with an average improvement of 55.92% compared to other experiments. This time cor-
responds to an optimization time of 1 day. In the subsequent forecast periods, the performance of EXP_CNOP
remained comparable to that of ALL, while RAN showed moderate skill, and NoSA_RAN performed the worst
among the four experiments. During the optimization period, EXP_CNOP is nearly optimal, and outside the
optimization period, it still maintains a high level of forecasting skill. This demonstrated two key findings. First,
strategically deploying a small number of observations in sensitive areas can achieve forecasting skill comparable
to using a wide range of observations. This approach optimizes resource utilization while maintaining high
forecasting accuracy. Second, perturbations structured according to the CNOP method, as calculated by the AI‐
based model, tend to develop rapidly, and significantly influence future forecasts. Effectively reducing errors
associated with these CNOP‐structured perturbations yields higher forecasting skill compared to mitigating errors
in randomly selected or nonsensitive areas.

Figure 11. Steering flow of case V. Figures (a)–(d) correspond to EXP_CNOP, RAN, NoSA_RAN, and ALL, respectively. In
these figures, orange arrows represent the results from the analysis field, blue arrows show the results from the background
field, and red arrows indicate the difference between the analysis field and the background field.
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A more detailed analysis confirms the validity of the CNOP calculated by the FuXi model. This perturbation
effectively captures unstable structures in the atmosphere and rapidly develops. When observations within the
sensitive area are assimilated, the resulting analysis increment can reasonably adjust the steering flow, producing
changes similar to those seen in the ALL experiment. The initial alteration of the steering flow in EXP_CNOP
leads to subsequent forecasts that more closely align with NR.

This study demonstrates the effectiveness of AI‐based CNOP‐sensitive areas, showing that deploying observa-
tions in these regions is more beneficial than placing them elsewhere, thus maximizing the use of limited human,
material, and financial resources. The positive outcomes from these experiments directly validate the feasibility of
identifying sensitive areas and conducting assimilation forecasts entirely through AI, offering a new paradigm for
the future of NWP, and show the potential of applying dynamical CNOP to AI‐based models for highly effec-
tively identifying sensitive areas of TC. The full‐chain AI implementation also presents a promising approach to
improving computational efficiency and reducing resource consumption.

While the results affirm the viability of an AI‐based full‐chain system, challenges remain, such as the current
limitation to assimilating only conventional observations. The development of AI neural radiative transfer op-
erators (Z. Li et al., 2024; Y. Li et al., 2025) holds potential to enable satellite DAwithin this system. Furthermore,
it provides a means for targeted observations using satellites in subsequent applications (Y. Li, Han, &
Duan, 2024). Future work will focus on refining the AI‐based assimilation system and exploring whether the AI‐
driven targeted observation system can effectively improve TC intensity forecasts, which will involve parameter
selection for CNOP‐sensitive areas. Moreover, the selected case studies in this work primarily focus on the TCs
that impact the China region. In fact, given the universal applicability of the CNOP method and the global
coverage of the FuXi model, similar targeted observation experiments can be extended to other regions (e.g., the
Bay of Bengal and Atlantic) for relevant TC forecasts. It is expected that future work involves forecasts of TCs in
different ocean basins, thereby enhancing the robustness of our findings. Through these efforts, AI models may
eventually operate independently of traditional numerical prediction systems, enabling the effective assimilation
of multisource data and real‐time targeted observations of high‐impact weather events.

Data Availability Statement
The ERA5 data (Hersbach et al., 2020) utilized in this paper are sourced from the official website of Copernicus
Climate Data, and the ERA5 data are publicly accessible.
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